
RATIONAL SPECTRAL DENSITY MODELS

FOR LATTICE DATA

L. IPPOLITI∗, R. J. MARTIN
Department of Economics

University G. d’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy

R. J. BHANSALI
Division of Statistics and Probability, Department of Mathematical Sciences

University of Liverpool, Liverpool L69 7ZL, UK

August 25, 2013

ABSTRACT. Conditional autoregressive CAR models, possibly with added noise, unilateral ARMA
models, and directly specified correlation DC models, are widely used classes of spatial models. In
this paper, we consider their generalization to all models with a rational spectral density function.
These models allow a wider range of correlation behaviour, and can provide adequate fits to data
with fewer parameters. Some theoretical properties are presented, and comparisons made with
CAR correlations. Some methods for estimation are discussed, and fits to some real data are
compared.
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1 Introduction
Large amounts of essentially-continuous spatial data are associated with the nodes or interiors of
a regular rectangular lattice. Examples include pixellated images which occur in many different
applications, regularly-sampled spatial data, and many agricultural field trials. Different types
of models have been proposed for analyzing such data. Four main classes are: i) those with a
directly specified correlation structure, such as those used in geostatistics; ii) those specified by a
generating model involving ’past’ (using some site ordering) values and uncorrelated innovations
- unilateral (or causal) autoregressive-moving average ARMA models; iii) those specified by
a formal equation involving ’past’ and ’future’ values and uncorrelated errors - simultaneous
autoregressions SAR; and iv) those that specify the conditional distribution at each site given
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the values at all other sites - conditional autoregressive CAR models. An extension to SAR and
CAR models adds an independent noise term.
We (essentially) only consider univariate stationary Gaussian models here - i.e. they have finite
variance, and the correlation between the observations at two sites only depends on the relative
positions of the two sites. The assumption of Normality for analysing a data set is convenient
and often reasonable (perhaps after transformation). We assume models are defined on an infinite
regular rectangular lattice, and applied to data on a complete finite lattice. Then a CAR, also known
as a Gauss-Markov random field, is defined by its conditional means. Every unilateral AR, and
every SAR, is equivalent to a CAR (in the sense of having the same correlation structure).
Since many unilateral ARMA models depend on the choice of site ordering, they can appear
arbitrary, but they can have some useful properties, especially if the model is separable (i.e.
the correlation function is a product of lower-dimensional correlation functions). For example,
simulation and likelihood evaluation can be simple. SAR models have some severe logical difficulties
(e.g. the errors are correlated with all the observations, and in general the parameters are not
uniquely determined).
In general, the correlation structure of a CAR model is hard to determine (except numerically),
but the inverse correlations are directly specified. On a planar lattice, this gives most, but not all,
elements of the inverse dispersion matrix which is required for Gaussian maximum likelihood
estimation - see section 6.1. Another computational difficulty with many CAR models used
in practice is that unless the dependence is weak, the parameters are usually very close to the
stationarity boundary. Since the correlations of a CAR can decay very slowly from 1, the extension
to the noisy CAR has been found useful.
Geostatistical models are defined for continuous space, and are widely used for analyzing data
defined on irregular sites or regions - see, for example, Cressie (1993, section 2.3.1). On a regular
lattice, they and other models specifying the correlations usually have the drawback that the inverse
dispersion matrix does not have a simple form. These lattice models, and moving-average models,
in general have an infinite CAR representation.
In time series, the extension of AR and MA models to the ARMA models, which have a rational
spectral density, has been extremely useful. The unilateral ARMA models on a lattice have a
rational spectral density, but are only a subset of all the possibilities. In this paper, we consider the
generalization of finite CARs, unilateral ARMAs, and finite DCs (directly-specified correlation
models for which the correlations are 0 outside a neighbourhood of the origin), to all models with
a rational spectral density function - RSDs. The RSDs in general have more possible correlation
structures, and can give more parsimonious fits to data. Also, they are less likely than CARs to
have the estimated parameters very close to the stationarity boundary.
After reviewing the standard lattice models in section 2, the RSD model is defined and some of
its properties discussed in section 3. We show how RSDs can arise from operations on CARs in
section 4, and compare their correlations with those of CARs in section 5. Section 6 discusses how
standard methods for model fitting and identification can be extended to RSDs, and in section 7,
fits of models to real data are compared. Note that the results in sections 2 to 5 only depend on
second-order properties, and so hold for any distribution. For convenience, we mainly refer here
to Guyon (1995), Cressie (1993) and Rue and Held (2005) for known results.
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2 Lattice Models
In this section we discuss the usual lattice models. We begin with some definitions in section 2.1,
and then review the usual AR, SAR, MA, ARMA, CAR, and DC lattice models in sections 2.2 and
2.3. Some extensions are given in section 2.4.

2.1 Preliminaries
Suppose that t, u, z and λ are d−dimensional vectors, and assume that {x(t), t ∈ Z

d} is a second-
order stationary random field on the regular rectangular lattice, with mean zero, autocovariance
function Rx(u) = Cov {x(t), x(t + u)}, and autocorrelation function rx(u) = Rx(u)/σ2

x, where
σ2

x = Rx(0). Provided the sum is finite, the autocovariance generating function - acgf - of x is

Γx(z) =
∑

u∈Zd

Rx(u)zu, z ∈ C
d

where zu =
∏d

j=1 z
uj

j . Stationarity ensures that the acgf always exists for |z| = 1, where |z| =
√

(z′z). Except in section 2.4, we assume that
∑

|Rx(u)| < ∞. The spectral density function
- sdf - of x is defined here as fx(λ) = Γx(e

iλ) =
∑

Rx(u)eiu′λ =
∑

Rx(u) cos(u′λ), where
λ ∈ (−π, π]d; with its integral being (2π)dσ2

x. The inverse relationship is

Rx(u) = (2π)−d

∫

eiu′λfx(λ)dλ. (1)

Provided fx(λ) > 0 for all λ, the inverse covariance and correlation functions of x are, respectively,

R̃x(u) = (2π)−d

∫

eiu′λ
[

fx(λ)
]−1

dλ and r̃x(u) = R̃x(u)/R̃x(0). (2)

For ARMA models we need to define P (z) and Q(z) as finite Laurent series (about 0) by

P (z) = 1 −
∑

j∈Sp

φjz
j and Q(z) = 1 +

∑

j∈Sq

θjz
j,

where Sm is a finite subset of Z
d containing neighbours of the origin. Thus t + Sm is the set of

neighbours of site t. The order of the neighbourhood set is denoted by m, and in the usual way
is defined sequentially by the maximum distance between the origin and a point in Sm. Thus, for
d = 2, the first-order (m = 1) neighbours of a site are those 4 sites which are adjacent to it; and
the second-order neighbours (m = 2) are these plus the 4 diagonally adjacent sites. Let S+

m denote
Sm ∪ {0}, the origin and its neighbouring sites.
For CAR, DC and RSD models we need

A(z) = −
∑

j∈S+
p

αjz
j and B(z) =

∑

j∈S+
q

βjz
j

to be finite symmetric Laurent series with α0 = −1, β0 = 1, and satisfying A(z) = A(z−1) and
B(z) = B(z−1). Thus αj = α−j and βj = β−j for all j.
We callA(z) reflection-symmetric if the αj are equal for all sign changes on the ju, and completely-
symmetric if they are also equal for all permutations of j, and similarly for B(z). Then, for a
model defined byA(z) and/orB(z), a similar property holds for the correlations rx(u) and inverse
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correlations r̃x(u). We refer to a CAR(p) as reflection-symmetric, RS-CAR(p), or completely-
symmetric, CS-CAR(p), if its A(z) has this property; and similarly for a DC with B(z), and for a
RSD with both A(z) and B(z).
A White-Noise process, ε(t), has uncorrelated components with zero mean, and constant variance
σ2

ε . Thus Γε(z) = σ2
ε .

