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1. Introduction

Consider a surplus process of an insurance company at time t

U(t) = u+ ct− S(t) + σB(t), u ≥ 0, (1)

• U(0) = u is the initial surplus,

• c is the constant premium rate,

• {B(t); t ≥ 0} is a standard Wiener process with mean 0 and volatility σ, (the extra diffusion term

reflects the fluctuations in the insurance surplus, which may happen due to uncertainty of premium

income or the economic environment)

• and {S(t); t ≥ 0} is the aggregate claim amount process independent of {B(t); t ≥ 0}.

We assume that {S(t); t ≥ 0} generates two kind of claims: the main claims and the by-claims.

Let {N(t); t ≥ 0} to be a Poisson claim number process with intensity λ(> 0) and main claim

occurrence epochs {Ti}
∞
i=0 (i.i.d exponentials rv), with T0 = 0.

(delayed assumption) In every epoch Ti of the Poisson process
• a main claim Xi [d.f. F (x)] will occur and this will induce a by-claim Yi [d.f. Q(x)],

• Yi may occur simultaneously with Xi with probability θ, or may be delayed to Ti+1 with

probability 1 − θ,
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notation: the claim amount of the occurrence of one claim and one by-claim has d.f. F2(x) =

(F1 ? Q)(x) and density f2(x), while the claim amount of the appearance of one claim and two

by-claim has d.f. F3(x) = (F1 ? Q ? Q)(x) and density f3(x). Also, with ̂ it will denoting the LT of

the corresponding function.

Based in the above set up, the aggregate claim amount process is given by

S(t) =

N(t)∑

i=1

Xi + R(t), t ≥ 0, (2)

where R(t) is the sum of all by-claims Yi that occurred before time t.

Practical application of the model in portfolios with IBNR claims (IBNR claims are claims that not

yet know to the insurer, but it is believed that will exist at the reserving date)

Also, let T = inf{t ≥ 0 : U(t) < 0} be the time of ruin, and for δ ≥ 0, we define the ultimate

Gerber-Shiu expected discounted penalty function [Gerber and Shiu (1998), (2005)] as

φ(u) = E
(
e−δTw(U(T−), |U(T )|)1(T<∞)

∣∣U(0) = u
)

(3)

= E
(
e−δTw(U(T−), |U(T )|)1(T<∞),U(T )<0)

∣∣U(0) = u
)

+E
(
e−δT 1(T<∞),U(T )=0)

∣∣U(0) = u
)
, u ≥ 0,
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with φ(0) = 1 due to oscillating sample paths of U(t). Here δ is interpreted as the force of interest,

U(T−) is the surplus immediately before ruin, |U(T )| is the deficit at ruin, T− is the left limit of T ,

w : [0,∞) × (0,∞) → [0,∞) is representing the penalty at ruin and 1(·) represents the indicator

function.

Further note that in T1 we have the following two possible events:

(a) both main claims and by-claims occur simultaneously, and the surplus process renews itself at

these points

(b) in T1 a main claim occurs, while the by-claim delays his occurrence until T2, and the surplus

process does not renew itself.

Thus, for the event (b) [similar to Xie and Zou (2011)] we consider an auxiliary process in which

at T1 instead of having simultaneously occurred a main claim and a by-claim, another by-claim is

added to the first epoch. The corresponding Gerber-Shiu function for the auxiliary surplus process

is denoting by φ1(u) for u ≥ 0 with φ1(0) = 1.

Using well known properties of the first passage time of the Brownian motion [see for e.g. Revuz

and Yor (1991)], one can show that both φ(u) and φ1(u) are twice continuously differentiable in u

over (0,∞).
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Integro-differential equations and their solution

Applying Itô’s Lemma for jump diffusion processes we have:

Theorem 1. For u ≥ 0, the Gerber-Shiu functions φ(u), φ1(u) satisfy the following integro-
differential equation system

σ2

2
φ
′′(u) + cφ

′(u) − (λ+ δ)φ(u) = − λθ
(∫ u

0

φ(u− x)dF2(x) + w2(u)
)

− λ(1 − θ)
(∫ u

0

φ1(u− x)dF1(x) + w1(u)
)
,

σ2

2
φ
′′
1 (u) + cφ

′
1(u) − (λ+ δ)φ1(u) = − λθ

(∫ u

0

φ(u− x)dF3(x) + w3(u)
)

− λ(1 − θ)
(∫ u

0

φ1(u− x)dF2(x) + w2(u)
)
,

(4)

where wk (x) =
∫ ∞

x
w (x, y − x) fk (y) dy =

∫ ∞

0
w (x, y) fk (x+ y) dy, k = 1, 2, 3.

