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General remarks

I Main ideas:
(a) Constrain the trading strategies to be differentiable, and
thus ’smooth’.
(b) Track a given benchmark portfolio with the constrained
portfolio.
(c) Use discrete-time approximation of the portfolio model
and single-step optimization.

I Outcomes:
(a) The results are valid for a very general market model
(b) Optimal trading strategies are in an explicit closed-form.
(c) The constrained portfolio will have a significantly lower
eventual proportional transaction cost.
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1. Market model and constraints

Consider the following market model driven by an m-dimensional
standard Brownian motion W (t):

dS0(t) = S0(t)rdt, S0(0) is given,

dSi (t) = Si (t)[µidt + σidW (t)],

Si (0) is given, i = 1, ..., n.

Here r , µi , σi , are given coefficients. Let vi (t), i = 0, ..., n, denote
the number of shares of asset i held by the investor at time t. We
make the following two assumptions:
Assumption 1. vi (t) > 0, i = 0, 1, ..., n.
Assumption 2. d ln vi (t) = ui (t)dt, i = 0, ..., n.
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Theorem 1. Let the Assumption 1 and Assumption 2 hold, and
let xi (t) ≡ ln[vi (t)Si (t)], i = 0, ..., n. For a self-financing portfolio
the following holds:

dx0(t) = −
n∑

i=1

exi (t)−x0(t)ui (t)dt + rdt,

dxi (t) = [ui (t) + µi − 0.5σiσ
′
i ]dt + σidW (t), i = 1, ..., n.

�
This is a nonlinear equation in the state variables, but linear in the
control variables.
Using Euler approximation with a sampling time Ts , we obtain the
discrete-time model:

x0(k + 1) = x0(k)−
n∑

i=1

exi (k)−x0(k)ui (k)Ts + rTs ,

xi (k + 1) = xi (k) + [ui (k) + µi − 0.5σiσ
′
i ]Ts + σie(k + 1)

√
Ts .
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where e(k + 1) = [e1(k + 1), ..., em(k + 1)]′ is a vector of
independent standard normal random variables. In the more
convenient vector-matrix notation, this equation can be written as

x(k+1) = x(k)+A(k , x(k))u(k)Ts +D(k)Ts +Σ(k)e(k+1)
√

Ts .

where x(k) = [x0(k), ..., xn(k)]
′, u(k) = [u1(k), ..., un(k)]

′.
The aim to be achieved with this constrained portfolio is to either
track closely or outperform some already designed reference
portfolio that has a positive trading strategy.
This is done with the aim of obtaining a lower eventual
proportional transaction cost due to the smooth trading strategy of
the constrained portfolio.
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Upper bound on the log-error and log-quadratic errors
One choice for the criterion for the quality of tracking will be an
upper bound on the discrete-time logarithmic error el(k + 1)
between the two portfolios

el(k + 1) = ln[yr (k + 1)]− ln[y(k + 1)],

where yr (k + 1) is the value of the self-financing reference portfolio
and y(k + 1) is the value of the constrained tracking portfolio, i.e.

y(k + 1) =
n∑

i=0

exi (k+1).
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An upper bound on el(k + 1) can be found using Jensen’s
inequality as follows. Let γi (k + 1), i = 0, 1, ..., n, be such that
0 ≤ γi (k + 1) ≤ 1, and γ0(k + 1) + ...+ γn(k + 1) = 1. Then,
Jensen’s inequality gives the following for each k

ln[y(k + 1)] ≥
n∑

i=0

γi (k + 1) ln[yi (k + 1)].

where yi (k + 1) = vi (k + 1)Si (k + 1). An upper bound on the
logarithmic error eu(k + 1) ≥ el(k + 1) can thus be expressed as

eu(k + 1) = ln[yr (k + 1)]−
n∑

i=0

γi (k + 1) ln[yi (k + 1)]

= ln[yr (k + 1)]−
n∑

i=0

γi (k + 1)xi (k + 1).
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The aim now is to minimize this upper error bound. One possibility
is to minimize its mean and variance. We do so by first selecting
γi (k + 1), i = 0, 1, ..., n, such that the conditional variance of
eu(k + 1) is zero, and then minimize its mean.
Theorem 2. Let the reference portfolio yr (k + 1) be a
self-financing portfolio with a positive trading strategy, and with
the fraction of wealth invested in asset i at step k denoted by
αr
i (k), i = 0, 1, ..., n. For k = 0, 1, ..., the conditional variance

Vark [eu(k + 1)] is equal to zero if

γi (k + 1) = αr
i (k), i = 0, 1, ..., n.

If the volatility matrix σ = [σ′
1, ..., σ

′
n]

′ is square and non-singular,
then this condition is also necessary. �.
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The expected value of eu(k + 1) will be minimized if we maximize
the following

Ek

n∑
i=0

γi (k + 1) ln[yi (k + 1)] = Ek

n∑
i=0

αr
i (k)xi (k + 1),

= Ek [α
′(k)x(k + 1)].