Let T be a shift operator on an index, such that T jx(t) = x(t−j). In general, if x(t) = H(T )y(t),
where y is a stationary process, H(z) =

∑

j hjz
j , and

∑

|hj| is finite, standard results show that

Γx(z) = H(z)H(z−1)Γy(z), (3)

Γyx(z) =
∑

Cov{y(t), x(t + u)}zu = H(z)Γy(z). (4)

2.2 AR, MA and ARMA models
Assuming P (z) and Q(z) have no common factors, the ARMA(p, q) model is

P (T )x(t) = Q(T )ε(t),

or

x(t) =
∑

j∈Sp

φjx(t − j) + ε(t) +
∑

j∈Sq

θjε(t − j), t ∈ Z
d.

In general, stationarity requires that P (z) 6= 0 for |z| = 1, and invertibility (to ensure a valid
infinite AR representation) requires that Q(z) 6= 0 for |z| = 1.
From equation (3),

Γx(z) = σ2
ε

Q(z)Q(z−1)

P (z)P (z−1)
,

with

Γεx(z) = σ2
ε

Q(z)

P (z)
.

An autoregressive AR(p) process has Q(z) = 1, and a moving average MA(q) model has P (z) =
1. An AR is unilateral if P (z) is such that P (T )x(t) only involves values at t and ’previous’ sites.
Then stationarity requires P (z) 6= 0 for |z| < 1. The bilateral model is the SAR, which has x(t)
correlated with all ε(t).
Note that Γx(z) for the ARMA is a ratio of finite Laurent series, and that the sdf can be regarded
as the ratio of two AR sdf’s, or of two MA sdf’s.

2.3 CAR and DC models
Let [x(t)|·] =

[

x(t)|x(t − j) : j ∈ Zd\{0}
]

denote x(t) conditional on the values at all other
sites. Then, under Normality, the conditional autoregression CAR(p) or Gauss-Markov random
field is defined by the conditional mean,

E [x(t)|·] =
∑

j∈Sp

αjx(t − j),
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where αj = α−j = −r̃x(j) for all j, and the constant conditional variance

Var [x(t)|·] = Var[η(t)] = σ2
η = {R̃x(0)}−1,

where

η(t) = x(t) − E [x(t)|·]

is the interpolation error process. Thus a CAR can be regarded as defined by its inverse covariances,
whereas a DC (see below) is defined by its covariances. Then

A(T )x(t) = η(t), t ∈ Z
d, (5)

where Γηx(z) = σ2
η , i.e. the interpolation error η(t) is uncorrelated with all x’s except x(t).

Provided the stationarity condition A(z) 6= 0 for |z| = 1 is satisfied, from equation (4) the acgf
of the CAR is Γx(z) = σ2

η/A(z), and the acgf of η(t) is Γη(z) = σ2
ηA(z). Thus the interpolation

process is correlated, with rη(u) = r̃x(u). Hence, the interpolation error for a CAR(p) is a DC(p)
(see below).
Multiplying equation (5) by x(t + u) and taking expectations shows that

A(T )Rx(u) = σ2
ηδu (6)

where δ0 = 1 and δu = 0 otherwise.
If x is not Gaussian, the conditional mean E [x(t)|·], differs from {1−A(T )}x(t), but a stationary
correlation structure results from the above if E [x(t)|·] is replaced by the linear least-squares
interpolator of x(t), and η(t) is the corresponding interpolation error.
Note that all SAR and unilateral AR are equivalent to (i.e. have the same correlation structures
as) a CAR, since P (z)P (z−1) is proportional to an A(z). For d = 1 both the CAR and SAR
models are also equivalent to finite AR models. However, for d ≥ 2 A(z) cannot in general be
appropriately factorised, and so a CAR does not in general have a (finite) unilateral AR or SAR
representation (see Guyon, 1995, Theorem 1.3.2).
The stationarity conditions are not always intuitively obvious. For example, if d = 2, the stationarity
condition for a CAR(1) is |α10| + |α01| < 1/2, and for the RS-CAR(2), with α11 = α1−1, the
conditions are |α10 + α01| + 2α11 < 1/2 and |α10 − α01| − 2α11 < 1/2. For the CS-CAR(3) it is
necessary that |α10| < 1/2, |α11| < 1/2, |α20| < 1/4, |α10| + α11 + α20 < 1/4, α20 − α11 < 1/4,
and if α20 + α11 < 0, then we also need α2

10 < −(α11 + 2α20)(1 + 4α20) - see Appendix 1.
In general, no explicit form for the correlation function of a CAR exists. The correlations can be
obtained numerically through equation (1) and, provided care is taken over numerical accuracy,
recursions in their values using equation (6). An alternative method is to obtain the covariance
matrix on a sufficiently large torus lattice (see section 6.1). The CAR correlations decay exponentially
- see section 3.1, but possibly very slowly (Besag, 1981).
Let F denote the scaled interpolation variance, σ2

η/σ
2
x. The measure 1 − F has been used as an

index of linear determinism, to show how well E[x(t)|.] predicts x(t) (see, e.g., Bhansali and
Ippoliti, 2005). It follows from the recursion (6) that

F = 1 −
∑

j∈Sp

αjrx(j) =
∑

j∈S+
p

rx(j)r̃x(j).

The CAR specification also has the unfortunate property that even modest low-lag correlations can
require the sum of the parameters to be very close to the stationarity boundary. For example, in two
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dimensions, the CS-CAR(1), for which |α10| < 1/4, requires α10 to be 0.24565 for rx(1, 0) = 0.50,
and 0.249993 for rx(1, 0) = 0.75. See also Table A1 in Bartlett (1975). In fact (see Appendix 2),
if α10 = 1/4 − ς , then as ς → 0, 1 − rx(1, 0) ' π/ log(2/ς), or for rx(1, 0) = 1 − τ , with
τ > 0 small, we need α10 ' 1/4 − 2 exp(−π/τ). For example, for rx(1, 0) = 0.9, we have
α10 ' 1/4 − 4.5 × 10−14, and for rx(1, 0) = 0.98, we have ς = 1.2 × 10−68. This approximation
works very well for α10 > 0.249 or rx(1, 0) > 0.59.
Higher-order CAR fits also tend to have

∑

α̂j close to the stationarity limit - see Besag and
Kooperberg (1995). This can make parameter estimation very difficult. An approach for overcoming
this problem is to use a non-stationary intrinsic CAR model, for which

∑

αj equals the stationarity
limit - see Besag and Kooperberg (1995) or Rue and Held (2005, Ch. 3). However, to use these
models seems unsatisfactory when the low-lag correlations are not all that large.
A finite direct correlation DC(q) model is one for which the correlations are directly specified,
and has a finite range - the correlations are all zero outside S+

q , i.e. rx(j) = 0, ∀ j /∈ S+
q }. Let

βj = β−j = rx(j) for all j. Then

Γx(z) = σ2
xB(z).

The invertibility condition on B(z) corresponds to the above stationarity condition on A(z) for
a CAR, and similar comments apply to the equivalence or non-equivalence of MA models to
DC models. If Sq is small, correlations may need to be small - for example, the CS-DC(1) has
|rx(1, 0)| < 1/(2d). Note that many directly-specified correlation models used in geostatistics,
such as the Matérn or Gaussian correlation structures, do not have a finite range, and do not have a
finite CAR representation. However, the commonly-used spherical model is a DC.

