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Introduction 

We develop our analysis in three stages: 

• We specify a model to describe the premium rating process associated with the 

sharing claim experience for each product in the pool. 

• We formulate and examine the interaction of the surpluses among the insurance 

products in the pool.  

• In the special case, where a target for zero surplus is required for some of the 

products (e.g. due to a regulatory constraint), a linear descriptor model is derived 

where the solution is more complex and the notion of causality does not exist.  
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Two main objectives: 

(i)  To provide a comprehensive, convenient and practical actuarial model for the 

management of a portfolio of different insurance products using the standard 

tools of control theory: 

• claims may be regarded as the input (u ),  

• the accumulated surplus as the state (x ) and  

• the gross premiums as the output (y ) vector-variable.  

(ii)  To introduce the mathematical framework for manipulating and solving sys-

tems (1) by presenting some preliminary concepts and definitions from matrix 

pencil theory:  
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Note also that for a given pair of constant matrices E  and m nA ×∈� , with 

det 0E =  which uniquely determine the matrix pencil sE A−  of system (1) is de-

fined.  

 

1k k k

k k k

Ex Ax Bu

y Cx Du

− = +


 = +

          (1) 
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Notations and Model Framework 

Consider: 

:m  The total number of different products, participating in the portfolio of the in-

surance company.  

:ie  The expense factor for the i th-insurance product, i.e. ( )1 ie− ×Gross Premium 

is the margin for expenses.  

:ir  The annual rate of investment return for the i th-insurance product. 

:ijλ  The interaction factor , 1,2, ,i j m= … , is the proportion of accumulated sur-

plus of the i th-product transferred to the j th-insurance product.  
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:iε  The profit sharing factor  (feedback factor) for the i -insurance product, which 

includes premium repayments and determines the percentage of accumulated 

surplus repaid to the policyholders.  

{ }, :i k k
C

∈�
 The actual total amount incurred claims sequence for the i -company 

in year k , i.e. ( 1, ]k k− .  

{ },
ˆ :i k

k
C

∈�
 The estimated total expected annual incurred claims sequence in 

year k  for the i th- insurance product. Obviously, there is always a small (or lar-

ger) delay period of id  years in updating information.  

In that case and using the latest information of the two available years, we ob-

tain: 
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( ), , 1 , 2

previousˆ 1
years i ii k i i k d i i k dC f w C w C− − − −

 
= = + − 

 
.           (2) 

:iw  The weighted factor for the average claims (over the two recent years) for the 

thi -insurance product. 

:id  The length of time delay (measured in years) for the i
th-insurance product. 

Thus, it takes about id  years for incurred claims to be fully reported, processed 

and settled. Obviously, the available claim information at the beginning of the 

k  year (or at the end of 1k − ) refers to the experience of the years 1ik d− − , 

2ik d− − , 3ik d− − , . . ., 2, 1, 0, i.e. years prior to and inclusive of years 

1ik d− − .  
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{ }, :i k k
P

∈�
 The gross annual premium (GAP) sequence paid at the end of the k th 

year for the i th-insurance product. The GAP is determined as an expense-

adjusted premium ( )
,
e

i kP  less the surplus adjustment, see also Zimbidis and 

Haberman (2001a), where 

( ) ( ) ( ) ,
, , ,

ˆ
ˆ 1e e i k

i k i k i i k
i

C
P C e P

e
= + − = . 

Thus, it follows that  

( ) ( ) ( ),
, , , , 1 , , 1

1 1

ˆ

j j

m m
e i k

i k i k j ij j k j k d j ij j k j k d
j ji

C
P P S S S S

e
ε λ ε λ− − − −

= =

= − − = − −∑ ∑ , 

for 1,2, ,i m= … .   (3) 
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Equation (3) is the decision function.  

Note that, GAP is calculated annually at the beginning of each year according to 

a base premium and a profit sharing scheme. The last one mandates an extra modi-

fication of the base premium through a refund (charge) to the policyholder a certain 

percentage of the benefit scheme’s total accumulated surplus (deficit). Obviously, 

the manager of the portfolio should firstly consider the difference between the real 

and the target-surplus; see expression (3).  

