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Abstract

The aim of this paper is to evaluate the feasibility of a new method
of estimation introduced by Andrew D Smith and Stuart Jarvis, which
calculates the estimators by delimiting a feasible region of autocorrela-
tions based on ARMA(1,1) model and therefore makes predictions. The
method is tested against various reference models and its effectiveness of
forecasting is compared to maximum likelihood estimations.

1 Introduction

Time series has become a very popular tool. It is of paramount importance
in various fields such as business, economics, finance, engineering and science.
This is since it allows us to gain an understanding of the behaviour of past data,
which in turn helps in forecasting future data.

The accuracy of a forecast given by time series analysis is highly dependent
on fitting the appropriate model for the data. A lot of research has gone into
developing models that give the best forecasting accuracy.

A popular stochastic time series model is the Autoregressive Integrate Moving
Average(ARIMA) model[2]. In order to implement this model we must assume
that the time series we are considering is linear, and follows a particular known
statistical distribution. From this the Autoregressive(AR) model, Moving Av-
erage(MA) model and Autoregressive Moving Average(ARMA) model can be
derived. ARIMA is a popular model due to its flexibility to represent several
varieties of time series quite easily however the fact that it assumes linearity
makes it less applicable in real life situations.

An assumption that is at the foundation of time series analysis is stationary[3].
(A time series is said to be stationary if the statistical properties of the series
such as mean, variance, autocorrelation are all constant over time. In time series
analysis it is a regular occurrence to transform a non-stationary process into a
stationary process so that data can be analysed easier.)
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Predicting the future is a difficult task due to the number of variables that
cannot be foreseen. Therefore it is no surprise that the established time series
analysis approach runs into problems[1]. Particularly, it is found frequently
that when we forecast the upper and lower projections, with respect to the 1
percentile and 99 percentile, of a time series, it is often found that the actual
outcome lies below the 1 percentile or above the 99 percentile. Theoretically,
this should only happen 2 percent of the time but this is not the case.

(Fit and predict ARMA)

Therefore, alternative methods for parameter estimation and forecasting of
time series have been proposed to attempt to address this issue. One of these
alternative methods comes from Andrew D Smith and Stuart Jarvis.

This paper takes the method proposed by Andrew D Smith and Stuart Jarvis
and evaluates the effectiveness of the method in comparison to the more estab-
lished approaches.

2 Model

All the ’true’ data in this project is generated by simulation. Excel and MAT-
LAB are used to construct various reference models and generate the corre-
sponding data. The reason that different reference models are chosen is the
assumption of unknown initial model.

2.1 ARMA model

In time series analysis, the most famous model is called autoregressive moving
average model, denoted as ARMA, which is given by

Xt = µ+

p∑
i=1

φi(Xt−i − µ) + εt +

q∑
j=1

θjεt−j , (1)

which p and q are the orders of autoregressive and moving average respectively.

3 Methodology

The method used in this project is trying to use ARMA(1,1) model to fit the
data from some unknown reference models. The aim is to find and explain how
to estimate all four parameters in ARMA(1,1) model.
(DESCRIBE THE METHOD, AC, FITTING AND PREDICTING)
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3.1 Theoretical Calculation

Proposition 3.1. The covariance structure of a stationary ARMA(1,1) process
with parameters (µ, σ, θ1, φ1) is given by

Cov(Ys, Yt) =


(θ1+φ1)(1+φ1θ1)σ2φ

|s−t|−1
1

1−φ2
1

if s 6= t
(1+2θ1φ1+φ2

1)σ2

1−φ2
1

if s = t.
(2)

Proof. Considering three cases: s < t, s = t and s > t, we can derive the
covariance in the first case as

Cov(Ys, Yt) =Cov

εs + (1 +
θ1

φ1
)

s−1∑
j=−∞

φs−j1 εj , εt + (1 +
θ1

φ1
)

t−1∑
j=−∞

φt−j1 εj


=Cov

εs + (1 +
θ1

φ1
)

s−1∑
j=−∞

φs−jεj , (1 +
θ1

φ1
)

s−1∑
j=−∞

φt−jεj


=(1 +

θ1

φ1
)φt−s1 σ2 + (1 +

θ1

φ1
)2

s−1∑
j=−∞

φs+t−2j
1 σ2

=(1 +
θ1

φ1
)

