

The Use Of Secure Email In TRIADS

Simon Hatton

Contents

2

Contents

 Acknowledgements……………………………………………………………… 4

1.0 Introduction……………………………………………………………………… 5

 1.1 What Is Secure Email?………………………………………………………… 5

2.0 How To Integrate PGP with TRIADS…………………………………………... 6

 2.1 Create a PGP key pair for the examiner………………………………………. 6

 2.2 Create a PGP key pair for every student…………………………………….… 6

 2.3 Email encrypted/signed answers to the examiner………………………….….. 7

 2.4 Location of PGP/TRIADS files……………………………………………….. 9

 2.5 Summary………………………………………………………………………. 9

3.0 Generating the examiner’s PGP key…………………….………………………. 10

 3.1 Install PGP…………………………………………………………………….. 10

 3.2 Key Generation Wizard……………………………………………………….. 10

 3.3 Summary………………………………………………………………………. 11

4.0 Generating the students PGP keys………………………………………………. 12

 4.1 PGP Key Generation Command………………………………………………. 12

 4.2 Using an Expect script to automatically create PGP keys…………………….. 12

 4.3 Problems with the Expect script………………………………………………. 13

 4.4 Using the PGP SDK to automatically create PGP keys………………………. 14

 4.5 Summary………………………………………………………………………. 15

5.0 Integrating PGP with a TRIADS assessment…………………………………… 17

 5.1 PGP Command Line…………………………………………………………... 17

 5.2 Environment Variables used with PGP……………………………………….. 19

 5.3 Running PGP from a C++ program…………………………………………… 20

 5.4 Using input parameters with pgp_triads……………………………………… 20

 5.5 Running PGP from a network drive…………………………………………... 21

 5.6 Running PGP from within Authorware……………………………………….. 22

 5.7 Buddy API…………………………………………………………………….. 23

 5.8 Incorporating the pgp_triads program with TRIADS………………………… 24

 5.9 Not enough Random Data on PC’s……………………………………………. 25

 5.10 Using the PGP SDK to add random data……………………………………… 26

 5.11 Summary………………………………………………………………………. 27

6.0 Running a PGP/TRIADS assessment…………………………………………… 29

 6.1 Preparation for the assessment………………………………………………… 29

 6.2 Running the assessment……………………………………………………….. 30

 6.3 Decrypting/Verifying the student’s results…………………………………… 30

Contents

 3

 6.4 Summary………………………………………………………………………. 31

7.0 Conclusions and Future Improvements…………………………………………. 32

 Appendix A……………………………………………………………………… 33

 Appendix B……………………………………………………………………… 36

 Appendix C……………………………………………………………………… 37

 Appendix D……………………………………………………………………… 40

 Appendix E……………………………………………………………………… 43

 Appendix F……………………………………………………………………… 52

 Appendix G……………………………………………………………………… 53

 Appendix H……………………………………………………………………… 54

 Appendix I……………………………………………………………………… 55

 Appendix J……………………………………………………………………… 56

 Appendix K……………………………………………………………………… 57

 Appendix L……………………………………………………………………… 58

Acknowledgements

4

Acknowledgements

 I would like to thank the following people for their continued help and support

throughout this project:

JISC

The work for this project was funded by a grant from the Joint Information

Systems Committee (JISC), and their support is greatly appreciated.

CIAD

The Centre for Interactive Assessment Development (CIAD), based at the

University of Derby, are responsible for the development and maintenance of

TRIADS. I would like to thank them for their help with the development of

the TRIADS engine.

Dr. Alan Boyle

Alan Boyle is a lecturer in the Earth Sciences department at the University of

Liverpool. Alan is the principal contact at the University of Liverpool for the

TRIADS project. My thanks to Alan for his continued guidance and support

throughout the project.

Chapter 1: Introduction

5

1.0 Introduction

 The department of Earth Sciences at the University Of Liverpool have been running

CBAs (Computer Based Assessments) since 1995. The department predominantly

uses the TRIADS (TRipartite Interactive Assessment Delivery System) engine to help

in the production of CBAs. TRIADS is a toolkit, built using Macromedia Authorware,

specifically designed to facilitate the rapid and easy production of CBAs. Authorware

is primarily used to create rich-media training applications, but it also provides the

basic framework for creating CBAs.