2.4 Some other lattice models
We briefly note here some other proposed lattice models.
Kiiveri and Campbell (1989) suggested a generalisation of the CAR and DC models, which includes
symmetric SAR and MA models, by (essentially) specifying an acgf proportional to 1/A(z)φ,
where A(z) is as in section 2.1, and φ 6= 0 is a parameter to be estimated. The SAR, CAR, DC
and MA models are special cases with φ = 2, 1,−1,−2. The model proposed by Lindgren et al.
(2011) is the special case where φ is a positive integer and A(z) corresponds to a CAR(1).
It was assumed in section 2.1 that f(0) < ∞, but stationary models with long-range dependence
have f(0) = ∞, and correlations that decay more slowly than exponentially. Simple examples
when d = 1 are the self-similar process, fractionally differenced noise, and the harmonic correlation
structure - see, e.g., Martin and Walker (1997).

3 RSD models

3.1 Definition and properties
For d = 1, ARMA models are a generalisation of AR and MA models, which are characterised by
having a rational spectral density (Priestley, 1981, section 4.12.4). That is, the acgf is a rational
function: a ratio of directly-specified finite symmetric Laurent series. For d > 1, the CAR,
unilateral ARMA, and DC models can be extended to models for which the acgf is a rational
function. This extension includes the noisy CAR, and allows correlation structures which cannot
arise from a (finite) CAR, unilateral ARMA, or DC.
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Assume that A(z) and B(z) are as in section 2.1, have no common factors, and that A(z) 6= 0 and
B(z) 6= 0 for |z| = 1.

Definition. A rational spectral density model RSD(p, q) for x has an acgf which is proportional to
a ratio of finite symmetric Laurent series, B(z)/A(z).

The sdf fx(λ) can be regarded as the ratio of two CAR sdf’s, or of two DC sdf’s. Although
lattice RSD models have been suggested at least as early as 1980, and are mentioned in Guyon
(1995, section 1.4), they do not appear to have been used or discussed further. Continuous-space
RSD models were proposed by Vecchia (1985), and have recently been developed by Bolin and
Lindgren (2011).
Clearly CAR and DC models are special cases. Note that the correlations for the model with
acgf proportional to B(z)/A(z) are the inverse correlations of the model with acgf proportional to
A(z)/B(z).
Suppose B(z) 6= 1 and let C(z) =

∑

u∈Zd cuzu denote the infinite series for A(z)/B(z). Then
we can use equation (5) to get the infinite CAR representation for x in terms of its interpolation
errors η. Since in general c0 6= 1 and the coefficient of x(t) in equation (5) must be 1, the infinite
CAR representation for x is

c−1
0 C(T )x(t) = η(t), (7)

with acgf B(z)/A(z) times c0σ2
η . Thus the proportionality constant in the definition can be

interpreted as c0σ2
η . We show in Lemma 1 below that c0 = 1/

∑

u∈S+
q
βur̃x(u).

We can then formally write

A(T )x(t) = c0B(T )η(t), (8)

which expresses a finite combination of the x’s in terms of a finite combination of the interpolation
errors η, and has some similarities to the one-dimensional ARMA representations, but here the η’s
are correlated. We can then refer to this RSD as a conditional ARMA model.
The conditional ARMA representation (8) of the RSD leads to extended Yule-Walker equations
for the covariances and the inverse covariances, generalising equation (6). Multiplying equation
(8) by x(t + u) and taking expectations gives

A(T )Rx(u) = c0σ
2
ηβu ∀ u ∈ Z

d. (9)

Multiplying equation (8) by η(t + u), taking expectations, and using Rη(u) = σ2
ηrη(u) and

rη(u) = r̃x(u), gives

−αu = c0B(T )r̃x(u) ∀ u ∈ Z
d. (10)

Lemma 1 shows how to evaluate c0 and the scaled interpolation variance F for a RSD model.

Lemma 1. If C(z) = A(z)/B(z) and Γx(z) = c0σ
2
η/C(z), then c0 = 1/

∑

u∈S+
q
βur̃x(u), and

σ2
η/σ

2
x = F =

{

1 −
∑

u∈Sp

αurx(u)
}

×
{

∑

u∈S+
q

βur̃x(u)
}

.

Proof. From equation (10) with u = 0, we have
{

c0B(T )r̃x(u)|u=0

}

= 1, so that c0
{

∑

u∈S+
q

βur̃x(u)
}

= 1.
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From equation (9) with u = 0,
{

A(T )rx(u)σ2
x|u=0

}

= c0σ
2
η , so that σ2

x

{

1 −
∑

u∈Sp

αurx(u)
}

= c0σ
2
η. 2

Note that if B(z) = 1, Lemma 1 gives c0 = 1, and F as in section 2.3.
As with a CAR, the sdf of a RSD is a real analytic function, and hence its correlations and inverse
correlations decay exponentially. Let ū denote

∑

|ui|. Then, extending Guyon’s (1995, section
1.4) result to the inverse correlations, there exist ψ1, ψ2, with 0 < ψi < 1, and m1, m2 such that
for all u

|rx(u)| ≤ m1ψ
ū
1 , |r̃x(u)| ≤ m2ψ

ū
2 .

3.2 Relationship with CAR correlations
Suppose y is a CAR(p) defined byA(z) and x is a RSD(p, q) with acgf proportional toB(z)/A(z).
Then Γx(z) is proportional to

B(z)Γy(z) = B(z)

[

∑

u∈Zd

Ry(u)zu

]

.

Thus the correlations of x can be expressed as a finite linear combination of those of y. Although
CAR correlations are usually not readily available, this result shows the effect of B(z) on these
correlations.
Similarly, the inverse correlations r̃x(u) can be expressed as a finite linear combination of the
inverse correlations of the DC defined by B(z).

Example 3.1.
Suppose d = 2, with x a RSD(p, 1). Then, for a constant K,

Γx(z1, z2) = K
[

1 + β10(z1 + z−1
1 ) + β01(z2 + z−1

2 )
]

∑

u1,u2

ry(u1, u2)z
u1

1 zu2

2 .

Thus, for example,

Rx(0, 0) = K [1 + 2 β10 ry(1, 0) + 2 β01 ry(0, 1)] ,

Rx(1, 0) = K{ry(1, 0) + β10[1 + ry(2, 0)] + β01[ry(1,−1) + ry(1, 1)]} ,

and in general Rx(u1, u2) =

K
{

ry(u1, u2) + β10[ry(u1 − 1, u2) + ry(u1 + 1, u2)] + β01[ry(u1, u2 − 1) + ry(u1, u2 + 1)]
}

.

Example 3.2.
If a White Noise process, ε, is added to the CAR(p), y, the result is a special case of a RSD(p, p).
This is often referred to as an errors-in-variables CAR model, or a noisy CAR model.
For this, we obtain directly that Γx(z) = Γy(z) + σ2

ε . Then

rx(u) = ry(u)/(1 + ψ)

for u 6= 0, with ψ = σ2
ε /σ

2
y . Thus, the noisy CAR reduces all the (absolute) correlations (except

at u = 0) by a constant. On the other hand, by taking ψ as negative (essentially using a negative
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variance σ2
ε ), we can have a RSD model which increases all the (absolute) correlations (except at

u = 0) by a constant. See also Example 4.1.