[
1 + (1 +

θ1

φ1
)

φ2
1

1− φ2
1

]
σ2φt−s1

Taking next the case, s = t, we have the simpler equation:

V ar(Yt) =V ar

εt + (1 +
θ1

φ1
)

s−1∑
j=−∞

φt−jεj

 (3)

=σ2 + (1 +
θ1

φ1
)2

s−1∑
j=−∞

φ2t−2jσ2 (4)

=

[
1 + (1 +

θ1

φ1
)2 φ2

1

1− φ2
1

]
σ2 (5)

The final case, s > t is the same as the first case s < t, with s and t
interchanged.

This implies the following correlation structure:

Corr(Ys, Yt) =

{
1 s = t
(1+φ1θ1)(1+φ1θ1)

1+2φ1θ1+θ21
φ
|t−s|
1 s 6= t.

(6)

Theorem 3.1. For an ARMA(1,1) model, the autocorrelation with lag 1 and
lag 2, denoted by AC(1) and AC(2), satisfy the following formula

(φ+θ)(1+φθ)
1+2φθ+θ2 = AC(1)

φ(φ+θ)(1+φθ)
1+2φθ+θ2 = AC(2)

(7)
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, where |φ| < 1 and θ ∈ R. Then these two autocorrelations will satisfy

2(AC(1))2 − |AC(1)| ≤ AC(2) < |AC(1)|.

Figure 1: Theoretical area

Proof. Let
x = AC(1), y = AC(2).

Without loss of generality, we assume that x > 0 first.

y = φx < |x|,

and

y ≥ 2x2 − |x|
⇐⇒ y ≥ 2x2 − x

⇐⇒ φ ≥ 2
(φ+ θ)(1 + φθ)

1 + 2φθ + θ2
− 1

⇐⇒ (φ− 1)(θ − 1)2

1 + 2φθ + θ2
≤ 0.
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As

φ− 1 < 0

(θ − 1)2 ≥ 0

1 + 2φθ + θ2 > (φ+ θ)2 ≥ 0,

which implies that
2x2 − x ≤ y < x,

and vice versa, when x < 0,

2x2 + x ≤ y < −x.

Therefore it is proved that

2(AC(1))2 − |AC(1)| ≤ AC(2) < |AC(1)|.

3.2 Estimation

After generating the data, the first half of them are considered as observations
and they are used for parameter estimation. First it is necessary to calculate
the auto correlation function with lag 1 and lag 2. If this point lies in the area
between the upper and lower bounds, it is believed that the data follow ARMA
model. If the points lie out of the areas, there are two situations:

1) If the original point falls out of the upper bound, the estimated two roots
of φ will be +1 and -1 when dragging down the point to the boundary, which
are strongly positive/negative related to Xt−1 .

2) When we dragged down or up the original out of bound point to the
bound then we multiply or subtract an extreme small number to make it inside
the ARMA(1,1) area. It seems that the problem of no real root of φ will be
avoided at all. Whether there is a better solution than this method needs fur-
ther considered.

The estimations for φ and θ are calculated by
(φ̂+θ̂)(1+φ̂θ̂)

1+2φ̂θ̂+θ̂2
= x

φ̂(φ̂+θ̂)(1+φ̂θ̂)

1+2φ̂θ̂+θ̂2
= y

If this is not the case then the closest vertical point to the boundary will be
used for estimation.

An alternative method of how to proceed if the point falls outside of the
boundaries is try to find the nearest point from the area.

After making sure that the point is in the area, assume this point is (x, y),
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Example 3.1. Here are two possible outcomes that the point is outside the area.

Situation 1.

Figure 2: Point in the theoretical area

Under this circumstance, the point calculated by the autocorrelation function
falls into the theoretical area. Then we just take the value and further the pro-
cess.

Situation 2.

Figure 3: Point out of the theoretical area

Under this circumstance, the calculated point (green) falls out of the area.
Then we take the projection of the point and drag it onto the edge of the theo-
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retical area. After that we use the value of the red point and further the process.

Some problems during estimating new parameters needs to be further solved.
Two major limitations of the method are listed as follows.

