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Correlation Matrix

n x n symmetric positive semidefinite matrix A with a; = 1.

m symmetric,
m 1s on the diagonal,

m eigenvalues nonnegative or
all principal minors nonnegative.

Properties:

m off-diagonal elements between —1 and 1,
m convex set.

Nick Higham Nearest Correlation Matrix 4/34


http://www.mims.manchester.ac.uk/

Is this a correlation matrix?

110
1 1 1
0o 1 1
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Is this a correlation matrix?

110
1 1 11. Spectrum: —0.4142, 1.0000, 2.4142.
0o 1 1
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Is this a correlation matrix?

110
1 1 11. Spectrum: —0.4142, 1.0000, 2.4142.
0o 1 1

For what w is this a correlation matrix?

1 w w
w 1 w
w w 1
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Is this a correlation matrix?
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0o 1 1

For what w is this a correlation matrix?

w w
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Structured Correlation Matrices

m Nonnegative:

[ p— ]
W= = —b

A= =k N[

— N
=
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Structured Correlation Matrices

m Nonnegative:

RN
i1

[ 3 4 ;

m Low rank: _ :
1 1 1

1 1

11 1]
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Structured Correlation Matrices

= Nonnegative:

RN
i1

[ 3 4 ;

m Low rank: _ :
1 1 1

1 1

11 1]

m Factor structure:

1 X1 X2 X1X3
X1 Xo 1 XoX3 | .

XiXz XoX: 1
3 3
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Approximate Correlation Matrices

Empirical correlation matrices often not true correlation
matrices, due to
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Nearest Correlation Matrix

Find X achieving
min{ ||A — X||r : X is a correlation matrix },

2 __
where [|A||2 = Z,’jaﬁ..
% Constraint set is a closed, convex set, so unique
minimizer.

% Nonlinear optimization problem.
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Questions From Finance Practitioners

“Given a real symmetric matrix A which is almost a
correlation matrix what is the best approximating
(in Frobenius norm?) correlation matrix?”

“l am researching ways to make our company’s
correlation matrix positive semi-definite.”

“Currently, | am trying to implement some real
options multivariate models in a simulation
framework. Therefore, | estimate correlation
matrices from inconsistent data set which
eventually are non psd.”
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Computing the nearest correlation matrix—a problem from finance
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Alternating Projections Method

H (2002): repeatedly project onto the positive semidefinite
matrices then the unit diagonal matrices.

» Easy to implement.
» Guaranteed convergence, at a linear rate.

» Can add further constraints/projections,
e.g., fixed elements (Lucas, 2001).
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Newton Method

Qi & Sun (2006): Newton method based on theory of
strongly semismooth matrix functions.

m Applies Newton to dual (unconstrained) of
min 3[|A — X||2 problem.
m Globally and quadratically convergent.
m H & Borsdorf (2010) improve efficiency and reliability:

m use minres with preconditioning,
m reliability improved by line search tweaks,
m extra scaling step to ensure unit diagonal.
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NAG Library

Implemented in NAG codes g02aaf (g02aac) and g02abf
(weights, lower bound on ei’'vals—Mark 23).
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Factor Model

E=_X \n/—k F e, ni,ei € N(0,1),
NxK s nxn nxi

where F = diag(f;). Since E(£) =0,
cov(&) = E(&€T) = XXT + F2.
Assume var(¢;) = 1. Then S°f , x2 + f2 =1, so

Zx <1, i=1:n.

m Collateralized debt obligations (CDOs),
m multifactor normal copula model.
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Structured Correlation Matrix

Yields correlation matrix of form
k
CX)=D+XXT=D+> xx/,
Jj=1

D = diag(/ — XX7), X =[x1,....xd.

C(X) has k factor correlation matrix structure.
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Structured Correlation Matrix

Yields correlation matrix of form
k
CX)=D+XXT=D+> xx/,
Jj=1

D = diag(/ — XX7), X =[x1,....xd.

C(X) has k factor correlation matrix structure.