Example 3.3.
In general, we can expressB(z)/A(z) as 1+

{

B(z)−A(z)
}

/A(z). Suppose d = 2, and consider
the RSD with B(z1, z2) = A(z1, z2) + β20(z

2
1 + z−2

1 + z2
2 + z−2

2 ). Let FC denote σ2
η/σ

2
y for the

CAR(p) y defined by A(z1, z2). Then, Rx(0, 0) = K
{

1 + 2 β20 [ry(2, 0) + ry(0, 2)]/FC

}

, and in
general for (u1, u2) 6= (0, 0),

Rx(u1, u2) = K β20

{

ry(u1 − 2, u2) + ry(u1 + 2, u2) + ry(u1, u2 − 2) + ry(u1, u2 + 2)
}

/FC .

Thus, for example,

rx(1, 0) = β20
ry(1, 0) + ry(1,−2) + ry(1, 2) + ry(3, 0)

FC + 2 β20 [ry(2, 0) + ry(0, 2)]
.

If y is a CS-CAR(1), then FC = 1 − 4 α10ry(1, 0), and

rx(2, 0)

rx(1, 0)
=

1 + 2ry(2, 2) + ry(4, 0)

ry(1, 0) + 2ry(2, 1) + ry(3, 0)
=
α10

{

1 + 2ry(2, 2) + ry(4, 0)
}

ry(2, 0)
,

showing that it is possible for a CS-RSD(1, 3) to have rx(2, 0) > rx(1, 0) > 0 - see Example 5.2.

Example 3.4.
Suppose d = 2, and x is a RS-RSD(2,2) with α11 = −α10α01, so that A(z1, z2) is separable,
A(z1, z2) = A1(z1)A2(z2), with A1(z1) proportional to (1 − α10z1)(1 − α10z

−1
1 ), and A2(z2)

proportional to (1−α01z2)(1−α01z
−1
2 ). Thus y is an AR(1)×AR(1) with ry(u1, u2) = α

|u1|
10 α

|u2|
01 .

If K = 1 + 2α10β10 + 2α01β01 + 4α10α01β11, then for u1 > 0, u2 > 0,

K rx(u1, 0) = {α10(1 + 2α01β01) + (β10 + 2α01β11)(1 + α2
10)}α

(u1−1)
10 ,

K rx(u1, u2) = {α10α01 + α01β10(1 + α2
10) + α10β01(1 + α2

01) + β11(1 + α2
10)(1 + α2

01)}α
(u1−1)
10 α

(u2−1)
01 .

If B(z1, z2) is also separable (i.e. β11 = β10β01), so that x is an ARMA(1,1)×ARMA(1,1), then
K = (1 + 2α10β10)(1 + 2α01β01), and for u1 > 0, u2 > 0, we have

K rx(u1, 0) = {α10 + β10(1 + α2
10)}(1 + 2α01β01)α

(u1−1)
10 ,

Krx(u1, u2) = {α10 + β10(1 + α2
10)}{α01 + β01(1 + α2

01)}α
(u1−1)
10 α

(u2−1)
01 .

4 Operations on CAR models
We show here that special cases of RSD models arise from various operations on CAR models.
The results are simple extensions of those for d = 1 which show that the operations on AR models
lead to ARMAs. However, even for a CAR(1) with d = 2 the manipulations are more complicated
- see Examples 4.3 and 4.4. We assume in this section that y is a CAR(p) with acgf σ2

η/A(z), and
use x for the resulting model.
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4.1 Addition of CARs
If two uncorrelated CARs of orders p1 and p2 are added, the result is in general (if there are no
common factors) a RSD(p, q), with q = max(p1, p2) and p ≥ q. This includes the case of adding
coloured (i.e. correlated) noise to a CAR, where the noise is modelled by a CAR.

Example 4.1.
A well-known example is the noisy CAR y+ ε of Example 3.2. Thus, setting ν = σ2

η/σ
2
ε , the acgf

of the noisy CAR is

Γx(z) = σ2
ε (1 + ν)

B(z)

A(z)
,

whereB(z) = {A(z)+ν}/(1+ν), so that βj/αj = −1/(1+ν) for j 6= 0. Since for j 6= 0, βj/αj

is constant and |βj| < |αj|, the noisy CAR is a specific case of the RSD(p, p). As in Example 3.2,
taking ν < 0 (i.e. setting σ2

ε < 0), gives |rx(u)| > |ry(u)| for u 6= 0.

4.2 Smoothing a CAR
Suppose x is formed by smoothing y, i.e. x(t) =

∑

j hjy(t − j), for H(z) a finite function of z.
Then, equation (3) shows that x is a RSD.

Example 4.2.
A special case in two dimensions (d = 2) is summing over adjacent sites for (k1 × k2) blocks,
which gives

fx(λ1, λ2) =
[1 − cos(λ1k1)] [1 − cos(λ2k2)]

[1 − cos(λ1)] [1 − cos(λ2)]
fy(λ1, λ2).

4.3 Sampling a CAR
Suppose x is formed by sampling every kth site of a CAR, y, where k = (k1, . . . , kd)

′. Then

fx(λ) =
1

∏d
j=1 kj

k−1
∑

j=0

fy

(

λ + 2πj

k

)

,

where u/v denotes (u1/v1, ...)
′, and x is a RSD.

Example 4.3.
Suppose d = 2, k1 = k2 = 2, and y is a CAR(1). Then, setting aj = 1 + cos(λj), and bj =
3 + 4 cos(λj) + cos(2λj), for j = 1, 2, gives

fx(λ1, λ2) = σ2
η

[

1 − 2α2
10a1 − 2α2

01a2

1 − 4α2
10a1 − 4α2

01a2 − 8α2
10α

2
01a1a2 + 2α4

10b1 + 2α4
01b2

]

,

which is the sdf of a RSD(3, 1).
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4.4 Coarser resolution of a CAR
Suppose a CAR is summed within regular exhaustive disjoint blocks. Then the resulting coarser
process is a RSD. The result for the sdf follows by firstly using the result from section 4.2 to
get the summed process on overlapping blocks, and then sampling this process using the result in
section 4.3. Such RSDs arise in multiresolution image processing whenever a CAR is assumed at
the finest level - see, e.g. Lakshmanan and Derin (1993).

Example 4.4.
Suppose d = 2, with aggregation of a CAR(1) over (2 × 2) blocks. Then

fx(λ1, λ2) =

4σ2
η

[

1 + (1 − 2α10)α10a1 + (1 − 2α01)α01a2 + 2(1 + α2
10α01 + α10α

2
01)a1a2 − α3

10b1 − α3
01b2

1 − 4α2
10a1 − 4α2

01a2 − 8α2
10α

2
01a1a2 + 2α4

10b1 + 2α4
01b2

]

,

which is the sdf of a RSD(3,3).

5 Comparison of RSD and CAR correlations
The representation (7) suggests that it may be possible to approximate a RSD model by a finite
order CAR of sufficiently large order. However, due to computational difficulties, CARs of order
larger than 5 are not often fitted to lattice data. In Examples 5.1 and 5.2 below, we examine, for
d = 2, the extent to which CS-CARS of order up to 5 may approximate the correlations of a CS-
RSD model. Two different methods are used for choosing the parameters of the approximating
CAR model.
If Gaussian maximum likelihood estimation is used for a CAR, the estimates are such that within
Sp the estimated correlations from the fitted CAR exactly match the sample correlations (or
appropriate averages of them) - see Cressie (1993, section 7.2.2). We therefore use the same
procedure, called the ML method, and match the CAR correlations, ry(u), with the RSD ones,
rx(u), within Sp. This method should give an indication of the differences that might occur
in practice using maximum likelihood estimation. The second method, called the RD method,
minimises a weighted sum of squared differences between the correlations at each lag, {rx(u) −
ry(u)}2, using the reciprocal lag-distance weights 1/‖u‖. Rue and Held (2005, section 5.1.2) use
this method, with slightly different weights, for approximating geostatistical correlation functions
by CARs.
However, these two methods focus solely on matching the correlations of a CAR with those of
an RSD, and do not necessarily ensure a good fit to the inverse correlations. We therefore also
compare how close the r̃y(u) are to r̃x(u), and compare the scaled interpolation error variances F .

