
MATH341 MODULE NOTES

These notes contain all of the material which will be presented on the

data projector in lectures: that is, motivation, theory, definitions, and some

examples. Thus you should not need to take detailed handwritten notes

while the data projector is being used.

Most examples and proofs will be presented on the blackboard, and are

not contained in these notes. Each time there is some blackboard material,

there’s a little dagger in the margin of these notes like this. You should †24

ensure that these daggers are properly cross-referenced with the relevant

parts of your written notes: perhaps the simplest way to do this is to number

sections of your written notes according to the number by each dagger in

these notes.

The notes contain a few sections written in a smaller font like this. These contain non-

examinable material “for interest only”. They will not be covered in lectures.

There are also some “asides” at the end of each chapter of the notes.

These cover things that most students will have met in earlier modules.

They will only be covered very briefly in lectures. If you’re not familiar with

them, you’re expected to read up on them in these notes.
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Chapter 1

Metric Spaces

1.1 Introduction

The concept of distance is a familiar one. In two-dimensional space R2, the

distance between two points is the length of the straight line joining them.

If the two points have coordinates (x1, y1) and (x2, y2), we can calculate the

distance between them using Pythagoras’s theorem:

distance =
√

(x2 − x1)2 + (y2 − y1)2

(see Figure 1.1).

(x1, y1)

(x2, y2)

|y2 − y1|

|x2 − x1|

√

(x2 − x1)2 + (y2 − y1)2

Figure 1.1: The distance between two points in R2

A similar formula gives the distance between two points (x1, y1, z1) and

(x2, y2, z2) in three-dimensional space R3 as

distance =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

and indeed we can extend this to n-dimensional space Rn if we wish.

The distance between two points x1 and x2 on the line R is just the size

of the difference between them, i.e. |x1 − x2|: in fact this fits in with the
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formulae in higher dimensions, since

|x1 − x2| =
√

(x1 − x2)2

(try it with some values of x1 and x2 if you’re not sure why).

Two important mathematical concepts, limits and continuity, arise from

the notion of distance.

The limit of a sequence

A sequence (xn) in a set X is just an infinite list of (some of the) elements

of X (possibly with repetition): x0, x1, x2, x3, . . .. Thus, for example, a se-

quence in R2 is a list of points in the plane, (x0, y0), (x1, y1), (x2, y2), (x3, y3) . . ..

We say that a sequence (xn) in X tends to a limit ` ∈ X as n → ∞ if the

xn get closer and closer to ` as n gets bigger and bigger (roughly speaking –

we’ll see a precise definition later). In order for “closer and closer” to mean

anything, we have to have a way of measuring the distance between two

elements of X.

For example, the sequence ((xn, yn)) in R2 depicted in Figure 1.2 tends

(or appears to, from what we can see in the picture) to the limit (x, y).

(x0,y0)

(x1,y1)
(x2,y2)

(x3,y3)

(x,y)

Figure 1.2: A sequence of points tending to a limit in R2

Continuity of a function

We have a notion that a real function f(x) (that is, a function f : R → R)

is continuous if we can draw its graph without taking our pen off the paper.

While this description is very good for understanding what continuity is all

about, it has two major defects: first, it’s too vague and non-mathematical

– it would be very hard to prove something about all continuous functions

starting from this definition. Second, it doesn’t generalise to higher di-

mensions or other contexts: can you imagine what it would mean for it
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to be possible to draw the graph of a function f : R2 → R2, such as

f(x, y) = (x2 + y2, e−xy), without taking your pen off the paper?

(See Aside 1 on Page 48 if you’re not sure about the function notation

f : X → Y .)

A very rough idea for a better definition of continuity is this: a function

f : X → Y is continuous if f(x) is very close to f(y) whenever x is very

close to y. Clearly we need a notion of distance to make sense of “very

close”. To see why this corresponds to our intuitive idea of continuity for

functions f : R → R, consider the graph of a discontinuous function (i.e.

one which has a break in the graph), as shown in Figure 1.3. Note that

although x1 and x2 are very close, f(x1) and f(x2) are far apart: we can

find such points x1 and x2 precisely because of the break in the graph. We

can take x1 and x2 to be as close to each other as we like, provided one is

on each side of the break.

x1 x2

f(x1)

f(x2)

x

f(x)

Figure 1.3: A discontinuous function f : R → R

Thus the notion of distance makes it possible for us to talk about limits

of sequences in Rn, and continuity of functions f : Rn → Rm for any n

and m. The start of metric space theory is when we realise that it’d be

useful to be able to talk about the “distance” between two objects in other
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situations than when those objects are points in n-dimensional space. Here

are two examples.

The distance between shapes in the plane

Everyone would agree that the circle and hexagon on the left of Figure 1.4

are closer to each other than are the circle and the rectangle on the right.

Figure 1.4: Distance between shapes in the plane

Is it possible to give a numerical value to such distances? If so, we could

talk about the convergence of sequences (xn) in the set X whose elements

are “shapes in the plane”. For example, we might be able to show that the

sequence x3, x4, x5, x6, . . . in X depicted in Figure 1.5 tends to the circle

(the elements x3, x4, x5, x6, x12 and x20 of the sequence are shown in the

figure, together with the circle which they appear to tend to: x20 (the 20-

sided polygon) is so “close” to the circle that you probably can’t distinguish

them).

Figure 1.5: The sequence of polygons tends to the circle?

Similarly, we could talk about the continuity of functions defined on X,

or taking values in X. For example, suppose we could define a function
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A : X → R, where A(x) is the area of the shape x. (Think about this for

a moment. A function X → R takes as input a shape in the plane (i.e.

an element of X), and produces as output a real number. A good way to

produce a real number from a shape in the plane is to work out its area.)

We could then ask whether or not this function is continuous: that is, if

two shapes which are very close to each other always have very close areas.

In fact, in order to make sense of distances between such shapes in the

plane we need to be careful about what we mean by a “shape”: it will be

some time before we’re able to come back to this example and be more

precise.

The distance between functions defined on [0, 1]

Everyone would agree that the two functions whose graphs are shown on the

left of Figure 1.6 are closer to each other than are the two functions whose

graphs are shown on the right.

00
11

Figure 1.6: Distance between functions defined on [0, 1]

Is it possible to give a numerical value to such distances? If so, we could

talk about the convergence of sequences (fn) in the set X whose elements

are “continuous functions [0, 1] → R” (note that X is an unimaginably big

set).

As an example, consider the Maclaurin series expansion of f(x) = ex:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · .
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For n ≥ 0, let fn : [0, 1] → R be the function

fn(x) =
n

∑

r=0

xr

r!

(thus fn(x) is just the first n + 1 terms in the Maclaurin series expansion:

f0(x) = 1, f1(x) = 1 + x, f2(x) = 1 + x + x2/2, etc.). Using our notion

of distances in the set X, we might be able to show that the sequence (fn)

tends to f as n tends to ∞. (See Figure 1.7, which shows the functions f0,

f1, f2, f3, f4, and f . The function f4 is so “close” to f that you probably

can’t distinguish them.)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.2 0.4 0.6 0.8 1

x

f0

f1

f2

f3

f4, f

Figure 1.7: The sequence of approximations tends to the function?

Similarly, we could talk about the continuity of functions defined on X,

or taking values in X. For example, there is a function I : X → R defined

by

I(f) =

∫ 1

0
f(x) dx.

(Think about this for a moment. A function X → R takes as input a

continuous function defined on [0, 1] (i.e. an element of X), and produces

as output a real number. A good way to produce a real number from a

function is to integrate the function over its domain of definition.)
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We could then ask whether or not this function I is continuous: that is,

that if two functions f, g : [0, 1] → R are very close to each other, then their

integrals I(f) =
∫ 1
0 f(x) dx and I(g) =

∫ 1
0 g(x) dx are also very close to each

other (it seems reasonable that this should be true).

In contrast to the situation with shapes in the plane, we’ll very soon be

in a position to describe two quite different ways of defining the distance

between two continuous functions [0, 1] → R.

What’s to come

In the next section we’ll consider the basic properties that any sensible notion

of distance ought to have, and use these to define the concept of a metric

space which, loosely speaking, is a set where we have a means of measuring

the distance between any two elements. After considering several examples

of metric spaces, we’ll give precise definitions of convergence (of a sequence)

and continuity (of a function), and investigate these ideas in the context of

different metric spaces.

The idea of isolating the notion of a metric space is a familiar one in

mathematics: instead of studying specific examples (such as shapes in the

plane), we study metric spaces in general. Any new concepts that we de-

velop, or theorems that we prove, are then valid across the whole range of

metric spaces. We’ll see plenty of examples during the module of general

results being applied across a wide range of quite different metric spaces.

1.2 Metric Spaces

Our aim is to introduce the definition of a distance, or metric, in any set X.

We consider the conditions which any sensible notion of distance should

satisfy.

We will denote the distance from a point x of X to a point y of X

by d(x, y). That is, d is a function

d : X × X → R.

(See Aside 2 on Page 50 for the meaning of the product X × X.)

We will introduce three properties which the distance function d will be

required to satisfy. The first two are fairly straightforward.

1. The distance from a point to itself should be zero. The distance from

a point to a different point should be greater than zero.
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In terms of the distance function d, this reads:

For all x, y ∈ X, d(x, x) = 0 and d(x, y) > 0 if x 6= y.

2. The distance from any point x to any point y should be the same as the

distance from y to x (in other words, we can talk about the distance

between two points, rather than the distance from one to the other).

In terms of the distance function d, this reads:

For all x, y ∈ X, d(x, y) = d(y, x).