1) If the original point falls out of the upper bound, the estimated two roots
of φ will be +1 and -1 when dragging down the point to the boundary, which
are strongly positive/negative related to Xt−1 .

2) When we dragged down or up the original out of bound point to the
bound then we multiply or subtract an extreme small number to make it inside
the ARMA(1,1) area. It seems that the problem of no real root of φ will be
avoided at all. Whether there is a better solution than this method needs fur-
ther considered.

The following two propositions are for µ̂ and σ̂.

Proposition 3.2. µ̂Σ = 1′Σ−1y/1′Σ−11 is the unbiased estimator of µ with
lowest variance. Its variance is σ2/1′Σ−11. Where 1 represents the column
vector and y represents the observation data.

Proposition 3.3. The estimator

σ̂2
Σ =

1

T − 1
(y − µ̂Σ1)′Σ−1(y − µ̂Σ1) (8)

is an unbiased estimator of σ2 ,where 1 represents the column vector and y
represents the observation data.

The Σ in proposition 3.2 and proposition 3.3 represents the covariance matrix
of the observation data calculated by proposition 3.1.

3.3 Forecasting - Monte Carlo Method

With parameter estimations φ̂, θ̂, µ̂ and σ̂, forecast Xt can be simulated accord-
ing to the ARMA(1,1) model and further ARIMA(1,1,1) Yt.

Next step is to plot the forecasting graph. Use time series as x axis and fore-
cast Yt as y axis. Running the process of forecasting a large number of times,
corresponding large number of forecast trends will be plotted.

For each vertical moment, define the confidence interval between 5% and
95%, which is the range of all forecasting path. Spreading the whole time series,
the upper 95% and lower 5% percentile lines can be generated.

In the cases of Xt below, we are going to evaluate how accurate the fore-
casting trends are. The red line represents the true trend while the upper and
lower black lines represent the 5% and 95% range.
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3.3.1 ARMA(1,1)

Figure 4: Forcast of ARMA(1,1)

It can be seen the forecasting is 98% fit under 90% confidence level.

3.3.2 ARMA(2,2)

Figure 5: Forcast of ARMA(2,2)
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It can be seen the forecasting is 90% fit under 90% confidence level.

3.3.3 Compound Poison

Figure 6: Forecast of Compound Poisson Data

It can be seen the forecasting is 63% fit under 90% confidence level. In this
particular case, the real data have an upward trend while most the forecasting
data have a different stable trends. After certain moment, the real trend deviates
out of the confidence interval.

4 Result and Analysis

Here are some results by using the above new parameter estimation method.

4.1 Sensitivity analysis for different reference models

4.1.1 Fitting same model as reference model

We assumed that the data generated by MATLAB follows ARIMA(1,1,1) model

Xt = µ+ φ(Xt−1 − µ) + εt + θεt−1

and use ARMA(1,1) model to fit the difference of the original data. After
applying the estimation method, with each trial we got one set of estimations
for the parameters.
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Table 1: φ = 0.4, θ = 0.2, µ = 0, σ = 0.05

φ̂ 0.1143 0.2732 0.2227 0.0828 0.3022 0.3877 0.5044 0.3408

θ̂ 0.4497 0.2942 0.4533 0.5129 0.2701 0.4087 -0.0386 0.2313
µ̂ -0.0011 0.0024 -0.003 -0.0089 0.0011 -0.0032 -0.0119 -0.0064
σ̂ 0.047 0.0489 0.0479 0.0476 0.05 0.0529 0.0578 0.0456

Table 2: φ = 0.15, θ = −0.45, µ = 0.6, σ = 0.15

φ̂ -0.1289 -0.4834 0.5201 0.0097 -0.0056 0.7129 -0.3449 0.2333

θ̂ -0.3147 0.3182 -1 -0.9306 -0.3586 -1 -0.0622 -0.4914
µ̂ 0.6058 0.5836 0.6127 0.5920 0.6087 0.6109 0.5913 0.6107
σ̂ 0.1441 0.1336 0.156 0.1536 0.1502 0.1416 0.1424 0.1549

As shown in the above tables, which include two reference models with dif-
ferent parameters, the estimations for φ and θ are sometimes really inaccurate.
Although the estimations for µ and σ are based on φ̂ and θ̂, they are still very
close to the true values.

