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Introduction Motivation

Main questions:

1. How do financial markets respond to the presence of risk which is not
tradeable?

2. What happens if such risks become tradeable?
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Introduction Motivation

Main questions:

1. How do financial markets respond to the presence of risk which is not
tradeable?

. What happens if such risks become tradeable?

N

Pricing of payoffs that are not traded in a financial market
Effect of non-tradeable endowments on asset prices

Innovation: introduction of new secturities

vV v v VY

Securitisation
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Introduction Literature

1. LeRoy and Werner: Principles of Financial Economics
2. Incomplete markets literature
3. CAPM literature
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Model Basic structure

Two period model

Non-storable consumption good, serves as a numeraire
Uncertainty: Q = {s1,...,sn}

Investment possibilities

» Risk-free asset, interest factor Rr =1+ rr >0
> K risky assets (stock of firms)

vV v Vv v

» i=1,...,/ investors: u-o preferences represented by utility function

Ui:RXRﬁ-_)Ra (M,U)’—) U(N7O-)

> strictly increasing in pu, strictly decreasing in o
» strictly quasi-concave
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Model Basic structure

Assumption 1 (Financial instruments)
» Market subspace
M= SpaH{Rf, ai, -, qK}

» Orthogonal decomposition: C = M & M.
> Expected payoffs: G = (Gyq,...,qx) € RK

» Covariance matrix VV = (Vi) is positive definite
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Model Basic structure

Assumption 2 (Agents and their endowments)

» Total Initial endowment of agent i:

e = (q,x}) + el eC
~—
non-tradeable

» Orthogonal decomposition

el = (q,v8) + Reb) + e,"\’,l eMaoMt
—_— —~—
hedgeable non-hedgeable

» Can only borrow against (p, x})
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Model Basic structure

Assumption 3 (Aggregate endowment and market portfolio)

» Market portfolio
I

> x=

i=1
» Portfolio replicating aggregate non-tradeable endowment

I
Ym = Z YCI)
i=1

» Extended market portfolio: zp, = Xm + Ym

» Aggregate hedgeable endowment: ey, = (q,zm) € M
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Model Basic structure

Decision problem:
max U(pe(m, x), 0c(x)).
Expected date-1 consumption

pe(m, x) :=El[c] =€+ (m,x — xo).

Standard deviation of date-1 consumption

oc(x) = +/Var[c] = \/(X + yo, V(x + y0)) + €,

e := y/Var[ey] ... residual risk
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Efficient Frontier

Variance-minimising problem:

1

: 2
= .t =
min, 2JC(X) st pe(m, x)=p
Solution
K — Ho _
Xeﬁ‘(,u,ﬂ-) = m V 17T — y07 (2)

where pg =€ — (7, xp + yo) consists of

1. classical variance-minimizing portfolio - “ Lo >V s

2. —yo € RK offseting the risk of the orthogonal projection of ey on M.
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Efficient Frontier

» Standard deviation

oclen(nm) =/ (252) €2,

p = +/(m, V1) ... price of risk.
€ ... residual risk which cannot be hegded

» Efficient frontier

p=po+pVo2—e, o>e

If all risk is hedgeable, ¢ = 0, the classical efficient frontier
W = Wo + po obtains.
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Efficient Frontier
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Fig. 1: Feasible portfolios
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Two-fund Separation

Theorem 1 (Two-fund Separation)
Under the above hyotheses, let e € C with

e = (q,x + yo) + Rrbo + e,

Then for any 0 < \/(m, V=1m) < py(e), the optimization problem (1) has
a unique maximizer

P Vo B 5
(mr, V=1r) Yo ®)

where optimal risk

o, = argmax U + o/ {m, V- 17), 02—|—e2> 6
o = argmax U (1 + oy fm, V), ©)

is finite with g = € — (m,xo + yo) and e = /Var|ey;| the residual risk
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Two-fund Separation
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Fig. 2: Two-fund separation
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Two-fund Separation

Interpretation
Given expected excess return m = g — R¢p, the investor chooses
1. optimal amount of hedgeable risk o, — 'demand-for-risk’

2. an efficient portfolio (=classical variance minimising portfolio
corrected by a portolio that hedges non-tradeable endowment)

Remarks

1. Two fund separation in terms of demand functions as in Lintner
(1965)

2. Could be viewed as a three fund separation
3. Transforms a multivariate problem into a two-dimensional one

4. Demand-for-risk function o, = (e, p) crucial
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Two-fund Separation

Fig. 3: Non-existence
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Existence of CAPM equilibria

Theorem 3 (Existence and uniqueness of CAPM equilibrium)

Let (g, V), el,...,e' €C, and z,, € RX with 0 < 0, < Omax be given.
Then there exists a CAPM equilibrium with market clearing prices

o= & (3- LVzm), (12)

where p, > 0 solves

The equilibrium portfolio allocation is

i = ACHS)

=
Om

If, in addition aggregate demand for risk ¢ is strictly monotonically

increasing for all p with ¢(p) > 0, then the equilibrium is unique.

Jan Wenzelburger (ULMS) On non-tradeable endowments June 2012 25 /32



Existence of CAPM equilibria

Remarks
1. Existence and uniqueness reduced to a one-dimensional problem
2. Standard pricing formula, but with extended market portfolio
Zm = Xm t Ym
3. Investors hold a portion of the extended market portfolio
4. Only the equilibrium price of risk p, depends on preferences

5. Existence may fail to hold if aggregate risk is too high
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Valuation of non-traded payoffs

Standard Valution of Non-traded Payoffs
Given: e € C

Decomposition: e = ey + e,\l/,, ey € M, e,\l/, e M+
Replicating: eny = Rrae + (g, Xe)
Pricing:
V(e) = ae-+ <p*7Xe>
- L |:Rfae + <67 X6> - g_:;(X& vzm>]

_ [E[ ] — (Cov[e Ru] (ins — R,c)}

with market return

RM = <<q’zm>>, Hm = E[RM], oM — \/V&I"[R/w]
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Valuation of non-traded payoffs

Result

» Pricing can be done as ‘usual’ but, in order to be consistent with
equilibrium theory, with the extended market portfolio
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Innovations

Innovations

>
>
>
>
>

non-redundant financial instrument, newly introduced
payoff g

Replicates non-hedgeable endowment: ey = qrm
New market portfolio: x; = (Xm,tm)

Expected payoffs are g+ = (g,q) € RF+1

Covariance matrix

with v = Cov[gx, q]
and v = Var[q]
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Innovations

Proposition 3 (Change of Prices)
With the introduction of the innovation above, one has
(i) Equilibrium price of risk: p} > py

(ii) Equilibrium asset prices:

1 +
p:; = P*k+_<5—*—p—:_>(VZm)k, k=1,....K

Rf m Om
_ pt

P = q__+(<V7Xm>+U?m)
Om

Corollary 1 (Change of prices)
With the introduction of the above innovation,

T strictly concave
P > P3 L .
— — — <=  Aggregate demand for risk is linear
Om < Om strictly convex
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Innovations

Proposition 4 (Change of Valuation)
Let e € C be given. Then

V*(e) = V(e) + (ﬁ - i) (Xes V)

Rf Om Om

of
= —Covle, en]
Om

preference-dependent
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Innovations

Results

Innovations increase the equilibrium price of risk
Investors are willing to accept more risk
Individual risk may increase/decrease

Allocation of risk is more ‘efficient’

Aggregrate risk remains the same

vV v v v VvY

Innovations may change equilibrium asset prices in either direction,
depending on preferences and the correlation of the payoff with the
market
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