1 Y1TyZ Y1TYn
T .
C(X) = y1.y2 [ T' . Vi €RK
: - Yn—1¥n
Y1Tyn ynT—1yn 1
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For k factor correlation matrices, investigate

m mathematical properties,
® nearness problem.
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1-Parameter Correlation Matrix

1
X(w) = [W
w

min{ ||A — X(w)||r : X(w) a corr. matrix} has unique
solution the projection of

e’ Ae — trace(A)
W =
n>—n

?

onto[-1/(n—1),1].
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Block Structured Correlation Matrix

T 7 Y12 712 o
o1 Y12 Y12 Ci= C(yi) € R™M, i =],
Y12 V12 1 72 ’ ! wjeeT e RN j £

Yz 2 | ye2 1

Objective function:

() = [|A=C(I ”F_ZHAH CONlE+Y_ IA—ee |z
i=1 i#f

m Convex constraint set = unique minimizer.

m Alternating projections converges (use prev. theorem
for projection onto pattern).
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1-Factor Correlation Matrix

C(x) = diag(1 — x?) + xx",  x € R"

i.e., Cj = XiX;, I #]J.

det(C(x)) = H (1 —x2)+Zx H (1-x3)

yo

Corollary

If x| < e with x; = 1 for at most one i then C(x) is
nonsingular. C(x) is singular if x; = x; = 1 for some | # j.
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Rank Result

C(x) = diag(1 — x?) + xx',

Let x € R" with |x| < e. Then rank(C(x)) = min(p+ 1, n),
where p is the number of x; for which |x;| < 1.

1 1 1 X4 X5

1 1 1 X4 X5

1 1 1 X4 X5
X4 X4 Xy 1 X4 X5
Xs X5 X5 XaXs 1

x=[111x4x] = C(x)=
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Credit derivatives | Cutting edge

All your hedges in one basket

Leif Andersen, Jakob Sidenius and Susanta Basu present new techniques for single-tranche
CDO sensitivity and hedge ratio calculations. Using factorisation of the copula correlation
matrix, discretisation of the conditional loss distribution followed by a recursion-based
probability calculation, and derivation of analytical formulas for deltas, they demonstrate a
significant improvement in computational speeds

n a traditional synthetic collateralised debt obligation (CDO), the arranger
tranches out credit losses on a pool of credit default swaps (CDSs) and
s them through to different investors. Assuming that investors for all
tranches can be identified, the arranger is typically left with fairly moderate
market exposure. For various reasons, placing the entire pool capital struc-
ture with investors has become increasingly difficult, and many
it basket derivatives expose the dealer to significant market ris|
the recent ‘single-tranche’ CDO (STCDO) product involves the
gle CDO tranche to a single customer, leaving it to the arranger to manage
the risk of the remaining capital structure. As STCDOs and similar ‘custom’
products offer significant customer benefits and are much less difficult to
originate than traditional CDOs, such products are likely to increase in im-
portance. This is especially true for managed trades where the customer has
certain rights to alter the composition of the reference portfolio over time.
A basic prerequisite for active management of the risk of a credit bas-
ket derivative is the ability to accurately calculate the sensitivity of the se-
curity with respect to market and model parameters, most prominently the
par CDS spreads of the underlying reference pool. The numbers of such
sensitivities can be very large — many thousands — and can put consider-
able strain on computing resources. Moreover, the calculation of each of

pa

where @ is the risk-neutral probability measure and A, is a (forward) de-
fault hazard rate function. The functions p(T). k = . N can be boot-
strapped by standard means from the quoted CDS spreads and are assumed
known for all T.

Equation (1) fully establishes the risk-neutral marginal distribution of
each default time 7,. To construct the joint distribution of all default times,
we here choose® to employ a Student-f copula, which we quickly define
nce. Defining vectors T = (T, ..., Ty) and T = (T}, ..., Ty)", the
joint default time distribution in the Student-f copula, becomes:

0(v< )=ty (i (Pr (1))t (P (1)) @

where 1, , and 1,, , are the one- and N-dimensional cumulative Student-r

distribution functions with v degrees of freedom, respectively. Recall that
the density n,, ,, of an N-dimensional Student- distribution with correla-
tion matrix X i

()

O

where T'is the gamma function. For high degrees of freedom, (3) approaches

M (2)=C o (14 V272 72)




One-Factor Problem

min f(x) := A= C(X)II%
X n
subjectto —e<x<e

m Objective function is nonconvex.
m The constraint implies C(x) is a correlation matrix.
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One-Factor Problem: Derivatives

@ Objective:

f(x)=(A—LA—Dg—2xT(A—Dx+(x"x)2 =", x*.

@ Gradient:
Vi(x) = 4((x"x)x — (A— )x — diag(x?)x).
@ Hessian:
V2f(x) = 4(2xxT + (x"x + 1) — A — 3diag(x?)).

m Vf(x), V2f(x) cheap.
m f(x) has a saddle point at x = 0.
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k Factor Problem

C(X) := | — diag(XXT) + XXT with X € R™,

Representation not unique!

Zx <1 = C(X)is a correlation matrix.

The k factor problem is

k
min f(x):=|A— C(X)|% subjectto » xZ<1.

