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Introduction

We develop our analysis three stages:

 We specify a model to describe theemium rating processassociated with the

sharing claim experience for each product in tha.po

 We formulate and examine tlteraction of the surpluses among the insurance

products in the pool.

* In the special case, where a target for zero ssiri@uequired for some of the
products (e.g. due to a regulatory constraintipeakdescriptor model is derived

where the solution is more complex and the notiotaasality does not exist.
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Two main objectives:

() To provide a comprehensive, convenient and praaictuarial model for the
management of a portfolio of different insuranceducts using the standard
tools of control theory:

» claims may be regarded as the inpuiy, (

» the accumulated surplus as the stateand

 the gross premiums as the outpy} {ector-variable.

(i) To introduce the mathematical framework for maraging and solving sys-
tems (1) by presenting some preliminary concepts a@afinitions frommatrix

pencil theory:
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Note also that for a given pair of constant magide and AOR™", with
detE = C which uniquely determine the matrix pensit — A of system (1) is de-

fined.

(Ex, = A, +BU,

Y = Cx + Dy,
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Notations and Model Framework

Consider:

m: The totalnumber of different productsparticipating in the portfolio of the in-

surance company.
e : Theexpensefactor for thei ™-insurance product, i.e(l—a)XGross Premium
IS the margin for expenses.
r. : Theannual rate of investment return for thei"™insurance product.
A;  Theinteraction factor I, ] =1,2,.. m, is the proportion of accumulated sur-

plus of thei"-product transferred to thg™-insurance product.
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& Theprofit sharing factor (feedback factor) for the-insurance product, which
iIncludes premium repayments and determines theepge of accumulated
surplus repaid to the policyholders.

{Ci,k} < - Theactual total amount incurred claims sequence for the.company

in yeark, i.e.(k—-1,K].

{éi k} . The estimated total expected annual incurred claimsequence in
"4 KON

yeark for thei™- insurance product. Obviously, there is alwaysalk(or lar-

ger) delay period ofl. years in updating information.

In that case and using the latest information efttho available years, we ob-
tain:
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previous
=1 years - \NiCi,k—di—l-I_(l_\Ni)Ci k—d;-2* (2)

W : Theweighted factor for the average claims (over the two recent ydarshe

i"-Insurance product.

d : Thelength of time delay (measured in years) for tieinsurance product.
Thus, it takes aboud. years for incurred claims to be fully reportedygessed
and settled. Obviously, the available claim infotioya at the beginning of the

k year (or at the end d —1) refers to the experience of the ye&rsd -1,

k-d -2, k-d -3, ... 2, 1,0, i.e. years prior to and inclusafeyears
k—-d -1
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{R'k}kDN : Thegross annual premium(GAP) sequence paid at the end of #&

year for thei™insurance product. The GAP is determined as arerese
adjusted premiumF?Ff) less the surplus adjustment, see also Zimbidis and

Haberman (2001a), where
p(lf) —

Thus, it follows that

P= R(E) _Zg'/]ij (Sj,k -5,

]
j=1

fori=1,2,... m.
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Equation (3) is the decision function.

Note that, GAP is calculated annually at the begmmof each year according to
a base premium and a profit sharing scheme. Thet@smandates an extra modi-
fication of the base premium through a refund (ghato the policyholder a certain
percentage of the benefit scheme’s total accundilsiteplus (deficit). Obviously,
the manager of the portfolio should firstly consitiee difference between the real

and the target-surplus; see expression (3).

{S'k}kDN . Theaccumulated surplus(AS) sequence at the end of tkeyear for

thei™ -insurance product, where

S, :(1+I’i)2/]ij8j’k_l+QF?’k—Cik for i=12,.. m. (4)
j=1
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The Model and System of Equations

The system, which is a classical MIMO (multi inpuatdti output) starts from
an initial point for the first year’s premium, thelaim data provide the input back-

ground for the development of the surplus level etc

For thei™insurance product, thk™-year's premium and surplus proceedings

are determined according to the following equations

P :El(vvici,k—di—l_l_(l ) i k=ch = 2) Zg /]u( S k- dj‘l)’ )
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S,k = (1+ ri) /]ij Sj,k—1+WiCi ,k—di—1+(l_VVi)Ci k-d, - 2
=

]

_nginj (Sj,k - Sj,k—dj—l) _Ci k
j=1

Each of them insurance products generates its own system @tiens.
These systems cannot be solved independently giecateraction factor531ij ex-

Ists in them. Thus, considering expressions (5) (@hdthe following systemsS(QL
and S2 of 2m delay difference equations that describe the premiating, the
surplus process and the interaction within thefplotof insurance product are de-

rived respectively.
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(1+el¢9/]11)51k+e]zgJ S (1+rj)z/l1 T eZg/]ﬂSJkd .