 The TRIADS system has been developed since 1992 at the University of Derby, and

is currently being extended in collaboration with the University of Liverpool, and the

Open University. TRIADS is developed and maintained at the University of Derby by

CIAD (Centre for Interactive Assessment Development). For more information please

visit http://www.derby.ac.uk/ciad/.

 An assessment created with the TRIADS engine can be run on a PC, and upon

completion the results can be emailed back to the examiner. The purpose of this

project was to introduce the use of secure email within a TRIADS assessment.

1.1 What Is Secure Email?

 Secure email offers a number of advantages over regular email. By default regular

email only offers fairly weak security, however the use of secure email improves

matters by providing the following benefits:

• Prevention of unauthorised reading of an email message

• Confirmation of the origin of the message

• Proof that the message has not been altered

 There are a number of secure email software tools available, but for this project

PGP (Pretty Good Privacy) was used. This is because PGP is currently the most

widely deployed piece of software for protecting messages sent across the Internet.

For a brief explanation of the concepts of PGP please see Appendix A.

 The next chapter will begin by explaining how we planned to run PGP from within

a TRIADS assessment.

Chapter 2: How To Integrate PGP with TRIADS

 6

2.0 How To Integrate PGP with TRIADS

 Previously whenever an assignment was completed the student’s answers were sent

via email to the examiner. This only offered weak security on the email, so the

solution proposed for this project was to use PGP to improve security by encrypting

and signing the student’s answers before they are emailed.

 When the examiner received the email they will then be able to decrypt it to reveal

the student’s answers, and verify the signature to confirm the origin of the message

and prove that it had not been altered.

 Additionally any solutions that were achieved for this project had to satisfy the

following conditions:

• The TRIADS assessments that are integrated with PGP would run on any

Windows 2000 PC from within the University of Liverpool

• The students had to have no knowledge of the involvement of PGP within

the assessment i.e. the use of PGP had to be completely hidden

• The signing/encrypting of the student’s answers had to be automatic and

required no input from the user

2.1 Create a PGP key pair for the examiner

 In order for the student’s answers to be encrypted to the examiner, the examiner

generated their own public/private key pair beforehand. A key pair can be easily

created by installing PGP on the examiner’s PC, and then running through the key

generation procedure.

2.2 Create a PGP key pair for every student

 In order for the student’s answers to be signed every student who was taking the

assessment had their own individual public/private key pair. This presented a couple

of problems, namely if the students had no knowledge of PGP being used then they

cannot have been expected to create the key pair themselves. Also how can the

answers be signed without asking the student to enter the passphrase for their private

key?

 Currently whenever CBAs are run at the University of Liverpool the students do not

login to the PCs being used with their own username/password. This guards against

Chapter 2: How To Integrate PGP with TRIADS

 7

the possibility that students could store relevant information under their own

username.

 Instead the examiner uses a collection of temporary usernames to login to each PC

before the students arrive. An example of the form the temporary usernames may take

is scese01, scese02, scese03 etc. These usernames can then be linked to seat numbers

in a teaching centre, therefore allowing the examiner to know which computer each

student was sat at. In addition only these temporary usernames have access to the

CBA exam.

 In order to link PGP with these temporary usernames a public/private key pair was

created for each username beforehand. Therefore when the answers were signed PGP

used the private key that had the same name as the username that was used to log onto

the PC currently being used for the assessment.

 The following list explains the stages that must be carried out in order for the

student’s answers to be correctly signed:

a) An examiner had a collection of temporary usernames, e.g. scese00 to

scese99

b) The examiner created a public/private key pair for each temporary

username. The passphrase for each private key is the same as the username

c) Before the students arrived for the assessment the examiner logged into

each computer that was going to be used with one of the temporary

usernames

d) The students then began the assessment

e) When each student completed the assessment TRIADS used PGP to sign

their results using the correct private key, and passphrase. For example if

the username scese33 was used by the examiner to initially logon to a PC,

then the private key, and passphrase, scese33 were used to sign the

student’s answers on that PC.