Example 5.1.
Consider the CS-RSD(1,1) with α10 = β10 = 0.248. This is a special case of Example 4.1 with ν
set to -2, and of Example 3.2 with ψ set to 2α10ry(1, 0)− 0.5 ≈ −0.226. The low-lag correlations
for this RSD, and for the CS-CAR(1) with the same α10, are given in Table 1. At each lag the
ratio is 2/(1+4α10ry(1, 0)) ≈ 1.293. Since β10 = α10, the inverse correlations of this RSD satisfy
r̃x(u) = (−1)(u1+u2) × rx(u).
The low-lag correlations for the fits are given in Table 1. For the ML fits and p ≤ 3, the
CS-CAR(p) correlations outside S+

p do not match the RSD correlations well as the CAR(p)
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Lag
Models (1, 0) (2, 0) (3, 0) (1,1) (2, 1) (3,1) (2,2) (3,2) (3,3) F

CS-CAR(1) 0.551 0.358 0.254 0.432 0.320 0.238 0.261 0.207 0.173 -
CS-RSD(1,1) 0.713 0.463 0.328 0.559 0.414 0.308 0.338 0.268 0.223 0.086
CS-CAR(1) ML 0.713 0.583 0.507 0.634 0.557 0.496 0.514 0.471 0.442 0.287
CS-CAR(2) ML 0.713 0.525 0.398 0.559 0.441 0.352 0.368 0.305 0.261 0.190
CS-CAR(3) ML 0.713 0.463 0.295 0.559 0.386 0.255 0.281 0.194 0.138 0.184
CS-CAR(4) ML 0.713 0.463 0.322 0.559 0.414 0.314 0.359 0.300 0.266 0.151
CS-CAR(5) ML 0.713 0.463 0.311 0.559 0.414 0.304 0.338 0.263 0.213 0.139
CS-CAR(1) RD 0.584 0.402 0.300 0.473 0.365 0.285 0.308 0.254 0.218 0.290
CS-CAR(2) RD 0.694 0.495 0.362 0.528 0.404 0.311 0.326 0.262 0.217 0.187
CS-CAR(3) RD 0.704 0.501 0.365 0.542 0.413 0.316 0.331 0.264 0.218 0.185
CS-CAR(4) RD 0.708 0.474 0.331 0.560 0.415 0.309 0.341 0.271 0.228 0.177
CS-CAR(5) RD 0.709 0.471 0.327 0.556 0.413 0.308 0.340 0.270 0.226 0.160

Table 1: Correlations (columns 1 to 9) and F (column 10) for Example 5.1. First row: the CS-CAR(1)
with α10 = 0.248. Second row: the CS-RSD(1,1) with α10 = β10 = 0.248. Rows 3 to 12: the CS-
CAR(p), p = 1 . . . 5, fitted by ML and RD methods.

correlations are too high for p = 1, 2, and too low for p = 3. However, the CS-CAR(4) does give
a reasonable approximation. As expected, the RD fits of the CS-CAR(p) are better for low p than
the ML fits, with the CAR(3) giving a reasonable approximation.
However, the inverse correlations, r̃y(u), of these CARs can differ substantially from r̃x(u). For
example, the CARs all have r̃y(1, 0) > −0.55, but r̃x(1, 0) = −0.713.
The values of F for the CARs are all considerably higher than that of the CS-RSD(1,1). Although
the RD method gives better-looking fits for the low-lag correlations outside S+

p , their values of F
are similar to, and mainly slightly worse than, the corresponding ML fits.

Example 5.2.
Consider a case in which rx(1, 0) is relatively low, as can occur in practice in some agricultural
applications. Table 2 shows the low-lag correlations of the 3-parameter CS-RSD(1,3) with α10 =
0.248, β10 = −0.248, β11 = 0 and β20 = 0.2, and those for the fitted CS-CARs.
Some aspects of the CAR fits are similar to those in Example 5.1. The ML method gave correlations
which are too low outside S+

p for p = 1, 2, and too high for p ≥ 3. The fit for p = 4 is very similar
to that for p = 3.
The RD fits are less good - only the one for p = 5 has ry(1, 0) < ry(2, 0). The inverse correlations
r̃y(u) are moderately different from r̃x(u) for both fits with p < 5, but are relatively close for both
fits with p = 5 (see Table 3). These fits with p = 5 also have reasonable values of F (but have 2
more parameters than the CS-RSD). Note that the CS-RSD has r̃x(1, 0) > 0, but the two CAR(5)
fits have r̃y(1, 0) < 0.
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Lag
Models (1, 0) (2, 0) (3, 0) (1,1) (2, 1) (3,1) (2,2) (3,2) (3,3) F

CS-RSD(1,3) 0.391 0.462 0.300 0.363 0.340 0.265 0.282 0.228 0.190 0.407
CS-CAR(1) ML 0.391 0.176 0.086 0.247 0.137 0.074 0.090 0.054 0.036 0.635
CS-CAR(2) ML 0.391 0.254 0.170 0.363 0.232 0.162 0.189 0.139 0.113 0.632
CS-CAR(3) ML 0.391 0.462 0.324 0.363 0.341 0.313 0.361 0.303 0.287 0.561
CS-CAR(4) ML 0.391 0.462 0.325 0.363 0.340 0.314 0.361 0.303 0.287 0.561
CS-CAR(5) ML 0.391 0.462 0.297 0.363 0.340 0.286 0.282 0.265 0.237 0.497
CS-CAR(1) RD 0.558 0.367 0.263 0.441 0.329 0.248 0.271 0.217 0.182 0.612
CS-CAR(2) RD 0.446 0.328 0.244 0.432 0.305 0.236 0.264 0.212 0.183 0.628
CS-CAR(3) RD 0.470 0.342 0.249 0.371 0.295 0.232 0.250 0.206 0.178 0.600
CS-CAR(4) RD 0.462 0.417 0.268 0.393 0.274 0.246 0.267 0.197 0.181 0.545
CS-CAR(5) RD 0.414 0.447 0.276 0.379 0.316 0.256 0.232 0.214 0.177 0.482

Table 2: Correlations (columns 1 to 9) and F (column 10) for Example 5.2. First row: the CS-RSD(1,3)
with α10 = 0.248, β10 = −0.248, β11 = 0 and β20 = 0.2. Rows 2 to 11: the CS-CAR(p), p = 1 . . . 5,
fitted by ML and RD methods.

Lag
Models (1, 0) (1,1) (2, 0) (2, 1) (2, 2)
CS-RSD(1,3) 0.049 0.002 -0.359 -0.076 0.184
CS-CAR(5) ML -0.037 -0.021 -0.264 -0.017 0.108
CS-CAR(5) RD -0.053 -0.033 -0.277 -0.009 0.132

Table 3: Inverse correlations for Example 5.2. First row: the CS-RSD(1,3) with α10 = 0.248, β10 =
−0.248, β11 = 0 and β20 = 0.2. Rows 2 to 3: the CS-CAR(5) fitted by ML and RD methods.
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6 Model Fitting, Simulation and Model Selection
In this section we show that some standard methods for model fitting and identification can be
extended to RSDs.