{ }, :i k k
S

∈�
 The accumulated surplus (AS) sequence at the end of the k  year for 

the i th -insurance product, where 

( ), , 1 , ,
1

1
m

i k i ij j k i i k i k
j

S r S e P Cλ −
=

= + + −∑  for  1,2, ,i m= … .      (4) 
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The Model and System of Equations  

The system, which is a classical MIMO (multi input-multi output) starts from 

an initial point for the first year’s premium, then claim data provide the input back-

ground for the development of the surplus level etc.  

 

For the i th-insurance product, the k th-year’s premium and surplus proceedings 

are determined according to the following equations, 

( )( ) ( ), , 1 , 2 , , 1
1

1
1

i i j

m

i k i i k d i i k d j ij j k j k d
ji

P w C w C S S
e

ε λ− − − − − −
=

= + − − −∑ ,       (5) 
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( ) ( )

( )
, , 1 , 1 , 2

1

, , 1 ,
1

1 1

                       

i i

j

m

i k i ij j k i i k d i i k d
j

m

i j ij j k j k d i k
j

S r S w C w C

e S S C

λ

ε λ

− − − − −
=

− −
=

= + + + −

− − −

∑

∑
.    (6) 

Each of the m insurance products generates its own system of equations.  

These systems cannot be solved independently since the interaction factors ijλ  ex-

ists in them. Thus, considering expressions (5) and (6), the following systems (S1 

and S2) of 2m  delay difference equations that describe the premium rating, the 

surplus process and the interaction within the portfolio of insurance product are de-

rived respectively.  
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( )( ) ( )

( )( ) ( )

( )( ) ( )

1 11, 1 1, 1 1 1, 2 1 , , 1
11

, , 1 , 2 , , 1
1

, , 1 , 2 , , 1
1

1
1

1
1

1
1

j

i i j

m m j

m

k k d k d j j j k j k d
j

m

i k i i k d i i k d j ij j k j k d
ji

m

m k m m k d m m k d j mj j k j k d
jm

P w C w C S S
e

P w C w C S S
e

P w C w C S S
e

ε λ

ε λ

ε λ

− − − − − −
=

− − − − − −
=

− − − − − −
=


= + − − − 




= + − − − 



= + − − − 


∑

∑

∑

�

�

 

(S1) 
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( ) ( )

( )

( )

1 1

1 1 11 1, 1 1 , 1 1 , 1 1 1 , 1
2 1 1

1, 1 1, 1 1 1, 2

1

, ,
1 1

1 1

                                                     1

1

j

m m m

k j j j k j j k j j j k d
j j j

k k d k d

i m

i j ij j k i i ii i k i j
j j i

e S e S r S e S

C w C w C

e S e S e

ε λ ε λ λ ε λ

ε λ ε λ ε

− − −
= = =

− − − −

−

= = +

+ + = + +

− + + −

+ + +

∑ ∑ ∑

∑ ∑

�

( )

( )

( ) ( )

, , 1 , 1
1 1

, , 1 , 2

1

, , ,
2

1

                                                                           1

1 1

j

i i

m m

ij j k i ij j k i j ij j k d
j j

i k i i k d i i k d

m

m j mj j k m m mm m k m mj j k
j

S r S e S

C w C w C

e S e S r S

λ λ ε λ

ε λ ε λ λ

− − −
= =

− − − −

−

−
=

= + +

− + + −

+ + = +

∑ ∑

∑

�

( )

1 , 1
1 1

, , 1 , 2                                                         1

j

m m

m m

m j mj j k d
j j

m k m m k d m m k d

e S

C w C w C

ε λ − −
= =

− − − −














+



− + + − 

∑ ∑
(S2) 

Obviously, working with systems (S1) and (S2) is not an easy task.  

Thus, the matrix-vector reformulation is more appropriate. So, we may denote  
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( )

1

1

2

1,

1, 1

1,

2,

2, 1

1

2,

,

, 1

,

m

i
i

m

k

k

k d

k

k

d

k d

m k

m k

m k d

S

S

S

S

S

S
S

S

S

S

=

−

−

−

+

−

−

−

 
 
 
 
 
 
 − − −
 
 
 
 

∑ 
= ∈ 
 
 − − −
 
 
 − − −
 
 
 
 
 
 
 

�

�
�

�

�

, 

( )