j=2

- Cl,k + W1C1k—d1— 1 (1_ W1) C 1k—d,~ 2

i-1
6 A4S +(1+egh)S, +8 Z £i4iS (1”)2/]'181 k- 1+QZ‘9/]USJ k-d, -1
=1

j=i+l

_Ci,k +\NiCi,k—di—1 ( ﬂ:Wi)C| k-d, -2

engl/]mlsj k +(1+Qﬂ (1+r )Z/]mg j k=1 +angj/]mj Sj k=d; -1
j=1

_C +Wmkad -1 (1_Wm)Cm,k—dm—2

Obviously, working with systems (S1) and (S2) i$ @wo easy task.

Thus, the matrix-vector reformulation is more appiate. So, we may denote
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It should be mentioned that the input vector i®datned by considering the actual

Ci s 's When they are available or the expectat((A‘),Q_OIi 's otherwise. In other

words, we obtain

C _{is replaced bf:i,k_j , for= 0,12, d,
ik-j

remain unchanged, fprd + d.+ 2
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For the use of systems S1 and S2, five super-reatig D andA, B, E are re-

spectively introduced. We start with (S2):

E11 E12 - E
E21 E22 - E

Im

2m

Eml Em2

(1+d; )x(1+d; )

ORMM4) andE, = .. 0|OR

Liverpool, UK (26 January 2012)




The matrix

where its elements areA, = , R [n ) e Sy

(1+d )x(1+d;)

R
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The matrix

where its elements are

(-1 0 --- W

1+d, )x(3+d; )

0
o 0 - 0 O

OR®4 %) andB, =0 0OR' forizj.

o 0 0 0 O

Finally, for the system (S1), we define

m

mx Y (1+d;)

c=[Cc, C, - C,|OR =
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where C, =

wherenD, =

Liverpool, UK (26 January 2012)




Thus, the complex input-output systems (S1) and ¢88 be combined and ex-

pressed as a linear generalized difference systéyp® (1), i.e.

ES =AS, +By,

B =CS +Dy,

\

It is clear that system (7) is a generalized défifere system of first order, since
the (super) matriE holds. Following now, the classical theory of diffnce equa-
tions, see for instance Bellmann and Cooke (1968)analytical solution to equa-

tion (7) is given by:
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=0

However, the matriXe can easily be singular (@tetE - C) e.g. assuming that
some of the different insurance products do noumcdate a surplus due to a

forced regulatory constraint i.e.
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0=(1+5) D> A4S

=1
-1 m
+nginj(o_Sjkd -1 | ||Sk -d, 1 Zngij(O_Sjk—dj—l)
=1 j=i+l

—Cix +VViCi,k—d1—1+(1_VV')C' k=di-2

or equivalently,

=(1+I‘)ZA” j k-1 nginij,k—dj—l_Ci,k+\NiCik—di—l+(1_\Ni)C:lk—di—2'
j=1

If we consider the strategy above, we manipulatesgstem as follows
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1+d; )x(1+d; )

[ R(l+di )x(1+d;) E =00 R(
' j

1

and, obviously the@letE = C, so the system (7) becomes a descriptor.

Now, by considering the regular matrix pencil agmto, we decompose system

(7) in two subsystems, whose solutions are provineaw

k-1 _ g-1 _
S =Qup| AWy 2 ATI[PB],,, U } ~Quq {Z H, [PB]WM (10)

j=0

where the consistent initial condition satisfies tbllowing important expression
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g1l
Quepp ~ Qg {Z:c; H, [PB]qxn Yy :|} ’

Non-causality occurs in many physical phenomenacanthinly non-causal sys-

tems are by no means useless.
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For instance, one can consider several cases apdatessing that have been re-

corded, such as
e Speech,
* meteorological data,
« demographic data,

e stock market fluctuations etc,

where their collection is not constrained causally.
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Granger’s causality

We should notice that the causality in economidesys is defined in Granger’s

(1969) sense. Characteristically, one of the moptufar example for such analyses

IS the money-income relationship, see for instebioes (1972), Barth and Bennett
(1974), Williams, Gogdhart and Gowland (1976), Gloq1978), Feige and Pearce
(1979), Hsiao (1979, 1981) etc. However, it shdagddnentioned that whenever the
money’s models are not caused by income in Grasgense, their forecast ability
cannot be improved by using only the informatiorpast income data (this is an

essential definition of Granger causality), seekkfibhl (1982).
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A numerical application for the special

case of two insurance products

In this numerical application, we consider a singtaation with two insurance

products,m=2, with d, =2 andd, =3 years delay, respectively. Before we go

further, it is important to determine the valueshs variables, which are taken into

consideration in section 2.