4.1.2 Fitting model different from reference model

The results demonstrated here are after using ARMA(1,1) to fit the data from a
different reference model. In such cases, it is meaningless to check the values of
parameter estimations. Therefore, confidence interval of forecast will be applied
to test the estimation.

1. Data from ARIMA(2,1,2) model
If the observed data follow ARIMA(2,1,2) model

Xt = µ+ φ1(Xt−1 − µ) + φ2(Xt−2 − µ) + εt + θ1εt−1 + θ2εt−2

which has higher orders of autoregressive and moving average than ARMA(1,1),
difference will be taken to make it stationary before fitting. As mentioned
in the methodology section, forecasts can be done using simulation after
parameter estimation. Figures 7, 8 and 9 are using different sample paths
from the same ARIMA(1,2,1) model. The red line in each picture indicates
the 5 to 95 percentile of the prediction.
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Figure 7: φ1 = 0.4, φ2 = 0.2, θ1 = 0.2, θ2 = 0.1, µ = 0, σ = 0.05

Figure 8: φ1 = 0.4, φ2 = 0.2, θ1 = 0.2, θ2 = 0.1, µ = 0, σ = 0.05
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Figure 9: φ1 = 0.4, φ2 = 0.2, θ1 = 0.2, θ2 = 0.1, µ = 0, σ = 0.05

As shown in the graphs, even the data are from the same model, the
forecasts can sometimes be quite good, like in the first two cases, or really
bad, like in the last figure. Here the sensitivity is chosen as the benchmark
to check how good the methodology is. The true parameter values are
changed one by one each time to generate data from different models. The
mean percentage of the true value lying between the 5 to 95 percentiles
is collected with respect to every individual model. Box plot is usually
applied to check the statistical distribution and will be also used here.

Table 3: Sensitivity with respect to φ1

φ1 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5
φ2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
µ 0 0 0 0 0 0 0 0
σ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ratio 78.19% 80.63% 83.81% 83.05% 78.09% 76.91% 76.88% 74.35%
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Figure 10: Sensitivity with respect to φ1

When other parameters are fixed and φ1 changes from −0.3 to 0.5, the
average of ratios is around 80%. Furthermore, This expectation will take
the minimum values when the absolute value of φ1 is near zero.

Table 4: Sensitivity with respect to φ2

φ1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
φ2 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
θ1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
µ 0 0 0 0 0 0 0 0
σ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ratio 70.76% 69.69% 75.65% 79.65% 80.81% 78% 79.01% 75.68%
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Figure 11: Sensitivity with respect to φ2

Like the situation of φ1, the sensitivity with respect to φ2 is similar.

Table 5: Sensitivity with respect to θ1

φ1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
φ2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ1 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
θ2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
µ 0 0 0 0 0 0 0 0
σ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ratio 76.63% 83.24% 84.44% 82.97% 76.15% 79.53% 77.72% 75.55%

Figure 12: Sensitivity with respect to θ1
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Table 6: Sensitivity with respect to θ2

φ1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
φ2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ2 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
µ 0 0 0 0 0 0 0 0
σ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ratio 71.41% 76.34% 74.33% 78.4% 75.08% 80.64% 78.54% 80.74%

Figure 13: Sensitivity with respect to θ2

For the moving average parameters θ1 and θ2, the sensitivities behave
not so close. Both the table and box plot show that the method is more
sensitive with respect to θ1 than θ2.

Table 7: Sensitivity with respect to µ
φ1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
φ2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
µ -1 -0.5 -0.1 0 0.1 0.2 0.5 1
σ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ratio 87.24% 84.52% 75.96% 77.8% 77.31% 81.1% 82.21% 92.65%
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Figure 14: Sensitivity with respect to µ

And here the result is clear that when µ has large absolute values, the
forecast is very accurate. The reason is the white noise term is too small
compared to the sufficient trend of the time series itself.

Table 8: Sensitivity with respect to σ
φ1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
φ2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
µ 0 0 0 0 0 0 0 0
σ 0.02 0.03 0.04 0.05 0.08 0.1 0.2 0.5
ratio 77.10% 78.57% 78.64% 78.61% 81.3% 80.89% 77.8% 74.98%
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Figure 15: Sensitivity with respect to σ

The last conclusion in this section is this method has low sensitivity with
respect to σ, which denotes the standard deviation of the noise.