Taking the LT on both sides of the two equations in (4) and solving the resulting system w.r.t. φ̂(s),

φ̂1(s) we get that

φ̂(s) =
B̂(s)

(
σ2

2
s2 + cs− λ− δ

)2
+ λf̂2(s)

(
σ2

2
s2 + cs− λ− δ

)
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φ̂1(s) =
B̂1(s)

(
σ2

2
s2 + cs− λ− δ

)2
+ λf̂2(s)

(
σ2

2
s2 + cs− λ− δ

) ,

where

B̂(s) =
(σ2

2
s2 + cs− λ− δ + λ(1 − θ)f̂2(s)

)(σ2

2
(s+ φ′(0)) + c− ŵ(s)

)

−λ(1 − θ)f̂1(s)
(σ2

2
(s+ φ′1(0)) + c− ŵ∗(s)

)
,

B̂1(s) =
(σ2

2
s2 + cs− λ− δ + λθf̂2(s)

)(σ2

2
(s+ φ′1(0)) + c− ŵ∗(s)

)

−λθf̂3(s)
(σ2

2
(s+ φ′(0)) + c− ŵ(s)

)
,

with ŵ(s) = λ
(
θŵ2(s) + (1 − θ)ŵ1(s)

)
and ŵ∗(s) = λ

(
θŵ3(s) + (1 − θ)ŵ2(s)

)
.

To complete the solution of φ̂(s) and φ̂1(s) in Eq. (5) we need to determine the initial values φ′(0)

and φ′1(0).
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By using standard arguments, it can be proved that φ′(0) and φ′1(0) are given by

φ′(0) =
2∑

i=1

(−1)i+1f̂1(ri−(−1)i )
[y(ri)

(
bi −

2
σ2
ŵ(ri)

)
− λ(1 − θ)f̂1(ri)

(
bi −

2
σ2
ŵ∗(ri)

)

y(r2)f̂1(r1) − y(r1)f̂1(r2)
,(5)

φ′1(0) = y(r2)
b2 − 2

σ2
ŵ(r2) + φ′(0)

λ(1 − θ)f̂1(r2)
−

(
b2 −

2

σ2
ŵ∗(r2)

)
, (6)

where y(s) = σ2

2
s2 + cs − λ− δ + λ(1 − θ)f̂2(s), bi = ri + 2c

σ2
, i = 1, 2, and ri(δ) ≡ ri, i = 1, 2

are the only two roots in the right-half complex plane of the characteristic equation

(σ2

2
s2 + cs− λ− δ

)2
+ λf̂2(s)

(σ2

2
s2 + cs− λ− δ

)
= 0. (7)

Since we are interested in the initial/ultimate Gerber-Shiu function, φ(u), using the roots of the

characteristic equation and the Lagrange interpolation formula it can be proved that φ(u) satisfies a

defective renewal equation.
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Theorem 2. For u ≥ 0, the Gerber-Shiu function φ(u) satisfies the following defective renewal

equation

φ(u) =
1

1 + ξ

∫ u

0
φ(u− x)dG(x) + h(u), (8)

whereG(x) = (1+ ξ)
∫ x
0 g(y)dy is a proper d.f. with g(y) = λ

σ2/2

(
m2 ?Tr2

f2
)
(y), mk(y) = e−bky ,

k = 1, 2, ξ is such that 1
1+ξ

=
∫ ∞
0 g(y)dy = 1 − δ

σ2

2
r2b2

< 1,

h(u) =
1

σ2/2

(
m2 ? Tr2

w
)
(u) + e−b2u +

λ(1 − θ)

(σ2/2)2

2∑

k=1

(
mk ? Trk

η
)
(u)

∏2
j=1,j 6=k(rk − rj)(rk + bj)

,

Trk
η(u) =

σ2

2
bk

(
Trk

f1(u) − Trk
f2(u)

)
−
σ2

2

(
f1(u) − f2(u)

)
+

(
Trk

A2(u) − Trk
A1(u)

)

+
σ2

2

(
φ′1(0)Trk

f1(u) − φ′(0)Trk
f2(u)

)
,

with

Trf(x) =

∫ ∞

x
e−r(y−x)f(y)dy, x ≥ 0,<(r) > 0.

the Dickson-Hipp integral operator and A1(u) =
(
f1 ? w∗

)
(u), A2(u) =

(
f2 ? w

)
(u) ( ? denotes the
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Remark 1. When θ = 1, in any time period the main claim and the by-claim occur simultaneously, and

the delayed risk model given in Eqs. (1)-(2) is reduced to the classical perturbed by diffusion compound

Poisson risk model with claim amounts {Xi + Yi}
∞
i=1. In this case, Eq. (8) is simplified to to the

defective renewal equation for the classical risk model perturbed by diffusion, see Eq. (2.10) of Tsai

and Willmot (2002) and Eq. (17) of Gerber and Landry (1998).