3. The third propery is the one which says that d(x, y) is really a distance,

rather than any old number. Intuitively, it says that going from x to y

can’t be further than going from x to a third point z, and then from z

to y. In terms of the distance function d, this reads:

For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

See Figure 1.8, which illustrates this in the case X = R2. In this case,

it says the length of one side of a triangle (with vertices x, y, and z)

can’t be greater than the combined length of the other two sides. For

this reason, the condition d(x, y) ≤ d(x, z) + d(z, y) is known as the

triangle inequality.

x

z

y
d(x, z)

d(z, y)

d(x, y)

Figure 1.8: The triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

Putting all this together, we arrive at the following definition:

Definition 1.1 (Metric Space)

Let X be a set, and d : X × X → R be a function. We say that (X, d) is a

metric space (or, alternatively, that d is a metric on X) if for all x, y, z ∈ X:

1. d(x, x) = 0, and d(x, y) > 0 if x 6= y.
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2. d(x, y) = d(y, x).

3. d(x, y) ≤ d(x, z) + d(z, y).

Thus when we study metric space theory, what we’re really studying is

sets X together with functions d : X ×X → R which satisfy the above three

properties. Of course we have it in mind that d(x, y) represents the distance

between x and y, but this isn’t part of the definition.

Note that it isn’t meant to be at all obvious that this definition is the
“right” one to use. I suppose that all three conditions are things that a

distance should satisfy, but why shouldn’t we have added some additional

ones? Like many useful mathematical definitions, this one is the result

of years of trial and error on the part of many different mathematicians.

Finding a good definition involves getting a balance between two things:

a) If there are too many conditions, then not enough different situations fit

the definition, and it isn’t very useful.

b) If there are too few conditions, then too many different situations fit the

definition, and it isn’t possible to say much about all of those situations

in general.

Definition 1.1 above, it turns out, provides an extremely good balance,

and metric space theory, as a result, is very rich.

Examples 1.1 (Metric Spaces)

We’re going to give a long list of examples of different metric spaces, and

show that each one is indeed a metric space. In doing this, note that Defi-

nition 1.1 says that for all choices of x, y, z in X, three different conditions

hold. Thus to show that (X, d) is a metric space, we should start by saying

“Let x, y, z be any elements of X”, and then go on to show that each of

conditions 1, 2, and 3 holds. (Typically, some of these conditions will be

absolutely obvious, so only the others will need any serious proof.)

We’ll continually return to these examples in the remainder of the module

to illustrate new concepts as they’re introduced.

a) X = R2, d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Important note: Here x = (x1, x2) and y = (y1, y2). In particular, x2

is the “y-coordinate” of x, and y1 is the “x-coordinate” of y. The reason

for using this notation is that we conventionally refer to the elements of
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a metric space X using the symbols x, y, z (as we did, for example, in

Definition 1.1): when X = R2, this means that x and y refer to points

in the plane, so we can’t use the normal (x, y) notation to give their

coordinates. This way of doing things may seem confusing at first, but

hopefully you’ll soon get used to it.

We won’t go through a proof that this is indeed a metric in lectures, since

this is just the “usual” notion of distance in the plane, which more or less

motivated our definition of a metric space. In fact, it takes a surprising

amount of work to show that this metric satisfies the triangle inequality.

Note that in this example and the following two, we’re focussing on R2

in order to have something concrete to work with. We can work in Rn

for any n in an exactly analogous manner (see page 14).

b) In fact it’s possible to put other metrics on Rn. Here’s an example.

X = R2, d1(x, y) = |x1 − y1| + |x2 − y2|.
In other words, instead of all that tedious squaring and square-rooting,

we just add the difference in the first coordinates to the difference in the

second coordinates. So, for example,

d1((−0.3, 1.4), (1, 1.3)) = | − 0.3 − 1| + |1.4 − 1.3| = | − 1.3| + |0.1|
= 1.3 + 0.1 = 1.4.

Pictorially, the distance between (x1, x2) and (y1, y2) is the length of the

L-shaped path obtained by going horizontally from (x1, x2) to (y1, x2),

and then vertically from (y1, x2) to (y1, y2), as depicted in Figure 1.9. †1

(-0.3,1.4)

(1,1.3)

1.3

0.1

Figure 1.9: Measuring distances with the metric d1(x, y) = |x1−y1|+|x2−y2|

To understand this metric a little better, let’s look at all those points

in R2 which are distance 1 from the origin (0, 0), i.e. those points x with

d1(x, (0, 0)) = 1. With the usual metric d2 on R2, these points would

form a circle. With this new metric, we get

d1(x, (0, 0)) = |x1 − 0| + |x2 − 0| = |x1| + |x2| = 1.
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What does the set of points (x1, x2) satisfying |x1|+ |x2| = 1 look like? If

x1 > 0 and x2 > 0, this just says x1 + x2 = 1 (the equation of a straight

line through (0, 1) and (1, 0)). If x1 > 0 and x2 < 0, then |x2| = −x2,

and the equation says x1−x2 = 1 (the equation of a straight line through

(0,−1) and (1, 0)). Similar arguments in the other two quadrants (x1 < 0,

x2 > 0; and x1 < 0, x2 < 0) produce the picture shown in Figure 1.10.

1

1

−1

−1

Figure 1.10: Unit circle with metric d1(x, y) = |x1 − y1| + |x2 − y2|

We need a simple result before moving on to our third example:

Lemma 1.1 Let a, b, c, and d be any real numbers. Then

max(a + b, c + d) ≤ max(a, c) + max(b, d).

This result is “obvious” if you think about it. . . One way to see it is as

follows: imagine that two students take a certain module which has both

exam and continuously assessed components. Jack gets marks of a in the

exam and b in CA (so his total mark is a + b), while Jill gets c in the exam

and d in CA (so her total mark is c + d). Thus the LHS is the higher total

mark. On the other hand, the RHS is the higher of the two exam marks

plus the higher of the two CA marks, which is clearly at least as big as the

higher of the two students’ total marks. If that doesn’t convince you, here’s

a proof.

Proof. It’s certainly true that a ≤ max(a, c) and b ≤ max(b, d). Adding

these gives

a + b ≤ max(a, c) + max(b, d).
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Similarly c ≤ max(a, c) and d ≤ max(b, d), so

c + d ≤ max(a, c) + max(b, d).

Since both a + b and c + d are less than or equal to max(a, c) + max(b, d),

so is the bigger of a + b and c + d: that is,

max(a + b, c + d) ≤ max(a, c) + max(b, d)

as required.

c) Here’s another metric we can put on R2.

X = R2, d∞(x, y) = max(|x1 − y1|, |x2 − y2|).
Thus we work out the difference in the x-coordinates and the difference
in the y-coordinates, and say that the distance between the two points

is whichever of these is bigger. So, for example,

d∞((−0.3, 1.4), (1, 1.3)) = max(| − 0.3 − 1|, |1.4 − 1.3|)
= max(| − 1.3|, |0.1|) = max(1.3, 0.1) = 1.3.

(In terms of the L-shaped path of Figure 1.9, the d∞ distance between x

and y is the length of the longer of the two branches of the L.) †2

The set of points in R2 which are distance 1 from the origin using this

metric is depicted in Figure 1.11. (See exercises.)

1

1

−1

−1

Figure 1.11: Unit circle with metric d∞(x, y) = max(|x1 − y1|, |x2 − y2|)
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We’ll see shortly that for many purposes (for topological purposes), it’s

irrelevant whether we use the metric of a), b), or c) on Rn – we can

pick whichever one suits us better. We say that the three metrics are

equivalent (Definition 1.12 on page 43).

To extend these metrics to Rn we write

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2,

d1(x, y) = |x1 − y1| + |x2 − y2| + · · · + |xn − yn|, and

d∞(x, y) = max(|x1 − y1|, |x2 − y2|, . . . , |xn − yn|).

Note that when n = 1 (i.e. when X = R), they’re all exactly the same

as each other.

We refer to the “usual” metric d2 on Rn as the standard metric, and often

just denote it d.

Where do the symbols d1, d2, and d∞ come from? More generally, for every real number p ≥ 1,

we can define a metric dp on R
n by

dp(x, y) = (|x1 − y1|
p + |x2 − y2|

p + · · · + |xn − yn|
p)1/p .

The bigger p is, the more “weight” this metric gives to co-ordinates i where |xi − yi| is large,

until in the limit as p → ∞ all that matters is the maximum difference

d∞(x, y) = max
1≤i≤n

(|xi − yi|).

d) Let X be any set, and take

d(x, y) =

{

0 if x = y,

1 if x 6= y.

Thus any two distinct points are distance 1 apart. This is called the

discrete metric, since each point of X is separated by a large distance

from each of the other points: that is, X looks like a collection of discrete

points.

We call a set X with the discrete metric a discrete space. †3
There’s nothing special about the choice of the number 1 here – we could

replace it with any positive number and get an equivalent metric.

We could put this metric on Rn if we wanted, but it’s more usual to put

it on sets which we think of as being discrete, such as finite sets or N

or Z.

14



e) The next three examples describe ways of making new metric spaces from

old ones. First, the subspace metric. This is a straightforward concept.

Suppose (X, d) is a metric space, and Y is any subset of X. Then (Y, d)

is also a metric space. (To be accurate, we should write something like

(Y, d|Y ×Y ) here: the distance function on Y is the same as the one on X,

except its domain is restricted to Y × Y .)

There’s very little to do to prove that (Y, d) is a metric space. For since

(X, d) is a metric space, we know that for all x, y, z ∈ X, the three

conditions in the definition of a metric space hold. So they hold for those

particular x, y, z ∈ X which happen to lie in Y .