2. Data from ARIMA(2,1,2) model with fractional noise
Here it is tested when the white noise term in the ARIMA model replaced
by fractional noises, which is from fractional Brownian motion

BH(t) =BH(0) +
1

Γ(H + 1/2)(∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dB(s) +

∫ t

0

(t− s)H−1/2dB(s)

)
,

where H is Hurst index and takes values from (0, 1). The increment pro-
cess, X(t) = BH(t+ 1)BH(t), is known as fractional Gaussian noise.

The reason why fractional noises are applied is because this kind of noise
itself has long range dependence and it is reasonable to check whether this
method works well in this case.
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Figure 16: ARIMA with fractional noise when H=0.25

Figure 17: ARIMA with fractional noise when H=0.75

And also the sensitivity about Hurst index is checked as below.
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Table 9: Sensitivity with respect to Hurst index
φ1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
φ2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
θ2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
µ 0 0 0 0 0 0 0 0
σ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
H 0.2 0.3 0.4 0.5 0.55 0.6 0.7 0.8
ratio 89.59% 89.58% 87.44% 83.04% 79.44% 79.13% 72.01% 72.35%

Figure 18: Sensitivity with respect to Hurst index

When the Hurst index of fractional noise is very low, for instance less than
0.3, this method can do good prediction. As H increases, the forecast
becomes more inaccurate.

3. Data from compound Poisson model with diffusion
Compound Poisson model with diffusion is one model in risk theory, which
has the following form

Xt = X0 + ct−
N(t)∑
i=0

Yi + σWt,

where X0 denotes the initial surplus, c is the constant premium rate, N(t)
is a Poisson counting process, Yi are the claim sizes and Wt is standard
Brownian motion.

The following two graphs are examples of forecasts for compound Poisson
model without and with diffusion.
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Figure 19: Compound Poisson model

Figure 20: Compound Poisson model with diffusion

Furthermore, it is found that if the claim follows some heavy tail distri-
butions, the forecast can be very inaccurate compared with the light tail
case.
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4.2 Comparison with maximum likelihood estimation

Both maximum likelihood estimation and the new method are used on some
identical ARIMA(2,1,2) data sets. The figures on the left is using this new
method and the right from MLE.

Figure 21: Comparison of two methods, case 1

Figure 22: Comparison of two methods, case 2

Different models are also chosen to compare the two methods.
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Table 10: Comparison with MLE
New MLE New MLE New MLE

φ1 0.4 0.4 0.4 0.4 0.4 0.4
φ2 0 0 0.2 0.2 0 0
θ1 0.2 0.2 0.2 0.2 0.2 0.2
θ2 0 0 0.1 0.1 0 0
µ 0 0 0 0 0 0
σ 0.05 0.05 0.05 0.05 0.05 0.05
H 0.5 0.5 0.5 0.5 0.75 0.75
ratio 75.96% 87.8% 77.32% 93.43% 72.4% 85.36%

In general, the maximum likelihood estimation has a better performance on
forecast when using various models.
The average time MLE spends per trial is 0.8742 seconds while the new method
only spends 0.1975 seconds. This speed test in done in the MATLAB, and it
may vary from different software or coding programs. The reason about it is
due to the mechanism of the method. The calculation during the estimation is
much less than the maximum likelihood method.

Remark 4.1. All the previous tests are under the given condition that only 50
observations are available. The inaccuracy may be caused by the insufficiency
about data. In this section, the number of observations will be increased to see
if the method can have better benchmarks.

Table 11: Different numbers of observations from ARIMA(1,1,1)
Number of
observations

50 100 200 300 500 1000 2000

Average
percentage

75.37% 79.2% 82.03% 83.25% 84.61% 82.66% 83.29%

As shown above, the method becomes better when the number of observations
increases from 50 to 300. However, further increasing the observation size will
not make the forecast more accurate.