In order to give the investor the means for trade off between a
lower eventual transaction cost and a higher profit, we also include
a quadratic penalty on the logarithmic rates of change of trading
strategies ui (k). The resulting criterion is:

J(u(k)) = Ek

[
1

2
u′(k)Bu(k)Ts − α′(k)x(k + 1)

]
,

where B ∈ Rn×n be a given symmetric and positive definite matrix.
The solution to the problem of minimizing J(u(k)) with respect to
u(k) is easily found to be

u∗(k) = B−1A′(k , x(k))α(k).
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Example. The reference portfolio in this example is selected to be
the log-optimal portfolio with no consumption. Let us consider a
market having a bank account S0(t) and a single stock S1(t) with
the following dynamics

dS0(t) = rS0(t)dt,

dS1(t) = S1(t)[µ1dt + σ1dW1(t)].

We assume that the parameters are constant and have these
numerical values: r = 0.04, µ1 = 0.05, and σ = σ11 = 0.25. The
initial investors wealth and the initial asset prices are assumed as
y(0) = S0(0) = S1(0) = 1. The fraction of wealth invested in the
stock for the log-optimal portfolio αr

1(k) is given as:

αr
1(k) = αr

1 =
µ1 − r

σ2
1

= 0.16,
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The initial selection for both portfolios (the log-optimal and the
tracking) will thus be v∗0 (0) = 0.84, v∗1 (0) = 0.16. The optimal
logarithmic rate of change, with a sampling time of Ts = 0.004,
becomes

u∗1(k) =
1

b1

[
0.16− 0.84

v1(k)S1(k)

v0(k)S0(k)

]
.

Let us also have two different values for the penalty coefficient,
b(1)

1 = 0.05 and b(2)

1 = 0.5. In a market with no transaction cost,
for one realization of the stock price, the trading of the stock for
the log-optimal and the tracking portfolios are shown in figures to
follow.
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Figure : Trading strategies for the stock.

Bujar Gashi Optimal investment with smooth trading strategies



0 1 2 3 4 5 6 7 8 9 10
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Time kT

To
tal

 po
rtfo

lio 
we

alt
h

log−optimal
b=0.05
b=0.5

Figure : Total portfolio wealth during the trading period.
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Figure : Total portfolio wealth at the end of the trading period.
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We assume that there is a charge of 1% of the total transaction
value of buying or selling the stock, and no transaction cost for the
bank account.
The wealth yf and the eventual proportional transaction cost Cf at
the end of the trading period are:

Log − optimal : yf = 1.61983, Cf = 0.05743

b
(1)
1 : yf = 1.61128, Cf = 0.00488

b
(2)
1 : yf = 1.58572, Cf = 0.00258

This shows that for almost the same final wealth, the eventual
transaction cost is more than 11 and 22 times smaller for the
constrained portfolios. Moreover, the difference between the final
wealth and the total eventual transaction cost (yf − Cf ), is higher
for the constrained portfolios.
We can also use the log-quadratic errors as criterion. Again
explicit closed-form solution can be obtained. For illustration, the
tracking of a Black-Scholes replicating portfolio for a European
Call option is given in the following figure.
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Figure : Value processes for the Black-Scholes and the tracking portfolios.
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Linear model and linear-quadratic criteria

Assumption 3. dvi (t) = qi (t)dt, i = 0, 1, 2, ..., n.
Theorem 3. Let xi (t) = vi (t)Si (t), i = 0, 1, 2, ..., n. For a
self-financing portfolio that satisfies Assumption 3, the following
holds

dx0(t) = rx0(t)dt −
n∑

i=1

Si (t)qi (t)dt,

dxi (t) = [µixi (t) + qi (t)Si (t)]dt + xi (t)σidW (t),

i = 1, 2, ..., n.

This is clearly a linear model in both state and control variables.
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Discrete-time.
Tracking portfolio as in the previous slides, but with quadratic
errors as criterion.
Continuous-time.
a) Linear utility and a quadratic penalty on qi (t). Explicit solution
is found for both finite and infinite horizon.
b) When qi (t)Si (t) is used as a control, and the non-negativity of
wealth is not taken into consideration, the LQ regulator was used
to find the solution for several linear-quadratic criteria.

Bujar Gashi Optimal investment with smooth trading strategies



An open problem

In the linear model case, and when using a quadratic criteria, if we
include the non-negativity of the total wealth at terminal time, we
end up with an LQ control problem with a hard inequality
terminal constraint. This is an open problem.
In the deterministic control systems, provided the system ic
completely controllable, and using the solution to the
minimum-energy control problem and quadratic programming,
complete solution to this kind of problems is available.

Bujar Gashi Optimal investment with smooth trading strategies



Naturally, one approach is to extend such results to the stochastic
setting. Some progress has been achieved. In particular, the exact
controllability and minimum energy control for a general class of
linear stochastic control systems are settled.
However, these are still far from solving the mentioned optimal
investment problem, since the self-financing portfolio is not even
exactly controllable!
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