2.3 Email encrypted/signed answers to the examiner

 Once the answers have been signed using the student’s private key, and encrypted

using the examiner’s public key, then the encrypted/signed answers were emailed to

Chapter 2: How To Integrate PGP with TRIADS

 8

the examiner. The following list, along with Fig. 2.1, gives an example of the stages

that are involved in this process:

a) A student completes the TRIADS assessment

b) TRIADS saves their answers into a temporary file

c) PGP takes the answers file, signs it with the correct student’s private key,

and encrypts it with the examiner’s public key. This creates a new

temporary file

d) TRIADS copies the contents of this new file into the body of an email

message

e) TRIADS sends this email to the examiner

f) TRIADS deletes the temporary files

g) Upon receipt the examiner uses PGP to decrypt/verify the email to reveal

the student’s answers

Fig. 2.1 – Integrating PGP with a TRIADS assessment

 The preceding list, along with Fig. 2.1, shows that PGP is only used in steps c) and

g). TRIADS carries out all of the other operations, such as, saving the students

answers to a file, emailing the answers to the examiner etc.

Chapter 2: How To Integrate PGP with TRIADS

 9

2.4 Location of PGP/TRIADS files

 In order for PGP/TRIADS to be run from any Windows 2000 PC it was important

that all files required could be easily accessed from these machines. Therefore all of

the necessary files for the assessment were stored on a University network drive.

 Whenever one of the temporary usernames was used to log into a PC then the login

procedure automatically mapped to the network drive where the PGP/TRIADS files

were stored. This meant that the assessment, and PGP, could be easily executed.

2.5 Summary

 The aim of this project was to incorporate the use of PGP into a TRIADS

assessment so that a student’s results were signed, and encrypted, before they were

emailed to the examiner.

 Before an assessment took place the examiner created their own PGP key pair. A

public/private key pair was also generated for each username from a list of temporary

usernames. Additionally all files that are used by either PGP/TRIADS were copied

onto a University network drive so that they can be accessed from any Windows 2000

PC.

 On the day of the assessment, before the students arrived, the examiner logged into

each PC being used with one of the temporary usernames. When a student completes

the assessment their answers were signed by using the private key that had the same

name as the username that was used for the CBA. The student’s answers were also

encrypted using the examiner’s public key.

 These signed/encrypted results were copied to the body of an email message, which

was then sent to the examiner. Upon retrieval of the email message the examiner used

PGP to decrypt the answers, and verify the student’s identity.

 The implementation of the concepts described in this chapter are covered in

chapters 3, 4, and 5.

Chapter 3: Generating the examiner’s PGP key

10

3.0 Generating the examiner’s PGP key

 In order for the student’s answers to be encrypted, the examiner must have their

own PGP key pair. In addition, the examiner must have PGP installed on the PC

where they intend to decrypt and verify the emails containing the students’ answers.

This chapter gives a brief description of the stages involved in the installation and

setup of PGP.

3.1 Install PGP

 For this project PGP version 6.5.8 for Windows 2000 was installed on the

examiner’s PC. PGP also includes various plug-ins for a number of popular email

programs. A plug-in is an additional piece of software that bridges the gap between

PGP and an email package. The plug-in adds a couple of extra buttons to the interface

of the email package to allow the user to easily access the functions of PGP. This

makes decryption and verification of emails a lot easier for the examiner.

 Fig. 3.1 shows an example of the decrypt/verify button that is added to the interface

in Eudora when the Eudora PGP plug-in has been installed.

Decrypt/Verify button

Fig. 3.1 – PGP plug-in buttons

3.2 Key Generation Wizard

 Once PGP had been installed on the examiners PC then they needed to create their

own key pair. After PGP has been installed the Key Generation Wizard is

automatically launched, as shown in Fig. 3.2.