Remark 4.2. It is mentioned in the previous section that there is a serious
shortcoming of the method. There exist some situations that the point of AC(1)
and AC(2) is above the upper bound. Under such circumstances, the projection
point on the upper bound will be used. The problem is that the point on the upper
bound indicates that φ is either 1 or -1. One of the solutions here, which is also
used in our practice, is using the point just slightly below the upper bound. By
using this technique, φ̂ and θ̂ can be solved and φ̂ is around 0.999 or -0.999. In
such situations, the forecast is like below.

22



Figure 23: Bad forecast with high percentage

It is clear that this forecast is not good because the range is so wide that few
information is contained in this result.

Therefore, it is necessary to consider the frequency of such possible cases.
The autocorrelation tests are exercised upon the data from different models
10,000 times respectively.

Table 12: Point positions

Models ARIMA(1,1,1) ARIMA(2,1,2)
ARIMA(1,1,1)
fraction noise
H=0.3

ARIMA(1,1,1)
fraction noise
H=0.7

Inside 8817 9578 6755 9199
Above 14 397 238 0
Below 1108 25 3007 801

For ARIMA(2,1,2) data, the point has about 4% probability to stay above the
upper bound while only 0.14% probability for ARIMA(1,1,1,). When considering
fractional noise, this method performs better with high Hurst index.

5 Conclusion

In time series analysis, the classical parameter estimation methodology is max-
imum likelihood estimation. Andrew D Smith and Stuart Jarvis introduce one
new method, which uses the property of autocorrelations. It is found that this
methodology is more efficient and easier implemented than MLE. The short-
coming of this method is that the forecast is not as accurate as MLE does. And
there exist some situations that the parameter estimation is really bad.
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Appendices
The MATLAB code for this parameter estimation test is as below:

c l e a r ;
c l c ;

%%%%% true parameters %%%%%
sigma = 0 . 0 5 ;
mu = 0 ;
H = 0 . 5 ;
phi1 = 0 . 4 ;
phi2 = 0 ;
theta1 = 0 . 2 ;
theta2 = 0 ;
s t ep s = 500 ;

%%%%% true parameters %%%%%

%%%%% ARIMA(2 , 1 , 2 ) with f r a c t i o n a l no i s e %%%%%
Noise = normrnd (0 , sigma ,2∗ s t ep s +2 ,1) ;
Di f f Y = ze ro s (2∗ s t ep s +2 ,1) ;
f o r i = 3 :2∗ s t ep s+2

Di f f Y ( i , 1 ) = mu + phi1 ∗( Di f f Y ( i −1,1)−mu ) . . .
+ phi2 ∗( Di f f Y ( i −2,1)−mu) + Noise ( i , 1 ) . . .
+ theta1 ∗Noise ( i −1 ,1) + theta2 ∗Noise ( i −2 ,1) ;

end
Y = ze ro s (2∗ s teps , 1 ) ;
Y(1 , 1 ) = Di f f Y ( 3 , 1 ) ;
f o r i = 2 :2∗ s t ep s

Y( i , 1 ) = Y( i −1 ,1) + Di f f Y ( i +2 ,1) ;
end
Y = Y’ ;
%%%%% ARIMA(2 , 1 , 2 ) with f r a c t i o n a l no i s e %%%%%
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%%%%% Maximum l i k e l i h o o d es t imat ion %%%%%
model = arima ( 1 , 0 , 1 ) ;
EstMdl = est imate ( model , Di f f Y ) ;
PHI = EstMdl .AR{1} ;
THETA = EstMdl .MA{1} ;
MU = EstMdl . Constant/(1−PHI ) ;
SIGMA = s q r t ( EstMdl . Variance ) ;
%%%%% Maximum l i k e l i h o o d es t imat ion %%%%%

%%%%% a u t o c o r r e l a t i o n %%%%%
lag = steps −1;
AC = ze ro s ( lag , 1 ) ;
f o r i = 1 : l ag

AC( i , 1 ) = cor r ( Di f f Y ( 3 : s t ep s+2−i , 1 ) , Di f f Y (3+ i : s t ep s +2 ,1)) ;
end
%%%%% a u t o c o r r e l a t i o n %%%%%

%%%%% new approach f o r parameter e s t imat i on %%%%%

AC1 = AC( 1 , 1 ) ;
AC2 = AC( 2 , 1 ) ;
i f 2∗AC1ˆ2−abs (AC1) < AC2 && AC2 < abs (AC1)

AC2 = AC2;
Point = ’ in ’

e l s e i f AC2 > abs (AC1)
AC2 = abs (AC1)∗0 . 9 9 9 9 ;
Point = ’ above ’

e l s e
AC2 = (2∗AC1ˆ2−abs (AC1 ) ) ;
Point = ’ below ’

end
syms ph i the ta ;
Est = vpaso lve ( ( ph i +the ta )∗(1+ the ta ∗ ph i )/(1+2∗ th e ta ∗ ph i +the ta ˆ2) == AC1 , . . .