Thus, for example, the usual metric on R gives us a metric d on Z, just

by restricting our attention to the world of integers rather than all real

numbers. This metric is still defined by d(m, n) = |m−n| (where we use

the symbols m and n rather than x and y as a hint to the reader that

we’re talking about integers rather than any old real numbers). (In fact

this metric on Z is equivalent to the discrete metric.) Similarly, there’s a

metric on the rational numbers Q, and on the interval [0, 1] (and indeed

on the interval [−32, 11.731)).

f) Bounded metrics. We say that a metric d on X is bounded (or alterna-

tively that the metric space (X, d) is bounded) if there’s some number K

such that d(x, y) is never bigger than K. Thus there’s a limit to how big

the distance between two points can be. For example, the usual metric

on R isn’t bounded (d(x, y) can be as big as we like), but the subspace

metric on [−1, 1] is bounded, since the distance between two points is

never bigger than 2.

Suppose (X, d) is any metric space, and define a new function e : X × X → R

by

e(x, y) = min(d(x, y), 1).

That is, to work out e(x, y) we work out d(x, y), and replace it by 1 if

it’s bigger than 1. Then e is also a metric on X, which is bounded by 1.
†4

The point is that d and e may give very different distances for points

which are far apart, but for close points they are exactly the same. We’ll

see later the precise significance of this, but for the moment note that

the ideas of convergence and continuity are expressed in terms of very

15



small distances, so to decide whether a sequence converges or a function

is continuous we can equally well use either d or e.

There’s nothing special about the number 1 in this example: we could

equally well have defined e(x, y) = min(d(x, y), c) for any old number

c > 0.

g) The product metric. Suppose that (X, d) and (Y, e) are both metric

spaces. Then we can define a metric D on the product space X × Y by

any of the following formulae:

D((x1, y1), (x2, y2)) =
√

d(x1, x2)2 + e(y1, y2)2,

D((x1, y1), (x2, y2)) = d(x1, x2) + e(y1, y2), or

D((x1, y1), (x2, y2)) = max(d(x1, x2), e(y1, y2)).

(We’ve seen an example of this before: the three metrics on R2 = R × R

in examples a), b), and c) are of these three forms.) †5
In fact these three metrics on X × Y are equivalent to each other, so for

most purposes we can use whichever we find most convenient. We’ll use

the second metric,

D((x1, y1), (x2, y2)) = d(x1, x2) + e(y1, y2),

as the standard metric on a product.

The same construction holds for any finite number of spaces: suppose

that (X1, d1), (X2, d2), . . . , (Xn, dn) are all metric spaces, then we can

define a metric d on the product space X1 × X2 × · · · × Xn by setting

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) equal to any of the following:

√

d1(x1, y1)2 + d2(x2, y2)2 + · · · + dn(xn, yn)2,

d1(x1, y1) + d2(x2, y2) + · · · + dn(xn, yn), or

max(d1(x1, y1), d2(x2, y2), . . . , dn(xn, yn)).

Again, we use the second metric as the standard metric on a product of
two or more spaces.
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h) In this example we define a metric on a set of sequences.

Let X = {0, 1}N be the set of all sequences x = (x0, x1, x2, . . .) of 0s and

1s. Thus an element of X might look like

x = (1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, . . .)

(though of course these few early entries don’t tell us which element of X

we’re talking about): we abbreviate this to x = 11100100001011 . . ..

Let’s explain the notation {0, 1}N. In general, if A and B are any sets, then AB denotes the

set of all functions B → A. (Note that if A and B are finite sets, with m and n elements

respectively, then AB has mn elements, since for each of the n elements of B there’s a choice

of m elements of A to map it to, giving m × m × · · · × m = mn functions in all.)

Thus {0, 1}N denotes the set of all possible functions f : N → {0, 1}. But such a func-

tion is really a sequence, since the function can be described exactly by a list of its values:

f(0), f(1), f(2), . . ., each of which is either 0 or 1.

The idea of the metric on X is that two sequences x = (x0, x1, x2, . . .)

and y = (y0, y1, y2, . . .) will be close if they agree for a long time. Here’s

one way of defining a metric:

d(x, y) =

{

0 if x = y,

1/2n if n is smallest with xn 6= yn.

That is, we look for the first position where x and y differ: if this is

position n then the distance between x and y is 1/2n. (Caution: the

start of the sequences is position 0, not position 1.) Thus, for example

d(110 . . . , 010 . . .) = 1

d(001 . . . , 010 . . .) = 1/2

d(010 . . . , 011 . . .) = 1/4

d(110001010 . . . , 110001011 . . .) = 1/28 = 1/256.

†6
Another (equivalent) metric on X is given by

d(x, y) =
∞

∑

n=0

|xn − yn|
2n

.
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Note that |xn − yn| is either zero (if xn = yn) or one (if xn 6= yn).

Thus this metric is similar to the previous one, but we add contributions

of 1/2n from each position where the sequences differ, rather than just

considering the first position where they differ. The proof that this is

a metric is in the exercises. We’ll use the first metric as our standard

metric on {0, 1}N.

A similar metric can be defined on the set Y = {0, 1}Z of bi-infinite

sequences of 0s and 1s, which has elements of the form

x = (. . . , x−3, x−2, x−1, x0, x1, x2, x3, . . .)

(see exercises).

i) For our final example, we shall return to one of the cases considered in

the introduction. Let X = C[0, 1], the set of all continuous functions

f : [0, 1] → R. The idea of the first metric we’ll put on X is that two

functions f and g should be close precisely when f(x) and g(x) are close

to each other for all values of x ∈ [0, 1].

In order to set up the metric, we need a preliminary definition and a result

which we won’t be able to prove until quite a lot later (Theorem 2.7).

We say that a function f : [0, 1] → R (not necessarily a continuous one)

is bounded if there is a number K with the property that |f(x)| ≤ K for

all x ∈ [0, 1] (equivalently, this says that −K ≤ f(x) ≤ K). We write

B[0, 1] for the set of all bounded functions f : [0, 1] → R.

Thus, for example, the function f(x) = x2 is bounded on [0, 1], since

certainly −1 ≤ f(x) ≤ 1 for all x ∈ [0, 1], so we can take K = 1.

Similarly the function f(x) = 100 cos(3x) − 50 sin(2x) is bounded, since

we certainly have |f(x)| ≤ 150 for all values of x. Here’s an example of

an unbounded function f : [0, 1] → R:

f(x) =

{

n if x = 1
n for some integer n ≥ 1

0 otherwise.

Thus f(1) = 1, f(1/2) = 2, f(1/3) = 3, f(1/4) = 4, f(1/100) = 100,

and it’s clear that we can make f as large as we like by taking a suitable

value of x: hence f isn’t bounded.
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There are no very straightforward examples of unbounded functions on [0, 1],

since any such function must be discontinuous. This is the content of the

following result, which we’ll prove later on:

Theorem from later (2.7) Every continuous function f : [0, 1] → R is

also bounded. That is, C[0, 1] ⊆ B[0, 1].

There’s nothing special about the values 0 and 1 here: it’s also true that

C[a, b] ⊆ B[a, b] for any a < b. However, it is vital that the interval is

closed. It is easy to find examples of continuous functions f : (0, 1) → R

which are not bounded: f(x) = 1/x is one such. (This is one of a number

of fundamental differences between closed intervals [a, b] and open inter-

vals (a, b). Later on (Chapter 3) we’ll express the distinction by saying

that [a, b] is compact but (a, b) is not.)

We’ll use another result from later on to make the metric on C[0, 1] a bit

easier to define:

Theorem from later (2.7) Every continuous function f : [0, 1] → R

attains a maximum. That is, there is some x ∈ [0, 1] with f(x) ≥ f(y)

for all y ∈ [0, 1].

Now we’re in a position to define a metric on C[0, 1]: the L∞ metric

d : C[0, 1] × C[0, 1] → R is given by

d(f, g) = max
x∈[0,1]

|f(x) − g(x)|.

That is, the distance between a function f and a function g is the greatest

vertical separation between their graphs (see Figure 1.12). Note that if

f(x) and g(x) are continuous, then so is |f(x) − g(x)|, and so by the

result just described |f(x) − g(x)| does have a maximum value in [0, 1].
†7

To look at it a different way: suppose f : [0, 1] → R is some given

continuous function. Then the functions g : [0, 1] → R with d(f, g) < ε

are precisely those whose graphs lie in an “ε-snake” about the graph of f ,

as shown in Figure 1.13.

A nearly identical formula

d(f, g) = max
x∈[a,b]

|f(x) − g(x)|.

could be used to define a metric on C[a, b] for any a < b – there’s nothing

special about [0, 1]. However, it’s important that the interval used is a
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f

g

d(f, g)

Figure 1.12: The L∞ metric on C[0, 1]

f

Figure 1.13: Functions distance < ε from f lie in the snake

20



closed interval. We can’t define d in the same way as a function C(0, 1)×
C(0, 1) → R, since if f, g : (0, 1) → R are given by f(x) = 1/x and

g(x) = 0 (the zero function), then f(x) and g(x) get further and further

apart without bound as x gets closer and closer to 0, so “d(f, g) = ∞”,

and ∞ is not a real number.

Here’s an example of a different metric on C[0, 1]: let the L1 metric

e : C[0, 1] × C[0, 1] → R be defined by

e(f, g) =

∫ 1

0
|f(x) − g(x)|dx.