6.1 Model Fitting and Simulation
Suppose the data are observed on an (n1 × · · · × nd) lattice L with N =

∏d
j=1 nj sites. Assume

x is the N -vector of observations in, say, lexicographic order, and that θ = (α′ β′)′, with x ∼
N(Gγ,Rxσ

2), where G is an (N×g) matrix and γ is a g-vector of parameters. Thus Gγ represents
fixed mean effects, such as trend terms or the effects of different characteristics. There are two
common possibilities for the dispersion matrix Rxσ

2: either Rx is the correlation matrix and σ2 =
σ2

x, or R−1
x is the matrix of inverse correlations and σ2 = σ2

η (the interpolation variance Var[x(t)|·]).
Then the deviance, minus twice the log-likelihood, is

D(γ, θ, σ2) = N log(2πσ2) + log |Rx| + (x − Gγ)′R−1
x (x − Gγ)/σ2.

Assume that Rx or R−1
x , sometimes known as the potential matrix, can be specified and G′R−1

x G
is positive definite. Then, in theory, the maximum likelihood fit of a model can be found by
minimising the deviance over the valid parameter space. (In practice, optimization can be over Rx

positive definite, which for finite N may allow parameter values slightly outside the stationarity
limits.) There are however several problems associated with this. If N is very large, deviance
evaluation may be time-consuming. If there are many parameters, there may be difficulties in
reaching the minimum and rounding errors may make convergence difficult with some routines (or
local optima may result from different starting values). Apart from these problems, there are two
major difficulties with almost all stationary CAR models. Firstly, the estimates can be extremely
close to the stationarity boundary (see section 2.3). Secondly, it is usually not possible to specify
Rx explicitly, and on a planar lattice it is usually not possible to specify all of R−1

x explicitly -
although the latter is known for all interior sites (those for which E[x(t)|·] involves only sites on
the lattice L), see section 2.3. The same applies for a RSD with p > 0.
Various possibilities have been suggested to overcome this problem with CARs and to complete
R−1

x . These essentially specify the conditional mean and variance at border sites (those for which
E[x(t)|·] involves sites outside L) in terms of sites on the lattice L in some simple convenient way.
Except for the periodic boundary conditions associated with a torus lattice (see below), the result
is non-stationary - variances are no longer constant, and correlations at a given lag depend on the
sites involved. One option is to set values of x − Gγ outside the lattice L to 0 (sometimes called
the Dirichlet conditions). Moura and Balram (1992) discuss two Neumann conditions which use
reflected values. Two other possibilities, scaling and including extra sites, are discussed in Besag
and Kooperberg (1985).
With Dirichlet or Neumann conditions, there is an exact eigenvalue-eigenvector decomposition of
R−1

x for some low-order CARs. In general, Moura and Balram (1992) show that since R−1
x is sparse

for CARs, the deviance can efficiently be calculated using the Cholesky decomposition. Boundary
conditions are not needed for DCs since Rx is directly specified, and the Cholesky decomposition
of Moura and Balram (1992) can be used. However, this method does not seem directly suitable
for RSDs.
A possibility for RSDs is to use that A(T )x(t) is a DC defined by A(z)B(z). Unless min(nj) is
small, a good initial estimate can be obtained from the RSD fit on the torus lattice (see below).
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Another method frequently used for CARs is (essentially) to map the finite planar lattice L on to
a torus (joining row and column ends). Then R−1

x is highly structured - defined by its first row,
whose elements are σ2/σ2

η times the inverse correlations. The standardised eigenvectors of Rx can
be taken as wk1

⊗ wk2
. . . ⊗ wkd

for kj = 1, ..., nj, where wkj
has vth element n−1/2

j ei2πkjv/nj .
Its eigenvalues are ϕ(u) = f(2πu/n)/σ2 for u ∈ L, with n = (n1, · · · , nd)

′, and |Rx| =
∏

u∈L ϕ(u).
Thus the deviance calculation is very fast and accurate, and the method can also be used for DCs
and RSDs. Given R−1

x , Rx can, if required, be quickly found using the fast Fourier transform. This
method can give good approximations to the stationary planar correlations.
Provided min(nj) is not small, and the estimates are not too close to the parameter boundary, the
estimates are very similar whatever boundary conditions are used. Thus, whatever method is most
convenient can usually be used for estimation.
The torus assumption gives a stationarity process, but the correlations depend on the size of the
lattice, and are unrealistic for sites a long way apart on the planar lattice but close on the torus.
Similarly, predicted values for boundary sites using the torus assumption may be unrealistic as
they will involve values at distant sites. Provided N is not too large, this problem can largely be
overcome by embedding the (n1×· · ·×nd) planar lattice L in a bigger torus lattice, and then using
the resulting Rx matrix for the lattice L.
It is simple to simulate a representation if x is Gaussian and Rx or R−1

x can be specified. If ε is a
simulation from a N(0, σ2IN), then, using any square root of Rx, x = Gγ + R1/2

x ε. In particular,
a torus simulation is easy using the known eigenvalues and eigenvectors of Rx.

6.2 Model Selection
Selecting an appropriate RSD(p, q) fit to a data set is a difficult problem, requiring further research.
There are some similarities to the problems in choosing an ARMA(p, q) for a time series. One
possible approach is to examine the estimated correlations and inverse correlations. In theory, as
noted by Garber in 1981 (see Guyon, 1995, Theorem 1.4.1), it is possible to identify the A(z)
component of the RSD by using the recurrence (9) on the sample correlations for u /∈ S+

q , and
then using that A(T )x(t) has acgf proportional to A(z)B(z) to identify the B(z) component.
Alternatively, the recurrence (10) on the estimated inverse correlations for u /∈ S+

q , could be used
for B(z). In either case, sampling variation would make implementation imprecise, but it may be
possible to select a small number of models for further consideration.
For model checking, the estimated interpolation errors η̂ can be found using η̂ = (σ̂2

η/σ̂
2)R̂

−1

x (x−
Gγ̂), and the predicted values are then x̂ = x − η̂. Other residuals, such as the approximately
uncorrelated R̂

1/2

x η̂, can then be derived.
Assuming checks on the model assumptions that x ∼ N(Gγ,Rxσ

2) are satisfactory, and the
models are fitted by maximum likelihood as in section 6.1, the significance of parameters in a fitted
model can be assessed by comparing estimates with their estimated standard errors (see Cressie,
1993, section 7.3.1). Nested models can be compared using the generalized likelihood ratio test
GLRT (using the difference in the deviances having an asymptotic χ2-distribution). These tests are
subject to the usual problems associated with multiple testing, the data not conforming perfectly
to the model assumptions, and the use of asymptotic theory on finite data.
If there are several models to compare, including ones which are not nested, standard model-
selection criteria can be used, such as AIC = D(γ̂, θ̂, σ̂2) + 2 P and BIC = D(γ̂, θ̂, σ̂2) +
P log(N), for a model with P parameters. At present, little is known about the behaviour of
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these criteria for selecting RSD models, or if some other multiplier of P would be preferable.

7 Real Data Examples
In this section, we use two real data sets to see if RSD models can be useful, and whether
their fits may be preferable to CAR fits. The data, represented in Figure 1, are (128 × 128)
portions (rows 200 to 327 and columns 300 to 427) of two texture images, grass (1.1.01) and wool
(1.1.05), available from http://sipi.usc.edu/database/. The grass image has pixel
values ranging from 6 to 238, with sample mean 131.4, and sample standard deviation 49.01. For
the wool image, the values range from 64 to 224, with sample mean 147.2, and sample standard
deviation 24.47.

Figure 1: Texture images: left) grass (1.1.01); right) wool (1.1.05).