( ph i ˆ2+ the ta ∗ ph i )∗(1+ the ta ∗ ph i )/(1+2∗ th e ta ∗ ph i +the ta ˆ2) == AC2, theta , ph i ) ;
ph = ze ro s ( 1 , 1 ) ;
th = ze ro s ( 1 , 1 ) ;
f o r i = 1 :4

i f Est . ph i ( i , 1 ) < 1 && Est . ph i ( i , 1 ) > −1 && Est . th e ta ( i ,1)<1 && Est . th e ta ( i ,1)>−1
ph (1 , 1 ) = Est . ph i ( i , 1 ) ;
th (1 , 1 ) = Est . th e ta ( i , 1 ) ;

end
end

%%%%% new approach f o r parameter e s t imat i on %%%%%

%%%%% est imat ion f o r mu and sigma %%%%%
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CovMatr = ze ro s ( steps , s t ep s ) ;
f o r i = 1 : s t ep s

f o r j = 1 : s t ep s
CovMatr ( i , j ) = ( ( ( th+ph)∗(1+ th∗ph)∗phˆ( abs ( i−j )−1))/(1−ph ˆ2) )∗ ( i ˜=j ) + . . .

(1+2∗ph∗ th+th ˆ2)/(1−ph ˆ2)∗ ( i==j ) ;
end

end
one = ones ( steps , 1 ) ;
muu = one ’∗CovMatrˆ(−1)∗Dif f Y ( 3 : s t ep s +2 ,1)/( one ’∗CovMatrˆ(−1)∗one ) ;
s i g = s q r t ( ( Di f f Y ( 3 : s t ep s +2,1)−muu∗one ) ’∗CovMatr ˆ ( −1 )∗ . . .

( Di f f Y ( 3 : s t ep s +2,1)−muu∗one )/ ( steps −1)) ;
para = [muu, s ig , ph , th ] ;

%%%%% est imat ion f o r mu and sigma %%%%%

%%%%% f o r e c a s t from new method %%%%%
scens = 500 ;
Noises = normrnd (0 , s i g , s t ep s +1, s cens ) ;
Di f f X = ze ro s ( s t ep s +1, scens ) ;
Di f f X ( 1 , 1 : s cens ) = Di f f Y ( s t ep s +2);
X = ze ro s ( s t ep s +1, s cens ) ;
X( 1 , 1 : s cens ) = Y( s t ep s ) ;
f o r i = 2 : s t ep s+1

f o r j = 1 : s cens
Di f f X ( i , j ) = muu + ph∗( Di f f X ( i −1, j )−muu ) . . .

+ Noises ( i , j ) + th∗Noises ( i −1, j ) ;
end

end
f o r i = 2 : s t ep s+1

f o r j = 1 : s cens
X( i , j ) = X( i −1, j ) + Di f f X ( i , j ) ;

end
end
f o r e = s o r t (X’ ) ’ ;

%%%%% f o r e c a s t from new method %%%%%

%%%%% f o r e c a s t from MLE %%%%%
NNoises = Noises / s i g ∗SIGMA;
Diff XX = ze ro s ( s t ep s +1, s cens ) ;
Diff XX ( 1 , 1 : s cens ) = Di f f Y ( s t ep s +2);
XX = ze ro s ( s t ep s +1, s cens ) ;
XX( 1 , 1 : s cens ) = Y( s t ep s ) ;
f o r i = 2 : s t ep s+1

f o r j = 1 : s cens
Diff XX ( i , j ) = MU + PHI∗( Diff XX ( i −1, j )−MU) . . .