†8
This metric takes into account the difference between f and g over all

of [0, 1], not just at the point where they differ most – it can be seen as

an average difference between the two functions over the interval. This

means that it is possible for e(f, g) to be as small as we like while d(f, g)

is large. See, for example, the function f : [0, 1] → R whose graph is

depicted in Figure 1.14: it is zero in most of [0, 1], and has a narrow

tall bump around x = 1/2. Let g(x) = 0 be the zero function. Then

d(f, g) = 1 (the functions differ by 1 at x = 1/2), but

e(f, g) =

∫ 1

0
|f(x) − g(x)|dx =

∫ 1

0
f(x) dx

is the area under the graph of f(x), which can be as small as we like

if we make the bump narrow enough. We’ll see later that this means

that the metrics d and e on C[0, 1] are not equivalent. The fact that it is

possible for e(f, g) to be as small as we like while d(f, g) remains large

will crop up several more times, in different guises, in the remainder of

the module.

(We’ll use the L∞ metric on C[0, 1] except when we explicitly say other-

wise.)

To finish, let’s do an explicit calculation of the distance between two

functions, f(x) = x2 and g(x) = x3, using each of these two metrics.

Note first that g(x) = xf(x), so for 0 ≤ x ≤ 1 we have g(x) ≤ f(x), and

hence |f(x) − g(x)| = f(x) − g(x) = x2 − x3.

To calculate the L∞ distance between f and g, we have to find the

maximum value of |f(x)− g(x)| = f(x)− g(x) = x2 −x3 when x ∈ [0, 1].
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0

1

1

f

Figure 1.14: A function with a very narrow tall bump

This can be done using differentiation in the usual way. We have

d

dx
(x2 − x3) = 2x − 3x2,

which is zero when x = 0 or x = 2/3.

To find the greatest value of a function on [0, 1], we have to check the

turning points and the endpoints 0 and 1. Now f(x) − g(x) is zero at

both x = 0 and x = 1, and is 4/9 − 8/27 = 4/27 at x = 2/3. So 4/27 is

the maximum value of f(x) − g(x) on [0, 1], and hence d(f, g) = 4/27.

Calculating the L1 distance is quicker. We have

e(f, g) =

∫ 1

0
|f(x) − g(x)|dx

=

∫ 1

0
(x2 − x3) dx

=

[

x3

3
− x4

4

]1

0

=
1

3
− 1

4
=

1

12
.

Where do the names L∞ and L1 come from? More generally, for every real number p ≥ 1,

we can define the Lp metric dp on C[0, 1] by

dp(f, g) =

(
∫

1

0

|f(x) − g(x)|p dx

)1/p

.
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The bigger p is, the more “weight” this metric gives to values of x where |f(x)−g(x)| is large,

and in the limit as p → ∞ all that matters is the maximum value of |f(x) − g(x)|.

1.3 Isometries

When are two metric spaces (X, d) and (Y, e) “essentially the same”?

Example 1.2 (Silly example)

Suppose we have two metric spaces (X, d) and (Y, e) given as follows:

X = {1, 2, 3},
d(1, 2) = 3, d(1, 3) = 4, and d(2, 3) = 6.

Y = {cat, dog, hen},
e(dog, hen) = 3, e(dog, cat) = 4, and e(hen, cat) = 6.

(When we define the spaces like this, we’re taking it as read that the

distance between any element and itself is zero, and that distances are sym-

metric (so, for example d(2, 2) = 0 and d(3, 2) = 6.) Thus to ensure that

these really are metric spaces, we just have to check that the triangle in-

equality holds – which it does: but if we’d said d(2, 3) = 8 it wouldn’t have

done, since then we’d have had d(2, 3) > d(2, 1) + d(1, 3).)

The sets X and Y are clearly very different, but when we study metric

spaces we’re not interested in what the elements of the sets are, only in how

far apart they are from each other. From this point of view, we can see

that the two metric spaces above are really the same metric space, just with

different names for the elements.
To be explicit, if we make the correspondence 1 ↔ dog, 2 ↔ hen, 3 ↔ cat,

then we can see that the distance between any two elements of X is exactly

the same as the distance between the two corresponding elements of Y . A

correspondence of this sort is called an isometry.

In general, if there’s a one-to-one correspondence (bijection) between

the elements of X and the elements of Y , and the distance between corre-

sponding pairs of elements is the same, then we can look at (Y, e) as being

a version of (X, d) where we’ve just given different names to the elements.

This gives the following definition:
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Definition 1.2 (Isometry)

An isometry between two metric spaces (X, d) and (Y, e) is a bijection

f : X → Y with the property that

e(f(x1), f(x2)) = d(x1, x2)

for all x1, x2 ∈ X. If such an isometry exists we say that (X, d) and (Y, e)

are isometric.

(See Aside 3 on Page 51 for details on bijections/invertible functions.)

Examples 1.3 (Isometries)

a) [0, 1] is isometric to [2, 3] by x 7→ x + 2 (and also by x 7→ 3 − x). †9

b) Two spaces with the discrete metric are isometric by any bijection be-

tween them (if there is such a bijection). †10

c) {0, 1}N is isometric to itself by a bijection which swaps 0 and 1. †11

d) If (X, d) and (Y, e) are metric spaces, then X × Y is isometric to Y ×X.

(See exercises.)

e) {f ∈ C[0, 1] : f(1/2) = 0} and {f ∈ C[0, 1] : f(1/2) = 1} are isometric

(F(f)(x) = f(x) + 1). †12

While isometry expresses precisely the idea that two metric spaces are

identical as metric spaces, there are times when it’s too strong a notion.

For example, [0, 1] and [0, 10] aren’t isometric, but should we really regard

them as being very different? One is just a “rescaled” version of the other,

as though we’d chosen to measure distance in millimetres rather than cen-

timetres, for example. Shortly we’ll encounter the weaker (and more widely

useful) notion of homeomorphism (Definition 1.14).

1.4 Convergence and Continuity

In this section we will give precise definitions of the notions of convergence of

a sequence and continuity of a function. Many students find these definitions

hard to come to grips with, but they will be central to the module, and so

some time spent understanding them properly will be well worth it.

We start with a preliminary definition, which will be important not just

here but later also.
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Definitions 1.3 (Open and Closed balls)

Let (X, d) be a metric space, x be a point of X, and r > 0 be a real number.

The open r-ball Br(x) about x (or the open ball about x of radius r) is the

set of all points whose distance from x is less than r:

Br(x) = {y ∈ X : d(x, y) < r}.

The closed r-ball Br(x) about x (or the closed ball about x of radius r) is the

set of all points whose distance from x is less than or equal to r:

Br(x) = {y ∈ X : d(x, y) ≤ r}.

(In fact we’ll only use open balls in this section, but it makes sense to

define the two types of ball together.) Figure 1.15 shows an open ball in R2

with the standard metric: it consists of all the shaded points, the dotted

boundary being intended to indicate that the boundary is not included in

the set. A picture of the closed ball Br(x) would be the same, except the

boundary would be included and would be drawn with a solid line. (In

fact, this isn’t a bad picture of an open ball in any metric space. Since we

can only draw pictures on paper which looks a bit like R2, we’ll often draw

pictures of general ideas applicable to any metric space schematically in this

way.)

x

r

Br(x)

Figure 1.15: An open ball in R2 (standard metric)

Examples 1.4 (Open and Closed balls)

a) Balls in R. †13

b) Balls in R2 with non-standard metrics (note similarity to Figures 1.10

and 1.11). †14

c) Balls B1/2(x) and B2(x) in discrete spaces. †15
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d) Balls in {0, 1}N. †16

e) Balls in C[0, 1] (L∞ metric). †17

1.4.1 Convergence

Let (X, d) be a metric space. A sequence in X is an infinite list of elements

of X, i.e. x0, x1, x2, x3, . . .: we often write (xn) or (xn)n≥0 to denote the
sequence.

Intuitively, the sequence (xn) tends to a limit ` ∈ X if the points xn get

closer and closer to ` as n gets larger and larger (with “closer and closer”

measured using the metric d, i.e. d(xn, `) gets smaller and smaller as n gets

larger and larger). (Recall Figure 1.2 on page 3 for a depiction of a sequence

tending to a limit in R2.)

What do we mean by “closer and closer”?

Well, it should certainly be true that eventually all the terms of the sequence

are within distance 1 of `: or, in other words, in B1(`). By “eventually”,

we mean that although early terms of the sequence may be further away

from `, they are within distance 1 of ` from some point on. If that “some

point” is the Nth term of the sequence, this means that xn ∈ B1(`) for all

n ≥ N .
In other words,

There’s some N such that xn ∈ B1(`) for all n ≥ N.

See Figure 1.16, which illustrates this for a sequence in R2. Here we

would have N = 4, since xn lies in B1(`) for all n ≥ 4. (It’s also true that

x2 is in B1(`), but since x3 isn’t we can’t take N = 2.)

Now there’s nothing special about the number 1. Eventually, all the

terms of the sequence should be within distance 1/2 of ` too. In other

words,

There’s some N such that xn ∈ B1/2(`) for all n ≥ N.

The N in this box will probably be bigger than the N in the previous

one, since we have to go further down the sequence to ensure that all of the

terms are within distance 1/2, rather than just distance 1, of `. Figure 1.17
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x0

x1

x2

x3

x4

x5

x6

B1(`)

`

Figure 1.16: From x4 onwards, the sequence lies in B1(`)

x0

x1

x2

x3

x4

x5

x6

B1(`)

`

B1/2(`)

Figure 1.17: From x6 onwards, the sequence lies in B1/2(`)
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shows that, for our imaginary sequence in R2, we have to take N = 6 to

ensure that xN , xN+1, xN+2, . . . all lie in B1/2(`).