The solution of the previous defective renewal equation is given in terms an associated compound

geometric d.f. For that reason we define K(u) = 1 −K(u) by

K(u) =
ξ

1 + ξ

∞∑

n=1

( 1

1 + ξ

)n
G

?n
(u), u ≥ 0,

where G
?n

(u) is the tail of the n-fold convolution of G(u) = 1 − G(u) with itself. Then, an explicit

expression for the solution of the defective renewal equation (8) can be derived by applying Theorem

2.1 of Lin and Willmot (1999).

Proposition 1. For u ≥ 0, the Gerber-Shiu function φ(u) satisfying the defective renewal
equation (8), can be expressed as

φ(u) =
1 + ξ

ξ

∫ u

0

h(u− x)dK(x) + h(u). (9)
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The d.f. of the associated compound geometric distribution, when the main claims and the by-claims

are rationally distributed, i.e.

f̂1(s) =
p1,k1−1(s)

p1,k1
(s)

, p1,k1−1(0) = p1,k1
(0), and q̂(s) =

p2,k2−1(s)

p2,k2
(s)

, p2,k2−1(0) = p2,k2
(0),

(10)

(this is a very wide class of distributions, containing among others the exponential, the Erlang, the

Coxian, the phase-type distribution, as well as and the mixtures of them) is be is given by

K(u) = 1 −

k+1∑

j=1

aje
−Rju, aj =

R1 · · ·Rk+1(b2 − Rj)

Rj
∏k+1

k=1,k 6=j(Rk − Rj)
pk(−Rj)

1

pk(0)b2,i
, (11)

where −Rj with <(Rj) > 0, j = 1, . . . , k + 1, are the roots of Eq. Jk+2(s) = 0 with Jk+2(s) =
(

σ2

2
s2 + cs− λ− δ

)
pk(s) + λpk−1(s).
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The multi-layer dividend strategy

Now, similar to Albrecher and Hartinger (2007), Lin and Sendova (2008), Yang and Zhang (2008,

2009a, 2009b), we consider the following modification:

• Let a multi-layer dividend strategy with n-layers, 0 = β0 < β1 < · · · < βn < βn+1 = ∞, 0 = β0,

βn+1 = ∞.

• We assume that whenever the surplus process is in the layer i (i.e., between two successive

layers βi−1 and βi, i = 1, . . . , n+ 1) the insurer pays dividends to the shareholders at rate di and

the corresponding net premium rate (within the i-th layer) is ci = c − di, i = 1, . . . , n+ 1, where

c = c1 > · · · > cn > cn+1 ≥ 0.
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• Let β = {β0, β1, . . . , βn, βn+1} and {Uβ(t)}t≥0 to be the surplus process at time t, with initial

surplus Uβ(0) = u, where its dynamics are given by

dUβ(t) = cidt− dS(t) + σidB(t), βi−1 ≤ Uβ(t) ≤ βi, (12)

where {B(t)}∞t=0 is a standard Brownian motion with mean 0 and dispersion parameter σi (within

the i-th layer) and S(t) is defined exactly as before [i.e. in the delayed set up].

Let Tβ to be the ruin time for this process and for δ ≥ 0, we define the Gerber-Shiu function as

φ(u,β) = E
(
e−δTβw(Uβ(Tβ−), |Ub(Tβ)|)1(Tβ<∞)

∣∣Uβ(0) = u
)

=





φ1(u), 0 ≤ u < b1
...

φn(u), bn ≤ u <∞

,

(13)

with φ(0,β) = 1 due to oscillating sample paths of Uβ(t). Here δ and w(x, y) have the same

definitions and interpretation as before, Uβ(Tβ−) is the surplus immediately before ruin, |Uβ(Tβ)|

is the deficit at ruin and Tβ− is the left limit of Tβ for the modified surplus process {Uβ(t); t ≥ 0}.
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For the same reasons explained before, we consider an auxiliary process in which at T1 instead of

having simultaneously a main claim and a by-claim, another by-claim is added to the first epoch.