 The Key Generation Wizard takes the user through the process of specifying the

details of their key pair. The details that the user has to input are:

a) The name associated with the key pair, e.g. Fred Bloggs

b) The email address associated with the key pair (optional), e.g.

fred@bloggs.com

Chapter 3: Generating the examiner’s PGP key

 11

c) The size of the key pair. Please note that all key pairs generated for use in

the project were 2048/1024 DH/DSS key pairs.

d) The date when the key pair expires

e) The passphrase used to access the private key

Once all of these details have been entered then the key pair was generated.

Fig. 3.2 – PGP Key Generation Wizard

 PGP keys are stored in files known as keyrings. The public key is stored in a public

keyring file (pubring.pkr), and the private key is stored in a private keyring file

(secring.skr).

3.3 Summary

 For the student’s answers to be encrypted to the examiner, the examiner must have

already created their own PGP key pair. A PGP key pair was generated for the

examiner by first installing PGP 6.5.8 for Windows 2000 on their PC, and then

running through the Key Generation Wizard. In addition, a PGP plug-in for the

examiner’s preferred email package was also installed. This made the process of

decrypting/verifying emails considerably easier.

Chapter 4: Generating the students PGP keys

12

4.0 Generating the students PGP keys

 In order for the student’s answers to be signed each student who is taking part in the

TRIADS assessment needed their own PGP key pair. However as the involvement of

PGP was hidden from the students the key pairs needed to be created beforehand.

 For each assessment a list of temporary usernames was used, for example, scese00

through to scese99. A PGP key pair therefore had to be created for every temporary

username in this list.

 The major problem was that it would take a long time for the examiner to create all

the key pairs manually, especially if there are hundreds of students sitting the exam.

Therefore there needed to be some form of automatic PGP key generation that would

make the job of creating the student’s keys as quick and as simple as possible.

4.1 PGP Key Generation Command

 The PGP command line version 6.5.8 has a key generation command (pgp –kg).

When this command is entered the user is asked a series of questions about the type of

key they want to create, and once the questions have been answered then the key is

generated. An example of the questions that are asked by the key generation

command can be seen in Appendix B.

4.2 Using an Expect script to automatically create PGP keys

 Expect is a program that lets the user control interactive applications. Interactive

applications are ones where the user is prompted with a question, and they are then

expected to enter a keystroke in response. By using Expect it is possible to write a

script that can be used to automate these interactions i.e. the script expects certain

questions to be asked, and when they are it sends the correct answer. Therefore an

Expect script, key_gen.exp, was written that automatically ran through the PGP key

generation command.

 The Expect script also required some initial data, supplied by the examiner, before

the keys could be created. The data required was:

a) The first and last usernames that require a key pair

b) The date when the keys should expire, e.g. 01/01/2010

Chapter 4: Generating the students PGP keys

 13

In order to obtain this data from the user a C program, genkey, was written. This

program asked the examiner to enter the name of a file where the list of temporary

usernames were to be stored, the first and last usernames that required a key pair, and

the date when the keys will expire. For example, the examiner inputs the data shown

in Fig. 4.1.

Input Data Value

Temporary Filename TEMPKEYS.TXT

First Username scese00

Last Username scese99

Expiry Date 01/01/2010

Fig. 4.1 – Input data required by the genkey program

 Given this data, genkey created a list of all usernames from scese00 through to

scese99, and output the list into a file called “TEMPKEYS.TXT”. The program also

calculated the number of days between the current date and 01/01/2010.

 Finally genkey called the Expect script key_gen.exp with the name of the file

containing the list of usernames, and the number of days the key pairs are valid for as

input parameters. The code for the genkey program can be seen in Appendix C, and

the code for the key_gen.exp script can be seen in Appendix D.

4.3 Problems with the Expect script

 The combination of the genkey program and the key_gen.exp script was used to

automatically create PGP key pairs. However there were a number of problems with

this solution:

a) The key_gen.exp script took a long time to create the keys. For example, it

took a number of hours for the program to be able to create the 100 PGP

keys scese00 through to scese99.

b) The key_gen.exp script was unreliable, for example, when creating the keys

scese00 through to scese99 it crashed on a number of occasions. This meant

that the examiner had to restart the genkey program to create the remaining

PGP keys.

