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American put options
A derivative contract

Strike Kstrike

Expiry T > 0

Underlying security with price St at time t ∈ [0,T ]

Can be exercised anytime between now (time 0) and expiry
(time T )

For put option on one asset the payoff at exercise time T ∗ is

ḡ(S) := [Kstrike − S ]+.

Mathematical formulation leads to optimal stopping problem

v(t, S) := sup
t≤T∗≤T

Et,S

(
e−

∫ T∗
t ρ̄(u,Su)du ḡ(ST∗)

)
.
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The model

We have to choose how to model the underlying asset(s). We take
d risky assets satisfying

dS i
u = S i

uρ̄(u,Su)du + S i
u

d∑
j=1

σ̄ij(u, Su)dW j
u, S i

t = S i

Remarks

Even in the one dimensional case with σ̄ and ρ̄ constant there
is no “formula” for American put option price.

There is a “formula” for perpetual American put option.

American call option with payoff [S − Kstrike]+ has optimal
exercise at expiry and hence is equivalent to European call
(convexity and Doob’s optional sampling theorem).
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Simple Transformation
Let

β̄i (t, S) := ρ̄(t,S)− 1
2

d∑
j=1

σ̄ij(t, S)2

Change of variable to remove unbounded growth in S in the SDE

Let x it := lnS i
t

Let σ(t, x) := σ̄(t, ex), β(t, x) = β̄(t, ex), ρ(t, x) = ρ̄(t, ex)
and g(x) := ḡ(exi )
Itô’s formula gives

dx iu = βi (u, x iu)du+
d∑

j=1

σij(u, x iu)dW j
u, x

i
t = x i = lnS i , u ∈ [t,T ]

Optimal stopping problem

w(t, x) = sup
T∗∈T[t,T ]

Et,x(e−
∫ T∗
t ρ(u,xu)dug(xT∗))
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PDE Formulation

The payoff w of the optimal stopping problem

w(t, x) = sup
T∗∈T[t,T ]

Et,x(e−
∫ T∗
t ρ(u,xu)dug(xT∗))

is the unique solution to

max [wt + Lw , g − w ] = 0 on [0,T )× Rd

w(T , x) = g(x) for all x ∈ Rd ,

where L is the diffusion generator i.e. for a smooth function η

L η :=
d∑

i ,j=1

1
2 (σσT )ijηx ix j +

d∑
i=1

βiηx i − ρη
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Available pricing methods

What are the choices

Formulae giving approximate value

Monte Carlo simulation

Binomial and trinomial recombining trees

Finite element methods

Finite difference schemes

What are the issues

Convergence

Convergence rates

Artificial boundary conditions
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Finite Difference Approximations
We restrict ourselves to diffusion generators L which can be
written as

L η =
∑

k=±1,...,±d1

(
ak D2

`k
η + bk D`k η

)
− ρη

for the directional derivatives D`, in the direction of ` ∈ Rd .
Finite difference approximations

δTτ η(t, x) :=
η(t + τT (t), x)− η(t, x)

τ
,

δh,` η(t, x) :=
η(t, x + h`)− η(t, x)

h
,

∆h,` η := − δh,` δh,−` η =
1

h
(δh,` η + δh,−` η)

lead to

Lh η :=
∑

k=±1,...,±d1

(ak ∆hk ,`k η + bk δhk ,`k η)− ρη
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Fully Discrete Problem
Grid MT := M̄T ∩

(
[0,T )× Rd

)
, where

M̄T := {(t, x) ∈ [0,T ]× Rd : (t, x) = ((t0 + jτ) ∧ T ,

x0 + h(i1`1 + · · ·+ id1`d1)), j ∈ {0} ∪ N, ik ∈ Z, k = ±1, . . . ,±d1}

Fully discrete problem

max
[
δTτ wτ,h + Lh wτ,h, g − wτ,h

]
= 0 on Q,

wτ,h = g on M̄T \ Q

Implicit scheme since we’re solving backward in time

The set Q may be finite or infinite e.g. Q =MT

wτ,h defined for any point (t, x) as the grid can be centred
arbitrarily.
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Error Estimate
Under appropriate regularity assumptions in particular that σk , bk ,
ρ and g :

Lipschitz continuous in space

1/2-Hölder continuous in time

we get
|w − wτ,h| ≤ C (τ1/4 + h1/2),

with C independent of τ and h.
Remarks:

The assumptions are restrictive since they essentially mean
that S 7→ S σ̄(t,S) etc. are Lipschitz continuos

Error estimate is optimal (we allow diffusion coefficients to
degenerate)

Computationally not directly applicable - MT contains
infinitely many points
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Ingredients for proof
Comparison theorem for discrete problem and continuous
problem
A priori estimate for the derivative, in any direction, of the
solution to the discrete problem. Obtained by applying
discrete derivative multiplying by negative part of the discrete
derivative of the solution
For discrete problem get Lipschitz continuity in space and
Hölder continuity in time from a priori estimate
For continuous problem this follows from the optimal stopping
problem
Idea of N. V. Krylov of “Shaking the coefficients” -
introduction of a optimal control in the space and time
variables allows one to estimate the error introduced by
mollifying w and wτ,h
Taylor’s theorem applied to the mollified versions of w and
wτ,h
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Artificial Boundary Conditions

Aim: estimate error arising from computation on finite Q e.g.
Q =MT ∩ BR for some R > 0.
Take R,R1,R2 such that R > R1 > R2 > 0:

Let gR1 be equal to g inside BR1 , equal to 0 outside BR1+1

and Lipschitz continuous

Solve on Q =MT ∩ BR , get wR,R1

τ,h

We get error estimate inside BR2

There are µ > 0 and γ ∈ (0, 1) such that on [0,T ]× BR2

|wτ,h − wR,R1

τ,h | ≤ C
(
e−µR

2
1 +R2

2/2 + eγ(R1−R)
)
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Ingredients for proof

General estimate on distribution of exit times of a diffusion
process from a ball. Let

dxt = βtdt + σtdWt , x0 = ξ

Then, under a general monotonicity-like assumption, there
exists µ > 0 such that

P(T ∗R ≤ T ) ≤ 3e−µR
2
(1 + Eeξ

2/2),

where T ∗R := inf{t ≥ 0 : |xt | ≥ R}
Corollary of comparison theorem for fully discrete problem
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Summary

On [0,T ]× BR2

|w − wR,R1

τ,h | ≤ C
(
e−µR

2
1 +R2

2/2 + τ1/4 + h1/2 + eγ(R1−R)
)

Error estimate for finite difference approximation is optimal

First error estimate for artificial boundary conditions

Variable coefficients and stochastic volatility is allowed but
under restrictive growth / regularity assumptions.
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Gyöngy, I. and Šǐska, D. (2009).
On the rate of convergence of finite-difference approximations for normalized
Bellman equations with Lipschitz coefficients.
Appl. Math. Optim., 60(3), 297–339.
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