« Firstly, we assume that thexpense factor for the first insurance product is
e, =80% and for the second, =90%.

 Theannual rate of investment returns for both the first and the second insurance

product is the same, i.g.=r, = 4%.
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« Moreover, we suppose thmeteraction factors A, =90%, A,=10% and

A,, =95%, A,, =5%. That means a greater proportion of accumulateplis

of the first (more profitable product) is transéstto the second.

* In order to obtain a faster response, we assuntethibarofit sharing factor

(feedback factor) for the first product & = 0.3, and for the second is almost
the sameg, =0.3<.

« the weighted factor for the average claims (overttho recent years) both for
the first and the second insurance product is equbl?.

In this numerical application, we are going to istvgate the special case, where

the second product accumulates zero surpluses.
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As already mentioned, this strategy can be reglistnce the product managers
of the insurance company may hope a further sucamdsdevelopment in the

other, most profitable, product.

Now, we are going to examine the behaviour of tysesn with respect to the
spike signal. This kind of input corresponds to the appearavfcan unexpected
claim into the system. Moreover, we suppose thaiilee signal appears as the in-

put of the first subsystem while the second sulesydtas a zero input, i.e.

{1, fork=10

,andC,, =0fork=0,12,...

1,k

O, fork=1,2,..
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a)The spike signal appears only to tieptoduct.

The input vectors are the following

O O OO OO o o o o+
O O OO OO0 oo o+ o
O O OO OO o o Fr O o
O O OO OO O Fr O o o
O O OO O o r OO0 O o

andu, =0 for k=5,6.,....
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So, according to (10) and (11) expressions we ol§fidt) and (13), respectively.

Moreover, we assume that, =Q™S, =0=§ =0.

Consequently,

§< - Q7><6[ _1[PB]6 11—0 AE_Z[PB]GKll— Ak 3[PB] @11—
+ Aé_‘l [ PB]6x11g3 + A2_5[ PB] &1194] B Q7>< 1[ PB] b3 119k

(12)

= CQ?xG[Ag_l[ PB]BxllgO + k_z[ PB] 6<11— Ak 3[ PB] & 11—2
+ Atls(_4[PB]6x11—3 - S[PB]&M— ] [D CQM[ PB] *11:|

(13)
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Surplus 1st Product

Surplus Znd Product

armount in §
=]
o

o
o

amount in §

tirme tirme

figure 1 (a), (b: The surplus for the®land the 2 insurance

product, respectively.
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Premium 1st Product

Premium 2nd Product

armount in §

amount in 5§

time time

figure 2 (a), (b: The premium for the®land the % in-

surance product, respective
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b)The spike signal appears only to t&@oduct.

O O OO oL OO0 o o o
O O OO r OO0 O O O o
O OO Fr OO0 O o o o o
O O Fr OO OO O o o o
O r OO OO OO o o o
R O O O O O O O O O o

andu, =0 for k=6,7,....
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Again, according to (10) and (11) we obtain (14) é1b), respectively. Note that

we also assume that, =Q™'S =0=§ =0,

So,

S =Q G[Ag_l[PB]e T k_Z[PB]&ll Ak 3[PB] & 12
+A€ 4[PB]6 1Y Ag S[PB]&H Ak 6[PB] @11—5] Q= J[PB] 1 15k

, (14)

= CQ7X6[A:§_1[PB]6 1Y% + k_Z[PB]&ll— Ak 3[PB] & 12
+Aé< 4[PB]6 11_3+A‘g S[PB]&MU +Ak 6[|:)B] @11_5] |:D CQ ][PB] al;l

(15)
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Surplus 1st Product

Surplus 2nd Product

armount in §

amount in %

tirne

figure 3 (@), (b: The surplus for the®land the " insur-

ance product, respectively.
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Prermium 1st Product

Premium 2nd Product

armount in §

amount in %

tirne tirne

figure 4 (a), (b: The surplus for the®land the 2 insur-

ance product, respectively.

Liverpool, UK (26 January 2012)




Conclusions

The use of matrix pencil theory appears to be uidadbe in order to manipulate the

singularities of a multiple input-output system.

In the numerical application, the diagrams of tagkis and premium response with

respect to the spike input signal are quite intergs

On the other hand, we could follow the oppositection in our analysis. Define the
pattern for the surplus or premium response antagplk to the optimal choices for

the basic controlled parameters, as the loadingteraction factors.

The research in this area is being continued.
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Thank you very much for

your attention
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