Chapter 4: Generating the students PGP keys

 14

c) The error checking on the user input for the genkey program was not

sufficient i.e. if the examiner entered an invalid expiry date then the

program would crash, or create an incorrect key.

d) PGP requires a certain amount of random data so that it can generate unique

keys. This random data is gathered from various system sources, such as

mouse position, timings, keystrokes etc.

When using the PGP Key Generation command the user has to create this

random data themselves by moving the mouse or pressing keys on the

keyboard.

In key_gen.exp the random data is created automatically by inputting a

random number between 0 and 9, every 1 or 2 seconds. Unfortunately this

method does not really offer sufficient randomness for generating PGP

keys.

Therefore as a result of the problems faced with the C program and the Expect script a

better solution was needed.

4.4 Using the PGP SDK to automatically create PGP keys

 The PGP SDK (Software Developer’s Kit) is a collection of C++ libraries that allow

a developer to add PGP functions into their programs. The PGP SDK provides

functions that allow the user to create their own PGP keys. Therefore a C++ program

was written as an alternative to the combination of the existing genkey program, and

the key_gen.exp script.

 This new version of the genkey program was a Windows 32-bit console application

that could be run from the command prompt. The program still required the user to

input initial data about the first and last usernames, and the date when the keys will

expire. However the need for the user to enter a temporary filename was removed,

instead the filename was specified within the actual source code. The code used for

the new version of the genkey program can be seen in Appendix E, and Fig. 4.2 shows

an example of the output from the program while it is running.

 This new C++ version of the genkey program offered the following benefits over the

Expect script:

Chapter 4: Generating the students PGP keys

 15

a) The genkey program ran much faster. For example, it took approximately

15 minutes for the program to be able to create the 100 PGP keys.

b) The program was a lot more a stable, and did not crash when creating the

PGP keys.

c) The error checking on the data input by the user is greatly improved. It was

now no longer possible to enter an invalid expiry date.

d) The random data, required by PGP to create unique keys, was now

automatically collected by generating random numbers between 0 and

999999. However whilst an improvement over key_gen.exp the generation

of random numbers for the key creation was still flawed.

Fig. 4.2 – Output from the genkey program

4.5 Summary

 In order for the student’s answers to be signed each student taking part in the

TRIADS assessment required their own PGP key pair. As there are potentially

hundreds of key pairs that need to be created the process needed to be as simple and

as fast as possible.

 Initially a combination of a C program, and an Expect script was used.

Unfortunately this solution was very slow, and very unstable. An improved solution

Chapter 4: Generating the students PGP keys

 16

was found by writing a C++ program using the PGP SDK. This new solution was a lot

faster, and more stable, than the previous Expect script.

Chapter 5: Integrating PGP with a TRIADS assessment

17

5.0 Integrating PGP with a TRIADS assessment

 This chapter describes the work that was carried out so that PGP could sign and

encrypt a student’s answers from within a TRIADS assessment. For this stage it was

important that the following conditions were met:

• The students should have no knowledge of PGP’s involvement. Therefore

there should be no pop-up windows, confirmation boxes etc. PGP should

run hidden in the background

• The encryption/signing of the answers file had to be completely automatic.

The student must not have to enter a passphrase in order to access the

private key

• The assessment/PGP must be able to run from any Windows 2000 PC

anywhere in the University

5.1 PGP Command Line

 In order to run PGP from within a TRIADS assessment the PGP command line

version 6.5.8 for Windows 2000 was initially used. This program can take a file, sign

and encrypt it, and produce an encrypted version of the original file.

 By using the PGP command line a user can specify the name of the file that they

want to sign/encrypt, the private key that should be used to sign the file, and the

public key used to encrypt the file. For example, below is a PGP command that takes

a file called “answers.txt”, signs it with the private key belonging to the user

“student”, and encrypts it with the public key belonging to the user “examiner”.

pgp –seat answers.txt examiner –u student

 This command will create a new file containing the encrypted/signed answers. A

full explanation of the parameters used for this command are shown in Fig. 5.1, and

the output from running the command can be seen in Fig. 5.2.