A constant mean looks reasonable for both images. The histograms suggest Normality is a plausible
working assumption. Since N = 214 is so large, it is reasonable to use a torus lattice for the
maximum likelihood fitting (see section 6.1). Predicted values x̂ and estimated interpolation values
η̂ were obtained by beginning with the fitted torus values, then setting values of x and η outside L
to the sample mean and iteratively getting x̂ from equation (8) and η̂ as x − x̂.
The inverse correlations and the scaled interpolation variance F of the data were estimated using
equation (2) with the sdf fx(λ) estimated by smoothing the periodogram. Using the two-dimensional
form of the Daniell window (Priestley, 1981; p. 441) with length (a, a) where a is between 17 and
21, seemed to give an adequate amount of smoothing. The estimated inverse correlations do not
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change appreciably over the different a, but the estimated value of the scaled interpolation variance
F does increase with a.
Yuan and Subba Rao (1993) gave asymptotic standard errors for the estimated inverse correlations,
but did not show asymptotic Normality. To obtain an indication of the distribution when r̃x(u) = 0,
we examined estimated inverse correlations using a = 19 from simulated White Noise, and
also looked at the simulated distributions outside S+

p of the two chosen fitted CARs. These
simulations suggest that the estimated inverse correlations are approximately Normally distributed,
with standard error around 0.007, so the upper 2.5% point is around 0.014.
The low-lag sample correlations (using a divisor of N ) are shown in Tables 4 (grass) and 5 (wool).
These are high for neighbouring sites, but they then drop away quite quickly. They are slightly
larger between rows than between columns. The grass correlations are higher than the wool ones
for adjacent sites, but they then drop away more quickly. The sample correlations do not suggest
any symmetries.

u2

4 0.091 0.098 0.107 0.132 0.169 0.175 0.146 0.112 0.083
0.029 0.050 0.063 0.054 0.035 0.047 0.067 0.064 0.038
0.031 0.051 0.085 0.142 0.211 0.240 0.221 0.127 0.095

3 0.100 0.114 0.146 0.209 0.278 0.278 0.211 0.139 0.090
0.042 0.083 0.127 0.168 0.207 0.219 0.181 0.105 0.030
0.045 0.076 0.130 0.224 0.246 0.279 0.239 0.177 0.155

2 0.108 0.138 0.212 0.347 0.482 0.448 0.300 0.177 0.104
0.046 0.112 0.212 0.347 0.482 0.448 0.300 0.133 0.014
0.066 0.115 0.200 0.356 0.515 0.461 0.338 0.220 0.133

1 0.114 0.175 0.312 0.573 0.801 0.663 0.386 0.211 0.119
0.035 0.133 0.312 0.573 0.801 0.663 0.386 0.144 0.005
0.097 0.173 0.311 0.572 0.808 0.686 0.435 0.235 0.129

0 1.000 0.747 0.399 0.210 0.119
1.000 0.747 0.399 0.146 0.014
1.000 0.753 0.421 0.204 0.103

-4 -3 -2 -1 0 1 2 3 4
u1

Table 4: Grass texture image. Estimated correlations at lags (u1, u2), u1 = −4, . . . , 4; u2 = 0, . . . , 4.
First row: sample correlations. Second row: fitted CAR(5). Third row: fitted RSD(2, 2).

The low-lag estimated inverse correlations, using a = 19, are given in Tables 6 (grass) and 7
(wool). Taking an informal account of multiple testing, they suggest that for the wool image the
only non-zero values may be for u1 = 0, 1 ≤ u2 ≤ 3, plus u1 = 1, 0 ≤ u2 ≤ 2. The grass
image has more large values, with most in Table 6 possibly being significantly different from 0.
The estimated values of F are 0.0360 (a = 17), 0.0374 (a = 19), 0.0389 (a = 21) for the grass
image, and 0.2323 (a = 17), 0.2348 (a = 19), 0.2374 (a = 21) for the wool image.
CAR(p) models for 1 ≤ p ≤ 5, and RSD(p, q) models for 1 ≤ p, q ≤ 3, were fitted to the data.
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u2

4 0.112 0.172 0.239 0.297 0.318 0.293 0.242 0.184 0.124
3 0.152 0.223 0.304 0.372 0.398 0.358 0.296 0.225 0.156
2 0.190 0.274 0.381 0.480 0.516 0.441 0.355 0.274 0.190
1 0.221 0.321 0.452 0.615 0.741 0.556 0.420 0.314 0.222
0 1.000 0.672 0.474 0.339 0.231

-4 -3 -2 -1 0 1 2 3 4
u1

Table 5: Wool texture image. Sample correlations at lags (u1, u2), u1 = −4, . . . , 4, u2 = 0, . . . , 4.

u2

4 -0.013 0.011 -0.003 -0.015 0.019 0.010 -0.007 -0.003 0.007
0 0 0 0 0 0 0 0 0

0.001 -0.004 0.009 -0.021 0.020 0.023 -0.028 0.013 -0.001

3 0.016 -0.014 0.002 0.028 -0.034 -0.034 0.043 -0.023 0.007
0 0 0 0 0 0 0 0 0

-0.005 0.011 -0.024 0.055 -0.060 -0.025 0.053 -0.036 0.017

2 -0.003 -0.011 0.048 -0.119 0.152 -0.009 -0.049 0.044 -0.026
0 0 0.034 -0.104 0.130 -0.052 0.007 0 0

0.016 -0.033 0.070 -0.147 0.179 -0.020 -0.069 0.069 -0.049

1 -0.040 0.092 -0.202 0.395 -0.531 0.274 -0.087 0.016 0.004
0 0 -0.118 0.387 -0.555 0.291 -0.068 0 0

-0.056 0.108 -0.209 0.410 -0.542 0.267 -0.047 -0.025 0.041

0 1.000 -0.696 0.356 -0.166 0.075
1.000 -0.622 0.170 0 0
1.000 -0.692 0.342 -0.169 0.084

-4 -3 -2 -1 0 1 2 3 4
u1

Table 6: Grass texture image. Estimated inverse correlations at lags (u1, u2), u1 = −4, . . . , 4; u2 =
0, . . . , 4. First row: sample inverse correlations. Second row: fitted CAR(5). Third row: fitted RSD(2, 2).
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u2

4 -0.001 0.001 -0.002 -0.003 0.015 -0.012 0.012 -0.006 0.005
3 0.003 -0.004 0.006 0.008 -0.012 0.010 -0.015 0.011 -0.006
2 0.000 0.002 -0.002 0.018 -0.011 0.003 0.004 -0.004 0.005
1 -0.004 0.002 0.014 -0.013 -0.228 0.092 -0.028 0.008 -0.002
0 1.000 -0.446 0.116 -0.040 0.013

-4 -3 -2 -1 0 1 2 3 4
u1

Table 7: Wool texture image. Estimated inverse correlations at lags (u1, u2), u1 = −4, . . . , 4, u2 =
0, . . . , 4.