XeRnxk
J=1
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k Factor Problem: Derivatives

@ Gradient
V(X)) =4(X(XTX) — AX + X — diag(XXT)X)

@ Hessian given implicitly, can be viewed as a matrix
representation of the Fréchet derivative of Vf(X).
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Choice of Optimization Method

m Derivatives available.
m Ignore the constraints?
m Starting matrix, convergence test?
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Choice of Optimization Method

Derivatives available.
Ignore the constraints?
Starting matrix, convergence test?

Rich set of solvers in NAG Library, Mark 22:
m EO4 - Minimizing or Maximizing a Function
m EO05 - Global Optimization of a Function
MATLAB Optimization toolbox.
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Alternating Directions
f(xj) = const. + 2 Z (a,-q — Z x,-sxqs)z.

q#i s=1
Hence f'(x;) = 0 if

> qzi Xa <aiq — D sy XisXqS>

2
Zq;«éi X

Xij =

Project x; onto [-1,1].

m Convergence to stationary point of f guaranteed.
m Limit may not be feasible for k > 1.
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Principal Factors Method

Anderson, Sidenius & Basu (2003): with
F(X) = | — diag(XXT) [so C(X) = F(X) + XXT]

X; = argminy g | A — F(Xi1) = XXT||r.

Min obtained by eigendecomposition of A — F(Xj_1).
Equivalent to alternating projections method for

U ={WecR™:w;=ajfori#j} convex,
S ={WeR™: W= XX"for X e R™*} nonconvex!

m Alt proj theory says no guarantee of convergence!
m Constraints ignored, so project final iterate onto them.
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Spectral Projected Gradient Method

Birgin, Martinez & Raydan (2000).
To minimize f : R” — R over convex set (2:

Xk11 = Xk + k.

m dk = Po(xk — kVF(xk)) — Xk is descent direction,

m o, € [—1, 1] chosen through nonmonotone line
search strategy.

m Promising since Py (-) is cheap to compute.
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m Fortran Code in ACM TOMS (Alg 813).
m R package by Varadhan & Gilbert (2009).



Test Examples

@ COrr: gallery (' randcorr’,h n)
@ nrand: }(B+ BT) +diag(/ — B) with B € [-1,1]"*"
such that A\yin(B) < 0.

Results averaged over 10 instances.

m AD: alternating directions.
m PFM: principal factors method.

m Nwt: e041b of NAG Toolbox for MATLAB (modified
Newton), bound constraints.

m SPGM: spectral projected gradient method.
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Comparison: k =1, n = 2000

tol= 103

tol= 10-°

t(sec.) | #its | /7(X*)

t(sec.) | #its | \/7(X*)

corr, f(Xp) = 26.0

AD 3.3 5.2 26.0 3938 | 7282 | 26.0
PFM 68 1.1 26.0 827 18 26.0
Nwt 23 1.8 26.0 36 5.0 26.0
SPGM | 938 5.2 26.0 638 760 26.0
nrand f(Xp) = 825.13

AD 3.8 72 | 81579 | 34 10.0 | 815.79
PFM 22 3.0 | 815.81 19.0 4.0 | 815.81
Nwt | 4167 | 1222 | 815.79 | 4312 | 1229 | 815.79
SPGM | 94 7.2 | 815.79 11 9.6 | 815.79

MIMS

Nick Higham

Nearest Correlation Matrix
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Comparison: k = 6,n = 1000

tol= 103 tol= 105
t(sec.) | #its | /7(X*) | t(sec.) | #its | /7(X*)
corr, f(Xp) = 18.5

AD 704 | 836 | 18.38 | 5060 | 5955 | 18.38
PFM 10 | 41 | 18.38 95 28.1 | 18.38
Nwt | 167 | 52 | 18.38 | 280 | 68.2 | 18.38
SPGM | 24 | 235 | 18.38 | 108 892 | 18.38
nrand , f(Xp) = 415
AD | 8694 [9816 | 421  1.13e4 | 1.28e4 | 414
PFM | 10.1 | 6.0 | 421 9.8 10 420
Nwt | 146 | 408 | 421 109 56 420
SPGM | 122 [ 1263 | 407 [ 276 | 2925 | 407
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Overall Conclusions

m Nearest k factor correlation matrix problem relevant in
many applications.

m Principal factors method has no convergence theory
and can converge to an incorrect answer!

m Important to use methods that respect the constraints
and converge to a feasible stationary point.

m Spectral projected gradient method is best choice:

exploits convexity of constraints.
Implemented in NAG routine g02aef (Mark 23, 2011).

R. Borsdorf, N. J. Higham and M. Raydan
Computing a Nearest Correlation Matrix with Factor
Structure, SIMAX, 31(5): 2603-2622, 2010.
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