There’s nothing special about 1/2 either. Taking out our magnifying

glass, we can see that the sequence must lie in B1/100(`) from some xN

onwards (perhaps N = 1357), and that if we go even further down it will

eventually lie in B1/100000(`). In fact, it must eventually lie in Bε(`) for any

ε > 0.
This gives the following definition of convergence. (We describe it as

“provisional” not because it’s incorrect, but because it’ll later be replaced

by a new version (Definition 1.9) which says exactly the same, just in a

better way.)

Definition 1.4 (Convergence – Provisional definition)

Let (X, d) be a metric space, (xn) be a sequence in X, and ` ∈ X. We say

that (xn) tends to ` as n tends to ∞ or (xn) converges to `, abbreviated

xn → ` as n → ∞ if

For all ε > 0, there’s some N such that xn ∈ Bε(`) for all n ≥ N.

In your head, you should insert the words no matter how small after “For

all ε > 0”. These words don’t add anything to the mathematical meaning

of the definition, but to a human reader they illustrate its purpose: however

tiny ε is, the sequence still ends up being within ε of `.

The important part of the discussion before the definition is that N = N(ε)

depends on ε: the smaller the value of ε, the further down the sequence we

have to go before we are trapped inside Bε(`). In the example of Figures 1.16

and 1.17 we had N(1) = 4, N(1/2) = 6, and N(1/100) = 1357.

Since the definition says that something is true for all ε > 0, the way to

show that a given sequence (xn) tends to a given ` is:

1. Let ε > 0 be any positive number.

2. Show that there is some N such that xN , xN+1, xN+2, . . . all lie in

Bε(`). This usually involves giving a formula for N in terms of ε.

It’s worth stating exactly what it means for a sequence (xn) not to tend

to `, too. This is exactly saying that there’s an open ball about ` which

the sequence doesn’t eventually get trapped in. Take a look at Figure 1.18.
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Here it seems clear that the sequence (xn) doesn’t converge to `. If you take

ε = 1/2, then the entire sequence from x1 onwards lies in B1/2(`); but if you

take ε = 1/10, you can see that although some points of the sequence lie in

B1/10(`), it isn’t true that the whole sequence eventually lies within it.

x0

x1
x2

x3

`

B1/10(`)

B1/2(`)

Figure 1.18: (xn) doesn’t converge to `

So the way to show that a given sequence (xn) doesn’t tend to a given `

is:

1. Cook up (using your ingenuity) a particular value of ε (in the example

of Figure 1.18 ε = 1/10 would do but ε = 1/2 wouldn’t).

2. Show that, for this particular value of ε, you can find values of n as

large as you like such that xn 6∈ Bε(`) (i.e. there is no N such that

xN , xN+1, . . . all lie in Bε(`)).

Examples 1.5 (Convergence)

a) Convergent and non-convergent sequences in R. †18

b) Convergent and non-convergent sequences in discrete spaces. †19

c) Convergent and non-convergent sequences in {0, 1}N. †20

d) A sequence in C[0, 1] which converges in the L1 metric but not in the

L∞ metric. †21

The following result says that sequences can have at most one limit: thus,

for example, if (xn) is a sequence in R which converges to 1, it’s impossible
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for (xn) also to converge to 2. This may seem obvious, but if you look

carefully at the proof you’ll see that it uses each of the properties 1, 2, and 3

in the definition of a metric space (Definition 1.1). That is, if we’d had a

weaker definition, even an “obvious” result like this one need not necessarily

be true.

Lemma 1.2 (Unique limit) Let (X, d) be a metric space, and let (xn) be

a sequence in X which converges to `1 ∈ X. If `2 ∈ X and `2 6= `1, then

(xn) does not converge to `2.

The method of proof is by contradiction. That is, we assume that (xn)

is a sequence which does converge to each of two different points `1 and `2.

Starting from this assumption, we argue logically until we arrive at a conclu-

sion which is clearly absurd: a contradiction. This tells us that our starting

assumption must have been wrong – it isn’t possible for a sequence to con-

verge to two different points. †22

If this were a module concentrating on real numbers, the following result

would be very important. Since we’re dealing with general metric spaces it

is much less so, and we shall only prove one of the easier parts of it.

Lemma 1.3 (Operations on sequences in R) Suppose that (xn) and (yn)

are sequences in R which converge to ` and m respectively, and let c ∈ R.

Then the sequences (cxn), (xn + yn), (xn − yn), and (xnyn) converge to c`,

` + m, `−m, and `m respectively. Moreover, if yn 6= 0 for all n and m 6= 0

then the sequence (xn/yn) converges to `/m. †23

The final lemma in this section will be useful later on – it says that

convergence of a sequence in a product space is just the same as convergence

of the components of the sequence in each of the spaces that the product is

made of.

Lemma 1.4 (Convergence in product spaces) Let (X, d) and (Y, e) be

metric spaces, and let (zn) be a sequence in the product space X ×Y . (Thus

each term zn of the sequence is of the form zn = (xn, yn), where xn ∈ X

and yn ∈ Y .) Then the following are equivalent:

a) The sequence (zn) converges to z = (x, y) ∈ X × Y .

b) The sequence (xn) converges to x ∈ X and the sequence (yn) converges

to y ∈ Y .
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This is the first of many results we’ll see which state that two (or more)

things are equivalent. This means that the two things are either both true,

or are both false. There are two ways that such results are normally proved.

First, we can show that if a) is true then b) is true, and that if b) is true

then a) is true; second, we can show that if a) is true then b) is true, and

that if a) is false then b) is false. †24

(In fact this lemma easily generalises to products X1 × · · · ×Xk of more

than two spaces: the proof is no harder, but the notation is more compli-

cated.)

Example 1.6 (Convergence in product spaces)

The sequence (( 1
n , 1− 1

n2 ))n≥1 in R2 converges to (0, 1): this is precisely the

same statement as saying that the real sequences (1/n)n≥1 and (1−1/n2)n≥1

converge to 0 and to 1 respectively.

1.4.2 Continuity

Look again at Figure 1.3 on page 4, which shows the graph of a discontinuous

function f : R → R. We can detect that it’s discontinuous because there are

values x1 and x2, very close to each other, for which f(x1) and f(x2) are far

apart. Indeed, by pushing x1 and x2 closer and closer to the discontinuity,

we can make them as close as we like, while still having f(x1) and f(x2)

far apart. This is the basic idea of continuity: a function f is continuous

if f(x1) gets closer and closer to f(x2) as x1 gets closer and closer to x2.

Conversely, it is discontinuous if it’s possible to choose x1 and x2 as close to

each other as we like, and still have f(x1) far from f(x2).

To turn this into a proper definition, we need to be precise about what

we mean when we say “closer and closer” and “as close as we like”.

Let (X, d) and (Y, e) be two metric spaces, and let f : X → Y be a

function. To start with we’ll just discuss the continuity of f at a particular

given point x0 ∈ X. This enables us to make a more direct parallel with the

definition of convergence.

Our notion of convergence was that xn gets closer and closer to ` as n

gets bigger and bigger; and the idea of continuity is that f(x) gets closer

and closer to f(x0) as x gets closer and closer to x0. Let’s try to use this

similarity to develop a definition of continuity in the same way that we

developed one of convergence.

It should certainly be true that f(x) is within distance 1 of f(x0) (i.e.
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f(x) ∈ B1(f(x0))), provided that x is close enough to x0. “Close enough”

means that there is some distance δ > 0 such that any x closer than this

to x0 has f(x) ∈ B1(f(x0)). In other words,

There’s some δ > 0 such that f(x) ∈ B1(f(x0)) provided x ∈ Bδ(x0).

See Figure 1.19, which illustrates this for a made-up function f : R → R.

Since there’s no break in the graph at x0, there must be a region around

x0 in which f lies between f(x0) − 1 and f(x0) + 1 (i.e. in B1(f(x0))). In

the graph shown, this region is x0 − 3.4 < x < x0 + 1.2. Hence we can take

δ = 1.2 and have that f(x) ∈ B1(f(x0)) provided x ∈ Bδ(x0).

x0

f(x0)

f(x0) + 1

f(x0) − 1

x0 + 1.2x0 − 3.4

f

Figure 1.19: Points in B1.2(x0) map into B1(f(x0))

Now there’s nothing special about the number 1. f(x) should also be

within distance 1/2 of f(x0) provided that x is close enough to x0. In other

words,

There’s some δ > 0 such that f(x) ∈ B1/2(f(x0)) provided x ∈ Bδ(x0).

The δ in this box will probably be smaller than the δ in the previous

one, since x has to be closer to x0 to ensure that f(x) is within distance 1/2,

rather than just distance 1, of f(x0). Continuing the example of Figure 1.19,

Figure 1.20 suggests that we need to take δ = 0.8 in this case.

There’s nothing special about 1/2 either. Taking out our magnifying

glass, we can see that f(x) should be in B1/100(f(x0)) if x is close enough

to x0 (perhaps δ = 0.002), and that if we restrict x to be closer still

to x0, f(x) will be in B1/100000(f(x0)). In fact, f(x) must eventually lie

in Bε(f(x0)) for any ε > 0.
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x0

f(x0)

f(x0) + 1/2

f(x0) − 1/2

x0 + 0.8x0 − 2.9

f

Figure 1.20: Points in B0.8(x0) map into B1/2(f(x0))

This gives the following definition: f is continuous at x0 if

For all ε > 0 there’s some δ > 0 such that f(x) ∈ Bε(f(x0)) provided x ∈ Bδ(x0).