We compare fits here using the GLRT when appropriate, and the AIC and BIC values (see section
6.2). We also compare fitted correlations and inverse correlations with those of the data. The BIC
criterion has a much larger penalty for P parameters than the AIC, since log(1282) ≈ 9.70. Note
that P = P1 +P2 +2 (P1 from Sp, P2 from Sq, plus µ and σ2). The deviance, AIC and BIC values
have been reduced by 141000 (grass image), and by 133000 (wool image).
For the grass image, the valid GLRT comparisons do not suggest any model simplification from
the general CAR(5) and RSD(3, 3). The best AIC and BIC values among the CARs are for the
CAR(5) with P = 12 + 2 which has AIC = 623.74 and BIC = 731.60. However, the RSD(1,2)
model with P = 2 + 4 + 2 has AIC = 580.10 and BIC = 641.73, and the best values are for
the RSD(2, 2) with P = 4 + 4 + 2 which has AIC = 161.74 and BIC = 238.78. The parameter
estimates for the RSD(2, 2) are α̂10 = 0.301, α̂01 = 0.374, α̂11 = −0.134, α̂1−1 = −0.049,
β̂10 = 0.407, β̂01 = 0.448, β̂11 = 0.164, β̂1−1 = 0.227 (the estimates for the CAR(5) are minus the
inverse correlations given in Table 6).
Table 4 shows the correlations of the fitted CAR(5) and RSD(2, 2) - see also Figure 2. Although
the correlations of the CAR(5) match those of the data within S5, outside S+

5 they do not match
the sample correlations well as they drop off rapidly. For example, the lag (0, 4) value of 0.035 is
well below 0.169. On the other hand, the fitted RSD(2, 2) correlations are reasonably close over
−4 ≤ u1 ≤ 4 and 0 ≤ u2 ≤ 4.
Table 6 shows the low-lag inverse correlations for the fitted CAR(5) and RSD(2, 2) models - see
also Figure 2. The values for the RSD(2, 2) are mainly much closer to those in Table 6 than those
of the CAR(5), e.g. see u1 = 0. The estimated value of F is 0.0329 for the RSD(2, 2), and 0.0464
for the CAR(5).
The η̂(t) for the two fits do not show any areas where the models fit badly. A comparison of
the η̂(t) for these two fits shows that the range for the RSD(2, 2) is smaller (−2.37 to 2.23) than
that for the CAR(5) (−2.72 to 2.32), and that the RSD(2, 2) has fewer large values, with eight
|η̂(t)| > 2, whereas the CAR(5) has twelve.
For the wool image, the GLRT shows that amongst the CARs p = 4 (D = 605.36, P = 10 + 2)
is sufficient. The AIC and BIC criteria also choose the general CAR(4) (AIC = 629.36, BIC =
721.81).
Amongst the RSD(p, q), the possible GLRTs suggest that p = q = 3 (D = 507.46, P = 6+6+2)
is necessary. This also has the best AIC (535.46) and BIC (643.32) values. Its AIC and BIC
values are much lower than the best CAR values. However, better AIC and BIC values to those
of the CAR(4) are obtained by a RSD with fewer parameters; for example we have AIC = 609.40
and BIC = 671.03 for the RSD(1,2) with P = 2 + 4 + 2, and AIC = 603.72 and BIC = 680.76
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Figure 2: Grass texture image. Sample (solid line) and model-estimated correlations (top) and inverse
correlations (bottom) along the horizontal (left) and vertical (right) directions for the CAR(5) (circles) and
RSD(2, 2) (dots)

for the RSD(2, 2) with P = 4 + 4 + 2. The fitted CAR(4) and RSD(3, 3) both have correlations
and inverse correlations which match moderately well those of the data. The estimated values of F
are 0.2242 for the RSD(3, 3) and 0.2271 for the CAR(4). The parameter estimates for the CAR(4)
are α̂10 = 0.429, α̂20 = −0.072, α̂01 = 0.225, α̂02 = 0.027, α̂11 = 0.019, α̂1−1 = −0.105,
α̂21 = −0.031, α̂2−1 = −0.014, α̂12 = −0.013, α̂1−2 = 0.034, and for the RSD(3, 3) are α̂10 =
0.391, α̂20 = −0.036, α̂01 = 0.438, α̂02 = −0.044, α̂11 = −0.127, α̂1−1 = −0.123, β̂10 = 0.241,
β̂20 = 0.002, β̂01 = −0.085, β̂02 = −0.099, β̂11 = 0.053, β̂1−1 = −0.084.

These two examples show that RSD models with the same number of parameters, or even fewer,
can give better and simpler fits than CAR models. For the grass image, the best RSD fit, using the
AIC or BIC criterion, also has a better fit of both the correlations and the inverse correlations, and
a smaller estimated F .

8 Discussion
RSD models are a natural extension of CAR and DC models, which warrant consideration when
fitting spatial models to data. They have a wider range of correlation structures, and for moderate
to high correlations they do not usually need the parameters to be so close to the boundary. Thus
parameter estimation is computationally easier and more stable. Unless P is small (up to 6), it can
be much faster to fit an RSD with q > 0 than a CAR with the same P . For example, fitting the
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CAR(5) to the grass data in section 7 took 10 times as long as fitting the RSD(3, 3). RSD models
can be useful as simpler fits to data, using fewer parameters, and they can give more accurate
predictions. Estimation when there are some missing values, or when the data set contains possible
outliers, can be carried out in the usual way.
In this paper we have concentrated on some properties of RSD models. Topics for further work on
RSD models include investigating different methods for fitting planar data and obtaining predicted
values, seeing if they may be useful as approximations to the correlations or inverse correlations
of geostatistical models which have a large or an infinite range, and theoretical investigations
of the properties of some approximations to maximum likelihood estimation and methods for
model selection and checking model adequacy. Methods for using RSDs in hierarchical modelling
also need to be explored. The inverse correlations and the scaled interpolation variance F were
estimated in section 7 using an estimate of the sdf. Further research is needed to determine the best
estimate of the sdf for these and the index of linear determinism, 1−F , and to compare with other
possible estimates.
Matlab (The MathWorks, 2010) routines for fitting the model are available from the corresponding
author.
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APPENDIX 1
Stationarity conditions for the CS-CAR(3) when d = 2

fx(λ) > 0 implies g(λ) < 1/2, where g(λ) = α10{cos(λ1) + cos(λ2)} + α11{cos(λ1 − λ2) +
cos(λ1 + λ2)} + α20{cos(2λ1) + cos(2λ2)}. We seek maximal values of g(λ). Now,

∂g

∂λ1
= − sin(λ1){α10 + 2α11 cos(λ2) + 4α20 cos(λ1)}.

If sin(λ1) = sin(λ2) = 0, then λj ∈ {0, π}, which implies α11+α20 < 1/4−|α10|, and α20−α11 <
1/4. If λ1 = λ2, and cos(λ1) = −α10/{2(α11 + 2α20)}, the condition g(λ) < 1/2 becomes
1 + 4α20 + α2

10/(α11 + 2α20) > 0.

APPENDIX 2
Approximate value when d = 2 of rx(1, 0) for a CS-CAR(1) with a large α10

Let V (u) denote Rx(u)/σ2
η . Equation (6) with u = 0 gives

V (0, 0) = 4α10V (1, 0) + 1,

so that

rx(1, 0) =

(

1 −
1

V (0, 0)

)

/(4α10).

From Besag (1981, eq (7)),

V (0, 0) = 2K(4α10)/π,

where K is the complete elliptic integral of the first kind. Now, from Abramowitz and Stegun
(1965, equation 17.3.26), and correcting for the change in notation - see Besag (1981), we have

lim
α10→1/4

[

K(4α10) −
1

2
log

(

16

1 − 16α2
10

)]

= 0.

Thus if α10 = 1/4 − ς for ς small,

rx(1, 0) ≈
1

4α10

(

1 +
π

log
(

ς
2
− ς2

)

)

. (11)

Since ς < 0.001 for rx(1, 0) > 0.59, we can take

rx(1, 0) ≈
1

4α10

(

1 −
π

log(2/ς)

)

(12)

or just

rx(1, 0) ≈ 1 −
π

log(2/ς)
(13)

For example, when α10 = 0.249, rx(1, 0) ≈ 0.5898, and the approximations are (to 4 d.p.) 0.5891
for equation (11), 0.5890 for equation (12) and 0.5867 for equation (13). When α10 = 0.2499,
rx(1, 0) ≈ 0.6831, and the approximations are, respectively, 0.6831, 0.6831, and 0.6828.
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