+ NNoises ( i , j ) + THETA∗NNoises ( i −1, j ) ;
end
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end
f o r i = 2 : s t ep s+1

f o r j = 1 : s cens
XX( i , j ) = XX( i −1, j ) + Diff XX ( i , j ) ;

end
end
f f o r e = s o r t (XX’ ) ’ ;

%%%%% f o r e c a s t from MLE %%%%%

%%%%% con f idence i n t e r v a l %%%%%
j = 0 ;
f o r i = 2 : s t ep s
i f Y(1 , i−1+s t ep s ) >= f o r e ( i , s c ens ∗0 . 05 ) &&.. .

Y(1 , i−1+s t ep s ) <= f o r e ( i , s c ens ∗0 . 95 )
j=j +1;

e l s e j =j ;
end
end
percentage new = j /( i −1)
j = 0 ;
f o r i = 2 : s t ep s
i f Y(1 , i−1+s t ep s ) >= f f o r e ( i , s c ens ∗0 . 05 ) &&.. .

Y(1 , i−1+s t ep s ) <= f f o r e ( i , s c ens ∗0 . 95 )
j=j +1;

e l s e j =j ;
end
end
p e r c e n t a g e c l a s s i c a l = j /( i −1)

%%%%% con f idence i n t e r v a l %%%%%

%%%%% p l o t t i n g %%%%%
f i g u r e
subplot ( 2 , 2 , 1 )
xlim ( [ 0 2∗ s t ep s ] )
hold on
p lo t ( s t ep s : 2∗ s teps , f o r e ( 1 : s t ep s +1, s cens ∗0 . 0 5 ) , ’ r ’ , ’ LineWidth ’ , 2 . 5 ) ;
p l o t ( s t ep s : 2∗ s teps , f o r e ( 1 : s t ep s +1, s cens ∗0 . 9 5 ) , ’ r ’ , ’ LineWidth ’ , 2 . 5 ) ;
plotY1 = p lo t (Y,’−− rs ’ , . . .

’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 3 , . . .
’ MarkerEdgeColor ’ , ’ b ’ , . . .
’ MarkerFaceColor ’ , [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ;

l egend ( [ plotY1 ] , ’ t rue data ’ , ’ Location ’ , ’ northwest ’ )
hold o f f
subplot ( 2 , 2 , 2 )
xlim ( [ 0 2∗ s t ep s ] )
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hold on
p lo t ( s t ep s : 2∗ s teps , f f o r e ( 1 : s t ep s +1, s cens ∗0 . 0 5 ) , ’ r ’ , ’ LineWidth ’ , 2 . 5 ) ;
p l o t ( s t ep s : 2∗ s teps , f f o r e ( 1 : s t ep s +1, s cens ∗0 . 9 5 ) , ’ r ’ , ’ LineWidth ’ , 2 . 5 ) ;
plotY2 = p lo t (Y,’−− rs ’ , . . .

’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 3 , . . .
’ MarkerEdgeColor ’ , ’ b ’ , . . .
’ MarkerFaceColor ’ , [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ;

l egend ( [ plotY2 ] , ’ t rue data ’ , ’ Location ’ , ’ northwest ’ )
hold o f f
subplot ( 2 , 2 , 3 )
xlim ( [ 0 2∗ s t ep s ] )
hold on
p lo t ( s t ep s : 2∗ s teps ,X) ;
plotY3 = p lo t (Y,’−− rs ’ , . . .

’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 5 , . . .
’ MarkerEdgeColor ’ , ’ b ’ , . . .
’ MarkerFaceColor ’ , [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ;

l egend ( [ plotY3 ] , ’ t rue data ’ , ’ Location ’ , ’ northwest ’ )
hold o f f
subplot ( 2 , 2 , 4 )
xlim ( [ 0 2∗ s t ep s ] )
hold on
p lo t ( s t ep s : 2∗ s teps ,XX) ;
plotY4 = p lo t (Y,’−− rs ’ , . . .

’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 3 , . . .
’ MarkerEdgeColor ’ , ’ b ’ , . . .
’ MarkerFaceColor ’ , [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ;

l egend ( [ plotY4 ] , ’ t rue data ’ , ’ Location ’ , ’ northwest ’ )
hold o f f

%%%%% p l o t t i n g %%%%%
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