This can be abbreviated a bit (though the abbreviation doesn’t neces-

sarily make it any clearer). Saying “f(x) ∈ A provided x ∈ B” is just the

same as saying “f(B) ⊆ A”: both say exactly that if we hit any point of B

with f we end up in A. Thus we arrive at:

Definition 1.5 (Continuity at a point x0)

Let (X, d) and (Y, e) be metric spaces, f : X → Y be a function, and x0 ∈ X.

Then we say that f is continuous at x0 if

For all ε > 0, there exists δ > 0 such that f(Bδ(x0)) ⊆ Bε(f(x0)).

Again, in your head you should read this as “For all ε > 0, no matter

how small. . . ”.
Note that the smaller the value of ε you choose, the smaller I’ll have to

choose δ in order to ensure that f(Bδ(x0)) ⊆ B(fε(x0)). In other words,

δ = δ(ε) depends on ε.

Figure 1.21 shows this schematically. The left hand side of the figure

represents the space X (where distance is measured using d), and the right

hand side represents the space Y (where distance is measured using e).

f takes points in X and sends them to points in Y .

Suppose we take ε = 1/2. Then, provided f is continuous, we must be

able to find some δ > 0 with f(Bδ(x0)) ⊆ B1/2(f(x0)). The figure suggests
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that δ = 0.12 will do for this (of course these are just made up numbers).

If we make ε smaller, say ε = 1/10, then δ = 0.12 will no longer do, since

the figure shows that f(B0.12(x0)) doesn’t fit inside B1/10(f(x0)). However,

we can take δ = 0.05, since the smaller ball B0.05(x0) has f(B0.05(x0)) ⊆
B1/10(f(x0)). As ε gets smaller and smaller (i.e. the balls in Y get smaller

and smaller), we need the balls in X to get smaller and smaller (i.e. δ to get

smaller and smaller) in order that their images under f fit inside the balls

in Y .

X Y

f

x0

B0.05(x0)

B0.12(x0)

f(x0)

B1/10(f(x0))

B1/2(f(x0))

f(B0.12(x0))

f(B0.05(x0))

Figure 1.21: As ε get smaller, so does δ

A function f : X → Y is said to be continuous if it is continuous at every

point of X (for a function f : R → R, we only say it’s continuous if there

are no breaks anywhere in the graph). Once again the following definition

is provisional – it will be replaced later by the equivalent Definition 1.11.
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Definition 1.6 (Continuity – Provisional definition)

Let (X, d) and (Y, e) be metric spaces, and f : X → Y be a function. Then

we say that f is continuous if it is continuous at x0 for all x0 ∈ X.

Note that this means that f : X → Y isn’t continuous if there’s a single

value x0 at which it fails to be continuous. For example, the function of

Figure 1.3 is not continuous, since there’s one value of x at which it fails to

be continuous: the fact that it is continuous at all other values of x doesn’t
change this.

Since the definition of continuity says that something is true for all

ε > 0, the way to show that a given function f : X → Y is continuous

at some x0 ∈ X is:

1. Let ε > 0 be any positive number.

2. Show that there is some δ such that f(Bδ(x0)) is contained in Bε(f(x0)).

This usually involves giving a formula for δ in terms of ε.

It is often notationally simpler to do this without using the notation of

open balls. Saying f(Bδ(x0)) ⊆ Bε(f(x0)) is exactly the same as saying that

d(x0, x) < δ =⇒ e(f(x0), f(x)) < ε.

It’s worth stating exactly what it means for f to be discontinuous at x0

too. This is exactly saying that there’s an open ball about f(x0) which

doesn’t contain f(Bδ(x0)), no matter how small δ is. So the way to show

that a function f isn’t continuous at x0 is:

1. Cook up (using your ingenuity) a particular value of ε > 0.

2. Show that, for this particular value of ε, there is no value of δ > 0

for which we have f(Bδ(x0)) ⊆ Bε(f(x0)). (A typical way to show

this would be to find, for each δ > 0, an element x of Bδ(x0) with

f(x) 6∈ Bε(f(x0)).)

Examples 1.7 (Continuity)

a) Continuity of f : R → R given by f(x) = x2 at x = 0, and at general

values of x. †25

b) Discontinuity of a step function f : R → R. †26

c) Continuity of any function defined on a discrete space. †27

d) Continuity of integration C[0, 1] → R. †28
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Recall that if f : X → Y and g : Y → Z are functions, then the

composition g ◦ f : X → Z is defined by g ◦ f(x) = g(f(x)), i.e. first apply f

and then apply g to the result. The next result says that that if we compose

two continuous functions, we get a continuous result.

Lemma 1.5 (Continuity of Composition) Let (X, d1), (Y, d2), and (Z, d3)

be metric spaces, and f : X → Y and g : Y → Z be continuous functions.

Then g ◦ f : X → Z is continuous. †29

Another result which will be very useful to us tells us how continuity

and convergence interact:

Lemma 1.6 (Continuity and Convergence) Let (X, d) and (Y, e) be met-

ric spaces, f : X → Y be a function, and x∗ ∈ X. Then the following are

equivalent:

a) f is continuous at x∗.

b) For every sequence (xn) in X with xn → x∗, we have f(xn) → f(x∗).
†30

If this were a module concentrating on real numbers, the following result

would be very important. Since we’re dealing with general metric spaces it

is much less so, and we shall only prove one of the easier parts of it.

Lemma 1.7 (Operations on continuous functions R → R) Suppose that

f, g : R → R are continuous functions, and let c ∈ R. Then the functions

cf , f + g, f − g, and fg are also continuous. Moreover, if g has no zeros,

then f/g is continuous.
†31

1.5 Open and Closed Sets

For reasons which will soon become clear, the notion of open and closed sets

will be fundamental in this module. Those of you who’ve done MATH241

or MATH243 will have come across this idea before.
First of all, consider those sets about which we already use the terms

“open” and “closed”. An open interval (a, b) is one which doesn’t contain its

endpoints a and b, while a closed interval [a, b] is one which does contain its

endpoints. Similarly, an open ball Br(x) doesn’t contain any of its boundary,

whereas a closed ball Br(x) contains all of its boundary.
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In general, a subset A of X will be called open in X if it contains none of

its boundary, and will be called closed in X if it contains all of its boundary.

This is a good intuitive way to think about open and closed sets. In fact, it’s

possible to define the boundary of A in such a way that this is a definition of

open and closed. However, this approach isn’t very convenient in practice,

and we use alternative definitions.
To motivate the definition of open, suppose that a subset A of X doesn’t

contain any of its boundary points. That is, if we pick any point a of A, it

isn’t on the boundary of A. So there’s room in A to squeeze in a little open

ball centred on a. (The closer a is to the boundary of A, the smaller this

ball will need to be.)

Definition 1.7 (Open subset)

Let (X, d) be a metric space, and A be a subset of X. We say that A is an

open subset of X if

For every a ∈ A there is some ε > 0 with Bε(a) ⊆ A.

On the other hand, if A contains all of its boundary, then if we pick any

point x of X which isn’t in A, then it isn’t on the boundary of A. So there’s

room to squeeze a little ball around x which doesn’t meet A. This is exactly

saying that the complement X \ A of A is open in X.

Definition 1.8 (Closed subset)

Let (X, d) be a metric space, and A be a subset of X. We say that A is a

closed subset of X if X \ A is an open subset of X. That is,

For every x ∈ X \ A there is some ε > 0 with Bε(x) ⊆ X \ A.

Notice that the notions of open and closed are dual to each other. If

we know what all the open subsets of X are, then we also know what all

the closed subsets are (just the complements of the open subsets), and vice
versa.
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Important Remarks

a) Definitions 1.7 and 1.8 involve the metric space X which A is a sub-

set of (obviously in the case of Definition 1.8, and less obviously in the

case of Definition 1.7, since the set Bε(a) depends on what X is). Thus

it doesn’t make sense to talk about a set A being open or closed with-

out specifying the universal set X. See Examples 1.8 c).

b) A door is either open or closed, but a subset of X can be neither open

nor closed; or it can be both open and closed. (Several of Examples 1.8

show this.)

Examples 1.8 (Open and Closed subsets)

a) Let X = R2. †32

i) B1(0) is open in X.

ii) B1(0) is closed in X.

b) Let X = R. †33

i) (a, b), (a,∞), and (−∞, a) are all open in X.

ii) [a, b], [a,∞), and (−∞, a] are all closed in X.

iii) [a, b) and (a, b] are neither open nor closed in X.

iv) Z is closed in X.

v) Q is neither open nor closed in X.

c) Caution. Whether or not A is open/closed depends not just on A, but

also on the set X which A is a subset of. †34

i) Let X = R and A = [0, 1). Then A is neither open nor closed in X.

ii) Let X = [0,∞) (with the subspace metric) and A = [0, 1). Then A

is open in X.

When working in Rn, it’s often easy to understand intuitively whether a

subset is open or closed by thinking about its boundary. When we work in

other metric spaces, it’s necessary to apply the definitions more carefully.

d) Let (X, d) be any metric space. Then ∅ is both open and closed in X.

Similarly X is both open and closed in X. †35
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e) Let X = {0, 1}N.

Given a finite sequence s0s1 . . . sn, write Cs0s1...sn ⊆ X for the cylinder

set
Cs0s1...sn = {x ∈ X : x0 = s0, x1 = s1, . . . , xn = sn}

(i.e. the set of all sequences which start s0s1 . . . sn).

Any cylinder set is both open and closed in X. †36

f) Let X = C[0, 1] (with the L∞ metric), and let

A = {f ∈ C[0, 1] : f(1/2) > 0}.