Then, the corresponding Gerber-Shiu function for this auxiliary process under the multi-layer

dividend modification is defined as

φ1(u,β) =





φ1,1(u), 0 ≤ u < b1
...

φ1,n(u), bn ≤ u <∞

, (14)

Theorem 3. For βi−1 < u < βi, i = 1, . . . , n+ 1, the Gerber-Shiu functions φi(u), φ1,i(u)

satisfy the following integro-differential equations system

σi
2

2
φ
′′
i (u) + ciφ

′
i(u) − (λ+ δ)φi(u) = −λθ

(∫ u−βi−1

0

φi(u− x)dF2(x) + ξ2,i(u)
)

− λ(1 − θ)
(∫ u−βi−1

0

φ1,i(u− x)dF1(x) + ζ1,i(u)
)
,

σi
2

2
φ
′′
1,i(u) + ciφ

′
1,i(u) − (λ+ δ)φ1,i(u) = −λθ

(∫ u−βi−1

0

φi(u− x)dF3(x) + ξ3,i(u)
)
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− λ(1 − θ)
(∫ u−βi−1

0
φ1,i(u− x)dF2(x) + ζ2,i(u)

)
,

with boundary conditions

φ(0,β) = φ1(0) = 1, φ1(0,β) = φ1,1(0) =, 1

φi−1(βi−1−) = φi(βi−1+), φ1,i−1(βi−1−) = φ1,i(βi−1+), i = 2, . . . , n+ 1,

σ2
i−1

2
φ′′i−1(βi−1−) + ci−1φ

′
i−1(βi−1−) =

σ2
i

2
φ′′i (βi−1+) + ciφ

′
i(βi−1+), i = 2, . . . , n+ 1,

σ2
i−1

2
φ′′1,i−1(βi−1−) + ci−1φ

′
i−1(βi−1−) =

σ2
i

2
φ′′1,i(βi−1+) + ciφ

′
1,i(βi−1+), i = 2, . . . , n+ 1,

lim
u→∞

φ(u,β) = lim
u→∞

φn+1(u) = 0, lim
u→∞

φ1(u,β) = lim
u→∞

φ1,n+1(u) = 0,

where wj(u), j = 1, 2, 3 defined as before and

ξj,i(u) =

i−1∑

k=1

∫
u−βk−1

u−βk

φk(u − x)dFj(x) + wj(u), j = 2, 3,

ζj,i(u) =

i−1∑

k=1

∫
u−βk−1

u−βk

φ1,k(u − x)dFj(x) + wj(u), j = 1, 2,
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A system Volterra-type integral equations of second kind

To solve the second order non-homogeneous integro-differential equation system of Theorem 3 we

consider a more general second order non-homogeneous system.

For u ≥ β, let Φ(u) and Φ1(u) satisfy the following non-homogeneous system of integro-differential

equations

σ2

2
Φ′′(u) + cΦ′(u) − (λ+ δ)Φ(u) = −λ

(∫ u−β

0
Φ(u− x)dF2(x) + ξ2(u)

)

− λ(1 − θ)
(∫ u−β

0
Φ1(u− x)dF1(x) + ζ1(u)

)
,

σ2

2
Φ′′

1 (u) + cΦ′
1(u) − (λ+ δ)Φ1(u) = −λ

(∫ u−β

0
Φ(u− x)dF3(x) + ξ3(u)

)

− λ(1 − θ)
(∫ u−β

0
Φ1(u− x)dF2(x) + ζ2(u)

)
,

where ξi(u), for i = 2, 3, and ζi(u) for i = 1, 2, are some arbitrary integrable functions representing

the non-homogeneous terms.

Now, changing the variable u−β = x and setting Λ(x) = Φ(u), Λ1(x) = Φ1(u), ξj,β(x) = ξj(x+β)

for j = 2, 3 and ζj,β(x) = ζj(x + β) for j = 1, 2, the above non-homogeneous system of integro-

differential equations become, for x ≥ 0,
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σ2

2
Λ′′(x) + cΛ′(x) − (λ+ δ)Λ(x) = − λθ

(∫ x

0
Λ(x− y)dF2(y) + ξ2,β(x)

)

− λ(1 − θ)
(∫ x

0
Λ1(x− y)dF1(y) + ζ1,β(x)

)
,

σ2

2
Λ′′

1 (x) + cΛ′
1(x) − (λ+ δ)Λ1(x) = − λθ

(∫ x

0
Λ(x− y)dF3(y) + ξ3,β(x)

)

− λ(1 − θ)
(∫ x

0
Λ1(x− y)dF2(y) + ζ2,β(x)

)
.