1

1

2

1,

1, 1

1, 2

2,

2, 1

3

2, 2

,

, 1

, 2

m

i
i

m

k

k

k d

k

k

d

k d

m k

m k

m k d

C

C

C

C

C

u
C

C

C

C

=

−

− −

−

+

− −

−

− −

 
 
 
 
 
 
 − − −
 
 
 
 

∑ 
= ∈ 
 
 − − −
 
 
 − − −
 
 
 
 
 
 
 

�

�
�

�

�

 

1,

2,

,

k

k m

m k

P

P
P

P

 
 
 = ∈
 
 
 

�
�

. 
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It should be mentioned that the input vector is determined by considering the actual 

, ii k dC − ’s when they are available or the expectation ,
ˆ

ii k dC − ’s otherwise. In other 

words, we obtain 

 

,
,

ˆis replaced by ,  for 0,1,2, ,

remain unchanged,    for 1, 2,
i k j i

i k j

i i

C j d
C

j d d

−
−

 == 
= + +

…

…
. 
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For the use of systems S1 and S2, five super-matrices, ,  C D  and  ,  A, B E  are re-

spectively introduced. We start with (S2): 

( ) ( )
1 1

1 1
m m

i i
i i

d d
= =

+ × +

 
  ∑ ∑
 = ∈
 
 
 

11 12 1m

21 22 2m

m1 m2 mm

E E E

E E E
E

E E E

�

�
�

� � � �

�

, 

where   

( ) ( )1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

i i

i i ii

d d

e ε λ

+ × +

+ 
 
 

= ∈ 
 
 
  

iiE

�

�

��

� � � � �

�

 and ( ) ( )1 1

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

i j

i j ij

d d

e ε λ

+ × +

 
 
 

= ∈ 
 
 
  

ijE

�

�

��

� � � � �

�

. 
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The matrix             
( ) ( )

1 1

1 1
m m

i i
i i

d d
= =

+ × +

 
  ∑ ∑
 = ∈
 
 
 

11 12 1m

21 22 2m

m1 m2 mm

A A A

A A A
A

A A A

�

�
�

� � � �

�

, 

where its elements are    

( )

( ) ( )1 1

1 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

i i

i ii i i ii

d d

r eλ ε λ

+ × +

 +
 
 
 

= ∈ 
 
 
 
 

iiA

�

�

�
�

� � � � � �

�

�

 

and             

( )
( ) ( )1 1

1 0 0 0

0 0 0 0 0

0 0 0 0 0

i j

i ij i j ij

d d

r eλ ε λ
+ × +

 +
 
 = ∈
 
 
 

ijA

�

�
�

� � � � � �

�

. 
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The matrix               
( ) ( )

1 1

1 3
m m

i i
i i

d d
= =

+ × +

 
  ∑ ∑
 = ∈
 
 
 

11 12 1m

21 22 2m

m1 m2 mm

B B B

B B B
B

B B B

�

�
�

� � � �

�

, 

where its elements are  

( ) ( )1 3

1 0 0 1

0 0 0 0 0

0 0 0 0 0

i i

i i

d d

w w

+ × +

− − 
 
 = ∈
 
 
 

iiB

�

�
�

� � � � � �

�

 and ( ) ( )1 3i jd d+ × += ∈ijB �O  for i j≠ . 

 Finally, for the system (S1), we define 

[ ]
( )

1

1
m

i
i

m d
=

× +∑
= ∈1 2 mC C C C� � ,  



 
Liverpool, UK (26 January 2012)  
 

19

where  ( )

1 1 1 1

12 2 2 2

0 0 0

0 0 0

0 0 0

i

i i i i

m di i i i

im im im im

ε λ ε λ
ε λ ε λ

ε λ ε λ

× +

− 
 −
 = ∈
 
 − 

iC

�

�
�

� � � � � �

�

, 

and       [ ]
( )

1

3
m

i
i

m d
=

× +∑
= ∈1 2 mD D D D� � ,  

where 
( )

1

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1

0 0 0 0 0

0 0 0 0 0

m

i
i

m d

i iw w
=

× +

 
 
 
 
  ∑
 = ∈
 −
 
 
 
 
 

iD

�

�

� � � � � �

�
�

�

�

� � � � � �

�

. 
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Thus, the complex input-output systems (S1) and (S2) can be combined and ex-

pressed as a linear generalized difference system of type (1), i.e.       