Then A is open in X. †37

g) Let X = C[a, b], let c < d be any real numbers, and let

A = {f ∈ C[a, b] : c ≤ f(x) ≤ d for all x ∈ [a, b]}

(so A is the set of continuous functions [a, b] → [c, d].)

Then A is closed in X. †38

Examples 1.8 a) is a special case of the following more general result:

Lemma 1.8 (Open/Closed balls are open/closed) Let (X, d) be a met-

ric space, x0 ∈ X, and r > 0. Then the open ball Br(x0) is open in X and

the closed ball Br(x0) is closed in X.
†39

The following result describes some of the basic properties of open sets:

Lemma 1.9 (Properties of open subsets) Let (X, d) be a metric space.

Then

a) Both ∅ and X are open in X.

b) Any union of open subsets of X is open in X.

c) Any finite intersection of open subsets of X is open in X.

It’s important to be clear about the distinction between “any union”

in b), and “any finite intersection” in c). b) says that if we have any col-

lection Aj of open subsets of X (where the j runs over any index set), then

their union (i.e. the set of all points of X which lie in some Aj) is also open

in X. c) says that if A1, . . . , An are open subsets of X, then their intersec-

tion (i.e. the set of all points of X which lie in every Aj) is also open in X.
†40
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Example 1.9

To illustrate the distinction, consider the infinite family of open subsets of R

given by

Aj =

(

−1

j
,
1

j

)

(j = 1, 2, 3, . . .).

Thus A1 = (−1, 1), A2 = (−1/2, 1/2), A3 = (−1/3, 1/3), A4 = (−1/4, 1/4),

and so on. The union of all these sets is (−1, 1), which is open in R. However

their intersection is {0}, which is not open in R: this doesn’t contradict

Lemma 1.9 since we’re intersecting an infinite number of sets.

The analogue for closed subsets of Lemma 1.9 is:

Lemma 1.10 (Properties of closed subsets) Let (X, d) be a metric space.

Then

a) Both ∅ and X are closed in X.

b) Any intersection of closed subsets of X is closed in X.

c) Any finite union of closed subsets of X is closed in X.
†41

Once again, you need to appreciate the difference between “any intersec-

tion” and “any finite union”. An example illustrating this is in the exercises.

The final result we consider in this section will be extremely useful in

the remainder of the module. To understand it, suppose that A is a subset

of X, and (an) is a sequence in X all of whose points lie in A. Suppose that

an → ` as n → ∞. The fact that an → ` means that ` is as close as we like

to points of A. Thus if ` isn’t actually in A, it must lie on its boundary.

If A happens to be closed, then it contains its boundary, and hence ` must

lie in A.
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Lemma 1.11 Let (X, d) be a metric space, and A be a subset of X. Then

the following are equivalent:

a) A is closed in X.

b) If (an) is any convergent sequence in X with an ∈ A for all n then its

limit lies in A. †42

Example 1.10

As a simple example showing why the limit need not lie in A if A isn’t closed,

let X = R and A = (0, 2). Consider the sequence an = 1/n. Then certainly

(an) is a convergent sequence in R, and an ∈ A for all n: however its limit

is 0, which doesn’t lie in A.

1.6 Reformulation of Convergence and Continuity

In this section we give alternative (equivalent) definitions of the convergence

of a sequence, and the continuity of a function: these reformulations are

phrased entirely in terms of open sets, without explicit mention of the metric.

We will shortly see why this is a worthwhile thing to do.

Convergence is much the easier of the two:

Theorem 1.12 Let (X, d) be a metric space, (xn) be a sequence in X, and

` ∈ X. Then the following are equivalent:

a) (xn) converges to `.

b) For every open subset U of X containing `, there exists N such that for

all n ≥ N we have xn ∈ U . †43

Thus we can use b) as a definition of convergence, replacing our original

Definition 1.4. The new definition means exactly the same as (is equivalent

to) the old one. The advantage in using it will soon become clear.

Definition 1.9 (Convergence)

Let (X, d) be a metric space, (xn) be a sequence in X, and ` ∈ X. We say

that (xn) tends to ` as n tends to ∞ or (xn) converges to `, abbreviated

xn → ` as n → ∞ if

For all open subsets U of X containing `,

there exists N such that xn ∈ U for all n ≥ N .
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Before reformulating the definition of continuity, we need to introduce

some notation. You’re familiar with the notation f−1 for the inverse of

a function f : X → Y , which need not necessarily exist (for example, if

f : R → R is given by f(x) = x2). We now extend the notation to a function

f−1 taking subsets of Y to subsets of X: this function always exists (makes

sense).

Definition 1.10 (The set function f−1)

Let X and Y be sets, and f : X → Y be a function. We write f−1 for the

function which maps each subset U of Y to the subset

f−1(U) = {x ∈ X : f(x) ∈ U}

of X.

That is, f−1(U) consists of all the points which f sends into U .

Example 1.11 (The set function f−1)

Let f : R → R be given by f(x) = x2. Then

a) f−1({4}) = {−2, 2}.
For x = −2 and x = 2 are exactly the points with x2 = 4.

b) f−1([1, 9]) = [−3,−1] ∪ [1, 3].

For the points x with 1 ≤ x2 ≤ 9 are exactly those between 1 and 3, and

those between −3 and −1.

c) f−1([−2, 1] = [−1, 1].

For the points x with −2 ≤ x2 ≤ 1 are the same as those with 0 ≤ x2 ≤ 1,

i.e. those between −1 and 1.

d) f−1([−2,−1] = ∅.
For there are no points x with −2 ≤ x2 ≤ −1.

Now we can reformulate the definition of continuity:

Theorem 1.13 Let (X, d) and (Y, e) be metric spaces, and f : X → Y be

a function. Then the following are equivalent:

a) f is continuous.

b) For every open subset U of Y , f−1(U) is an open subset of X. †44
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Thus we can use b) as a definition of continuity, replacing our original

Definition 1.6. The two definitions are equivalent to each other.

Definition 1.11 (Continuity)

Let (X, d) and (Y, e) be metric spaces, and f : X → Y be a function. Then

we say that f is continuous if

For every open subset U of Y , f−1(U) is an open subset of X.

Example 1.12 (A discontinuous function)

To illustrate the new definition, let’s consider a function f : R → R which

is patently discontinuous: the “step” function

f(x) =

{

0 if x < 0,

1 if x ≥ 0.

To show that this fails to satisfy Definition 1.11, we need to find an open

subset U of R for which f−1(U) is not open in R. To do this, just take

U = (1/2, 3/2), which is open in R. Now

f−1(U) = {x ∈ R : 1/2 < f(x) < 3/2)} = {x ∈ R : f(x) = 1} = [0,∞)

which is not open in R.

1.7 Topology and topological concepts

The reformulations of the notions of convergence and continuity given by

Theorem 1.12 b) and Theorem 1.13 b) are entirely in terms of open sets: they

don’t explicitly make use of the particular metrics on the spaces concerned.

The fact that it is possible to write the definitions in this way means that

if two metrics d and e on X define the same open sets in X, then

they are indistinguishable for the purposes of convergence and

continuity.

Definition 1.12 (Equivalent metrics)

Let X be a set, and d and e be metrics on X. We say that d and e are

equivalent if the open subsets of X determined using d are exactly the same

as the open subsets of X determined using e.
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The following result gives a method of deciding whether or not two met-

rics are equivalent. When we need to distinguish between two metrics d

and e on X, we write Bd
r (x) and Be

r(x) for the open r-balls about x calcu-

lated using d and e respectively.

Theorem 1.14 (Test for equivalence of metrics) Let X be a set, and d

and e be metrics on X. Then the following are equivalent:

a) d and e are equivalent.

b) For every x ∈ X and every ε > 0 there’s some δ > 0 such that

Bd
δ (x) ⊆ Be

ε (x) and Be
δ(x) ⊆ Bd

ε (x).

That is: there’s no open e-ball so small you can’t fit a little d-ball inside

it, and no open d-ball so small you can’t fit a little e-ball inside it. †45

Examples 1.13 (Equivalent metrics)

a) The three metrics on R2 given in Examples 1.1 a), b), and c) are equiv-

alent to each other. †46

b) Let (X, d) be any metric space, and let e be the bounded metric on X

given by

e(x, y) = min(d(x, y), 1)

(see Examples 1.1 f)). Then d and e are equivalent. (So we can replace

any metric with an equivalent bounded metric.) †47

c) The L∞ and L1 metrics on C[0, 1] are not equivalent. †48

Wherever possible, we’ll define concepts exclusively in terms of open

sets. This has the advantage that we know that the concepts don’t change

their meaning when we replace one metric with another equivalent one (for

example, with a bounded metric).

We can develop this idea further by introducing the notion of topology.

The topology of a metric space is precisely the collection of its open sets:

thus equivalent metrics are ones which define the same topology. We can

generalise the notion of metric spaces to topological spaces where we simply

specify the open sets, without giving a metric from which they’re derived,

or even assuming that such a metric exists. Here’s the definition:
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Definition 1.13 (Topological Space)

A topological space is a set X together with a collection of subsets of X

(which we call “open sets”), satisfying the following properties:

a) ∅ and X are open.

b) Any union of open sets is open.

c) Any finite intersection of open subsets is open.

We also say that a collection of subsets of X satisfying these properties

defines a topology on X.

Notice that Lemma 1.9 says precisely that the open sets in a metric

space (X, d) define a topology on X. However, there are many (and impor-

tant) examples of topological spaces where the open sets aren’t given by any

metric. That is, topological spaces are genuinely more general than metric
spaces.

Example 1.14 (Indiscrete topology)

This example is not an important one, but is a straightforward one which

shows that there are topological spaces where the open sets aren’t given by

any metric.

