M442 Representations of Finite Groups

Worksheet 2: Character Rules

For each of the following 5 rules find the Theorem/Proposition/Corollary where it is proven. Sometimes you must rearrange the formulas or statements in the lecture a little bit!

Rule 1. The sum of the squares of the degrees n_i of all irreducible representations of a finite group G is equal to the order of G:

$$\sum_{i} n_i^2 = |G|.$$

Rule 2. The sum of the squares of the absolute values of $\chi(g)$ of a character χ of an irreducible representation of a finite group G is equal to the order of the group:

$$\sum_{g} |\chi(g)|^2 = \sum_{g} \overline{\chi(g)} \cdot \chi(g) = |G|.$$

Rule 3. The vectors whose components are the $\chi_i(g), \chi_j(g)$ of two characters χ_i, χ_j of two different irreducible representations are orthogonal:

$$\sum_{g} \overline{\chi_i(g)} \cdot \chi_j(g) = 0.$$

- **Rule 4.** The characters $\chi(g), \chi(h)$ of two conjugate group elements are equal, where χ is the character of a representation, irreducible or not.
- **Rule 5**. The number of irreducible representations of a group is equal to the number of conjugacy classes in the group.