(15)

Remark 2. The usual approach for solving the above second order non-homogeneous integro-
differential equation system is to find a particular solution plus two linearly independent solutions
to the associate (to (15)) homogeneous intgero-differential equation system. BUT, one can prove
that the later homogeneous integro-differential equation system has always a trivial solution and
thus there are no exist two linearly independent solutions.

• Hence, we transform the second order non-homogeneous system in (15) into a
Volterra-type integral equation.
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Using LTs and the results on theory of defective renewal equations in the absence of multilayer
strategy we get the following solution.

Theorem 4. For x ≥ 0, the general solution to the non-homogeneous integro-differential
equations system (15) may be expressed as

Λ(x) = Λ(0) + xΛ′(0) +

∫ x

0

(x− t)l(t)dt

Λ1(x) = Λ1(0) + xΛ′
1(0) +

∫ x

0

(x− t)l1(t)dt,

(16)

with

l(x) =
1 + ξ

ξ

∫ x

0

v(x− t)dK(t)+ v(x), l1(x) =
1 + ξ

ξ

∫ x

0

v1(x− t)dK(t)+ v1(x), (17)

K(u) = 1 −K(u) the d.f. of the associated compound geometric distribution, ξ some constants
that can determined, v(x) v1(x) some real valued functions in terms of wA(x) = λ

(
θξ2,β(x) +

(1 − θ)ζ1,β(x)
)
, wB(x) = λ

(
θξ3,β(x) + (1 − θ)ζ2,β(x)

)
, and also of the initial values Λ(0),

Λ′(x), Λ1(0), Λ′
1(0).

– p.17/22



Theorem 5. (i) For βi−1 ≤ u < βi, i = 1, . . . , n+ 1, the Gerber-Shiu functions φi(u) and
φ1,i(u) can be calculated recursively as:

φi(u) = Φi(u) = Λi(u− βi−1), and φ1,i(u) = Φ1,i(u) = Λ1,i(u− βi−1), (18)

where Λi(u) and Λ1,i(u) are defined by the two Eqs in (16) with the help of (17), with
the added index i whenever appropriate. In particular, β is replaced by βi−1 and ξj,β(u),
j = 2, 3, and ζj,β(u), j = 1, 2, in Theorem 4 are replaced by some recursive function in

the of the
∑i−1

k=1

∫ u+βi−1−βk−1

u+βi−1−βk
φk(u + βi−1 − x)dFj(x) + wj(u + βi−1), j = 2, 3 and

∑i−1
k=1

∫ u+bi−1−βk−1

u+βi−1−bk
φ1,k(u+ βi−1 − x)dFj(x) + wj(u+ βi−1), j = 1, 2, respectively.

(ii) The initial values Λi(0), Λ1,i(0), Λ′
i(0) and Λ′

1,i(0), for i = 1, . . . , n+ 1, are uniquely
determined by the initial and boundary conditions of Theorem 3 (by solving a 4n + 4 linear
equation system).
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An example

Remark 3. Note that from Theorems 4 and 5, the solution of φi(u) and φ1,i(u) depend on the
d.f. of the same associated compound geometric distribution as in dividend free environment (with
the added index i whenever appropriate).

To illustrate the applicability of our results, let
• δ = 0 and w(x, y) = 1,
• φ(u,β) and φ1(u,β) are reduced to the ruin probabilities, say ψ(u,β) and ψ1(u,β),
respectively,
• also we assume the existence of three layers [0, β1), [β1, β2) and [β2,∞), i.e. β =

{0, β1, β2,∞},
• and the main claim and sub-claim amounts are exponential distributed with parameters
α1 and α2, respectively

Considering the following set of parameters c1 = 3.3, c2 = 3.1, c3 = 2.5, σ1 = 1.5,
σ2 = 1.3, σ3 = 1, a1 = 1, a2 = 2, λ = 1, θ = 0.5, β1 = 2, and β2 = 3, the ruin
probabilities can be seen graphically by the following plot
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From the above figure, we see that the ruin probability ψ(u,β) decreases as the probability of
the by-claim increases.
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THANK YOU !
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