 

1k k k

k k k

S S u

P S u

−= +


 = +

E A B

C D

           (7) 

 

It is clear that system (7) is a generalized difference system of first order, since 

the (super) matrix E holds. Following now, the classical theory of difference equa-

tions, see for instance Bellmann and Cooke (1963), the analytical solution to equa-

tion (7) is given by: 
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  ( ) ( )

1 1
1

1 11 1

0

                                

k k k

kk k j

k o j
j

S S u

S S u

− −
−

− − −− −

=

= +

⇒ = +∑

E A E B

E A E B
,   (8) 

 

and               ( ) ( )
1 11 1

0

kk k j

k o j k
j

P S u u
− − −− −

=

 
= + + 

 
∑C E A E B D .             (9) 

 

However, the matrix E  can easily be singular (or det 0→E ) e.g. assuming that 

some of the different insurance products do not accumulate a surplus due to a 

forced regulatory constraint i.e.  
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( )

( ) ( )
( )

1

, 1
1

1

, 1 , 1 , 1
1 1

, , 1 , 2

0 1

       0 0

       1

j i j

i

m

i ij j k
j

i m

i j ij j k d i i ii i k d i j ij j k d
j j i

i k i i k d i i k d

r S

e S e S e S

C w C w C

λ

ε λ ε λ ε λ

−
=

−

− − − − − −
= = +

− − − −

= +

+ − − + −

− + + −

∑

∑ ∑  

or equivalently,  

( ) ( ), 1 , 1 , , 1 , 2
1 1

0 1 1
j i i

m m

i ij j k i j ij j k d i k i i k d i i k d
j j

r S e S C w C w Cλ ε λ− − − − − − −
= =

= + + − + + −∑ ∑ . 

If we consider the strategy above, we manipulate our system as follows 
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( ) ( )1 1

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

i id d+ × +

 
 
 

= ∈ 
 
 
  

iiE

�

�

��

� � � � �

�

, ( ) ( )1 1i jd d+ × += ∈ijE �O  

and, obviously the det 0=E , so the system (7) becomes a descriptor.  

Now, by considering the regular matrix pencil approach, we decompose system 

(7) in two subsystems, whose solutions are provided below  

[ ] [ ]
11

1
,

0 0

qk
k k j j

k n p p p o p j n q q k jp n q n
j j

S Q A A PB u Q H PB uψ
−−

− −
× × +× ×

= =

   
= + −   

   
∑ ∑            (10) 

where the consistent initial condition satisfies the following important expression  
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[ ]
1

0

:
q

j
o o o o n p p n q q jq n

j

S C S S Q Q H PB uψ
−

× × ×
=

   ∈ = ∈ = −  
   

∑F ,  

and        ,1

,

p o

o o
q o

Q S
ψ

ψ
ψ

−  
= =  

 
.     

[ ] [ ]
11

1
,

0 0

qk
k k j j

k n p p p o p j k n q q k jp n q n
j j

P CQ A A PB u Du CQ H PB uψ
−−

− −
× × +× ×

= =

   
= + + −   

   
∑ ∑        (11) 

Non-causality occurs in many physical phenomena and certainly non-causal sys-

tems are by no means useless.  
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For instance, one can consider several cases of data processing that have been re-

corded, such as  

• speech,  

• meteorological data,  

• demographic data,  

• stock market fluctuations etc,  

where their collection is not constrained causally.  
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Granger’s causality 

We should notice that the causality in economic systems is defined in Granger’s 

(1969) sense. Characteristically, one of the most popular example for such analyses 

is the money-income relationship, see for instance Sims (1972), Barth and Bennett 

(1974), Williams, Gogdhart and Gowland (1976), Ciccolo (1978), Feige and Pearce 

(1979), Hsiao (1979, 1981) etc. However, it should be mentioned that whenever the 

money’s models are not caused by income in Granger’s sense, their forecast ability 

cannot be improved by using only the information in past income data (this is an 

essential definition of Granger causality), see Lütkepohl (1982).  
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A numerical application for the special 

case of two insurance products 

In this numerical application, we consider a simple situation with two insurance 

products, 2m = , with 1 2d =  and 2 3d =  years delay, respectively. Before we go 

further, it is important to determine the values of the variables, which are taken into 

consideration in section 2.  