Let X be any set with at least two elements, and define a topology on X

by saying that the only open sets in X are ∅ and X. This is a topology,

since a) is clearly satisfied, and b) and c) follow from the fact that if we take

unions and intersections of ∅ and X, the only results we can get are again ∅
and X.

There is no metric on X which generates this topology. †49

Any concept (such as convergence or continuity) which can be defined

entirely in terms of open sets makes sense for any topological space, and

is called a topological concept. (We have to be a bit careful about what

we mean by “defined entirely in terms of open sets”. For example, we

can make use of closed sets in our definitions (since closed sets are just

the complements of open sets), and of any topological notion we’ve already

defined (e.g. continuity and convergence). What we can’t use is the metric

d(x, y) itself, or concepts like Br(x) which can change their meaning when

we replace our metric with an equivalent one.)

A topological space is a set together with a collection of subsets des-

ignated as open. Suppose X and Y are both topological spaces, and that
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there’s a bijection (invertible map) f : X → Y which carries the open sets

of X precisely onto the open sets of Y . Then X and Y are essentially the

same topological space: we’ve just renamed each point x of X as f(x) in Y .

In this case we say that X and Y are homeomorphic, and the map f is

called a homeomorphism. (So homeomorphisms preserve all the topological

structure: they play the same role as isomorphisms do in group theory, for

example.)

There’s another way to say that f carries the open subsets of X precisely

onto the open subsets of Y . It can be unpacked into the following two
statements:

a) For each open subset U of X, f(U) is an open subset of Y .

b) Each open subset V of Y is f of an open subset of X: that is, f−1(V ) is

an open subset of X.

But (referring to Theorem 1.13) these say precisely that: a) f−1 : Y → X

is continuous; and b) f : X → Y is continuous.

Definition 1.14 (Homeomorphism)

Let (X, d) and (Y, e) be metric spaces. A bijection f : X → Y is a home-

omorphism if both f and f−1 are continuous. If such a homeomorphism

exists, we say that X and Y are homeomorphic.

Examples 1.15 (Homeomorphisms)

a) [0, 1] and [−1, 1] are homeomorphic. †50

b) (0, 1) and R are homeomorphic. †51

c) {f ∈ C[0, 1] : 0 ≤ f(x) ≤ 1} and {f ∈ C[0, 1] : 0 ≤ f(x) ≤ 2} are

homeomorphic. †52

Homeomorphisms are our promised generalisation of isometries. Note

that two homeomorphic metric spaces need not be isometric (e.g. [0, 1] and

[−1, 1]).

Let’s finish this chapter with an example of a non-topological concept

(this final part of the chapter will probably be omitted).

Definition 1.15 (Totally bounded)

We say that a metric space (X, d) is totally bounded if for all ε > 0, there are

a finite number of points x1, x2, . . . , xn of X such that every point x of X

has d(x, xi) < ε for some i.
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That is, for any tiny ε you propose, I can find finitely many points of X

which come within distance ε of every point of X. Of course the smaller you

choose ε to be, the more points of X I’m likely to need.

Examples 1.16 (Totally bounded)

a) (0, 1) is totally bounded. †53

b) R is not totally bounded. †54

c) A discrete space is totally bounded if and only if it is finite. †55

(Example c) shows that total boundedness is not the same as bounded-

ness – any discrete space is bounded.)

To see that being totally bounded is not a topological notion, note that

(0, 1) and R are homeomorphic (topologically identical) to each other (Ex-

amples 1.15 b)), but that (0, 1) is totally bounded and R is not.
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Aside 1 (Function notation)

The function notation

f : X → Y

will be used extensively in this module. If you’re not quite sure about it,

now’s the time to get to grips with it.

When we write f : X → Y , we mean that f is a function from the

set X to the set Y . That is, for every element x of X, there is an associated

element of Y which is denoted f(x). It may be helpful to regard f as some

sort of machine which is given as input an element x of X, and produces as

output an element f(x) of Y .

We can describe f(x) in any way we like, but the function must give

some output for every value of x ∈ X, and this output must be a single

element of Y .
The set X is called the domain of the function f , and the set Y is called

its range.

Examples 1.17 (Function Notation)

a) f : R → R denotes a “normal” real-valued function, which takes a real

number x as input and produces a real number y = f(x) as output. We

can describe such a function by a formula such as

f(x) = x3,

or by some other means. For example, we could define a function g : R → R

by

g(x) is the smallest integer greater than or equal to x.

(In this example, we’d have g(1.3) = 2, g(2) = 2, g(2.71) = 3, g(π) = 4.

Note that for every possible input x ∈ R, there is a single output g(x)

which we have specified exactly.)

b) h : {0, 1, 2} → Z denotes a function which associates an integer h(x) to

each of x = 0, x = 1, and x = 2. We could describe the function by a

formula such as

h(x) = x3 − 4x + 3,

or by listing the values which it takes explicitly:

h(0) = 3, h(1) = 0, h(2) = 3.
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(This is the same function h as the one given by the formula, but we

could have defined a function by choosing any three integers for h(0),

h(1), and h(2).)

c) Note that there is no requirement for f : X → Y to take every possible

value in Y . For example, the function g : R → R above only takes integer

values: if y is a non-integer, then there is no x ∈ R with g(x) = y.

Similarly the function h : {0, 1, 2} → Z only takes the values 0 and 3.

If it happens that f : X → Y does take every possible value in Y , then

we say that f is surjective (see Aside 3 below).

d) Nor is there any requirement that different inputs give different outputs.

For example, the function g : R → R above has g(1.3) = g(2) = 2.

Similarly, the function h : {0, 1, 2} → Z has h(0) = h(2) = 3.

If it happens that f : X → Y does always give different outputs for

different inputs, then we say that f is injective (see Aside 3 below).

Two functions f and g are equal if they have the same domain X, the same

range Y , and f(x) = g(x) for every possible input x ∈ X. Note in particular

that this means that the function g : R → R defined above is not equal to

the function k : R → Z given by

k(x) is the smallest integer greater than or equal to x.

Although g(x) = k(x) for every value x ∈ R, the functions have different

ranges and so are not equal.
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Aside 2 (Cartesian Products)

If X and Y are sets, then X×Y denotes the set consisting of all pairs (x, y),

where x is an element of X and y is an element of Y . It is called the

Cartesian product (or just the product) of X and Y .

Examples 1.18 (Cartesian Products)

a) R×R is the set consisting of all pairs (x, y), where both x and y are real

numbers. Thus it is the set which we are used to denoting R2.

Notice that when we take the product of a set with itself like this, the

order of the elements in the pair matters. That is, (1, 1.5) is not the same

element of R × R as (1.5, 1).

b) {1, 2} × {2, 3, 4} has 6 elements:

(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), and (2, 4).

In general, if X and Y are finite sets with m and n elements respectively,

then X × Y has mn elements, since there is a choice of m first entries in

the pair, and n second entries.

c) We can extend the notation to more than two sets: for example, X×Y ×Z

denotes the set of all triples (x, y, z), where x ∈ X, y ∈ Y , and z ∈ Z.

Thus R × R × R is the set which we are accustomed to denoting R3: it

consists of all triples (x, y, z) where x, y, z ∈ R.
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Aside 3 (Bijections (Invertible functions))

Let f : X → Y be a function. In general, f need not take every possible

value in Y . If it does, then we say that it is surjective or a surjection.

Examples 1.19 (Surjections)

a) The function f : R → R defined by f(x) = x2 is not surjective. For

−1 ∈ R, and there is no x ∈ R with x2 = −1.

b) The function g : R → [0,∞) defined by g(x) = x2 is surjective. For given

any y ∈ [0,∞), we have g(
√

y) = y. (Note that f and g are not the same

function: see Aside 1 above.)

c) The function h : Z → Z defined by h(n) = 2n is not surjective. For

1 ∈ Z, and there is no n ∈ Z with 2n = 1.

d) The function k : Z → Z defined by k(n) = n + 3 is surjective. For given

any m ∈ Z we have k(m − 3) = m.

In general, f need not give different outputs for different inputs. If it

does (that is, if f(x1) 6= f(x2) whenever x1 6= x2), then we say that it is

injective or an injection.

Examples 1.20 (Injections)

a) The function f : R → R defined by f(x) = x2 is not injective. For

f(−1) = f(1) = 1.

b) The function ` : [0,∞) → [0,∞) defined by `(x) = x2 is injective. For if

0 ≤ x1 < x2, then `(x1) < `(x2).

c) The function h : Z → Z defined by h(n) = 2n is injective. For if n1 6= n2

then 2n1 6= 2n2.

d) The function k : Z → Z defined by k(n) = n + 3 is injective. For if

n1 6= n2 then n1 + 3 6= n2 + 3.

If f : X → Y is both surjective and injective, then we say that it is

bijective or a bijection. Thus of the functions considered in the examples

above, only k and ` are bijections (they are both surjective and injective).

Putting together the definitions of surjective and injective, a function

f : X → Y is bijective if
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every y ∈ Y is equal to f(x) for exactly one x ∈ X.

(The fact that it is surjective means that y = f(x) for at least one x ∈ X,

and the fact that it is injective means that y = f(x) for at most one x ∈ X.)

Bijections are precisely those function which have inverses: that is,

f : X → Y is a bijection if and only if there is a function f−1 : Y → X

with the property that f−1(f(x)) = x for all x ∈ X, and f(f−1(y)) = y for

all y ∈ Y (i.e. f−1 is f “in reverse”). In fact, if f : X → Y is a bijection,

then we can define f−1 : Y → X by

f−1(y) = the unique x ∈ X with f(x) = y.
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