• Firstly, we assume that the expense factor for the first insurance product is 

1 80%e =  and for the second 2 90%e = .  

• The annual rate of investment returns for both the first and the second insurance 

product is the same, i.e. 1 2 4%r r= = .  
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• Moreover, we suppose the interaction factors 11 90%λ = , 12 10%λ =  and 

22 95%λ = , 21 5%λ = . That means a greater proportion of accumulated surplus 

of the first (more profitable product) is transferred to the second.  

• In order to obtain a faster response, we assume that the profit sharing factor 

(feedback factor) for the first product is 1 0.3ε = , and for the second is almost 

the same, 2 0.35ε = .  

• the weighted factor for the average claims (over the two recent years) both for 

the first and the second insurance product is equal to 1/2. 

In this numerical application, we are going to investigate the special case, where 

the second product accumulates zero surpluses.  
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As already mentioned, this strategy can be realistic, since the product managers 

of the insurance company may hope a further success and development in the 

other, most profitable, product.  

 

Now, we are going to examine the behaviour of the system with respect to the 

spike signal. This kind of input corresponds to the appearance of an unexpected 

claim into the system. Moreover, we suppose that a spike signal appears as the in-

put of the first subsystem while the second subsystem has a zero input, i.e. 

1,

1,  for 0

0, for 1,2,k

k
C

k

=
=  = …

, and 2, 0kC =  for 0,1,2,k = ….  
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a) The spike signal appears only to the 1st product.  

The input vectors are the following 

0

1

0

0

0

0

0

0

0

0

0

0

u

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

,     1

0

1

0

0

0

0

0

0

0

0

0

u

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

,     2

0

0

1

0

0

0

0

0

0

0

0

u

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

,  3

0

0

0

1

0

0

0

0

0

0

0

u

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

,    4

0

0

0

0

1

0

0

0

0

0

0

u

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

 

and 0ku =  for 5,6,k = …. 
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So, according to (10) and (11) expressions we obtain (12) and (13), respectively. 

Moreover, we assume that  1 0 0o o oQ S Sψ −= = ⇒ = .  

Consequently,  

[ ] [ ] [ ]
[ ] [ ] [ ]

1 2 3
7 6 6 6 1 6 26 11 6 11 6 11

4 5
6 3 6 4 7 16 11 6 11 1 11

                     

k k k
k o

k k
k

S Q A PB u A PB u A PB u

A PB u A PB u Q PB u

− − −
× × × ×

− −
×× × ×

= + +

+ + −
      (12) 

and 

[ ] [ ] [ ]
[ ] [ ] [ ]

1 2 3
7 6 6 6 1 6 26 11 6 11 6 11

4 5
6 3 6 4 7 16 11 6 11 1 11

                     

k k k
k o

k k
k

P CQ A PB u A PB u A PB u

A PB u A PB u D CQ PB u

− − −
× × × ×

− −
×× × ×

= + +

  + + + − 

 

   (13) 
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figure 1 (a), (b)

Liverpool, UK (26 January 2012)  

figure 1 (a), (b): The surplus for the 1st and the 2nd in

product, respectively. 
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figure 2 (a), (b)

surance product, respectively.
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figure 2 (a), (b): The premium for the 1st and the 2nd

surance product, respectively. 
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nd in-



 
Liverpool, UK (26 January 2012)  
 

34

b) The spike signal appears only to the 2nd product.  
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Again, according to (10) and (11) we obtain (14) and (15), respectively. Note that 

we also assume that  1 0 0o o oQ S Sψ −= = ⇒ = ,  

So, 
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figure 3 (a), (b): The surplus for the 1st and the 2

ance product, respectively. 
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figure 4 (a), (b): The surplus for the 1st and the 2nd insu

ance product, respectively. 
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Conclusions 

The use of matrix pencil theory appears to be unavoidable in order to manipulate the 

singularities of a multiple input-output system.  

In the numerical application, the diagrams of the surplus and premium response with 

respect to the spike input signal are quite interesting.  

On the other hand, we could follow the opposite direction in our analysis. Define the 

pattern for the surplus or premium response and go back to the optimal choices for 

the basic controlled parameters, as the loading or interaction factors.  

The research in this area is being continued.   
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