Chapter 5: Integrating PGP with a TRIADS assessment

 18

Parameter Description

-Seat Sign the input file

-sEat Encrypt the input file

-seAt Convert the output file to ASCII-armoured format. This format is
suitable when sending the message through email channels

-seaT Identifies the input file as a text file

answers.txt Input file containing the student’s answers

examiner User ID of recipient

-u Identify the key to use for signing

student User ID of signing key

Fig. 5.1 – PGP command line arguments

Warning

Message

User is

required to

enter their

passphrase

Fig. 5.2 – PGP command line output

 While the output shown in Fig. 5.2 does sign and encrypt a file there are a couple of

problems with the PGP command:

a) Whenever PGP is run the following warning message is output:

“Environmental variable TZ is not defined, so GMT timestamps may be

wrong. See the PGP User’s Guide to properly define TZ”

This warning also caused the computer to output a “beep” sound. This drew

attention to the fact that PGP was being used.

Chapter 5: Integrating PGP with a TRIADS assessment

 19

b) PGP asked the user to type in their passphrase so that the file can be signed.

In order for the process to be automated this user interaction had to be

removed

5.2 Environment Variables used with PGP

 To eliminate the problems highlighted in section 5.1 the environment variables, as

shown in Fig. 5.3, can be used:

Variable Description

PGPPASS The PGPPASS environment variable avoids the user being prompted
for a passphrase by storing a passphrase. Example:

SET PGPPASS=hello world

This eliminates the prompt for the passphrase if the passphrase for the
private key is “hello world”

TZ PGP has a timestamp for keys and signatures in Greenwich Mean
Time (GMT). The environment variable TZ can be used to specify the
number of hours to add to the system time function to get GMT.
Example:

SET TZ=GMT0BST

This command eliminates the warning message, and the beep, that
PGP was producing every time it was run.

Fig. 5.3 – Environment variables

 The two environment variables shown in Fig. 5.3 are initialised by typing them into

a command window before running the PGP command line. For example, the 2

environment variables are typed into the command prompt, and then PGP is executed

by using the command shown in section 5.1:

SET PGPPASS=my passphrase

SET TZ=GMT0BST

pgp –seat answers.txt examiner –u student

This results in PGP being executed, the output of which is shown in Fig. 5.4.

Chapter 5: Integrating PGP with a TRIADS assessment

 20

NO

Warning

Message

User is

NOT

prompted to

enter their

passphrase

Fig. 5.4 – Improved PGP command line output

As can be seen in Fig. 5.4 the warning message, and the prompt for the passphrase,

have been removed by setting the PGPPASS, and TZ, environment variables.

5.3 Running PGP from a C++ program

 In order to set the PGPPASS, and TZ, environment variables before the PGP

command line is run a script needed to be written to execute the 3 commands shown

in section 5.2. Therefore a C++ program, pgp_triads, was written to carry out these

actions.

 Using the C++ command _putenv the environment variables were initialised, and

the system command was used to launch the PGP command line from within the

program.

 The code used for pgp_triads can be seen in Appendix F. The output from running

this program is shown in Fig. 5.4.

5.4 Using input parameters with pgp_triads

 A problem with the initial version of the pgp_triads program was that the names of

the file to encrypt, the public key, the private key, and the passphrase were all

specified directly within the code. This was a problem because these details needed to

be changed each time the program is run.

 To avoid this problem the program was updated so that these identifiers were

specified as command line arguments when the program is run. For example the

following parameters were now used every time pgp_triads was executed:

pgp_triads <answers_file> <recipient> <sender>

Chapter 5: Integrating PGP with a TRIADS assessment

 21

This command will run pgp_triads, but now the file specified as the <answers_file>

parameter will be signed/encrypted. The private key belonging to the user specified as

the <sender> parameter will be used to sign the file, and the public key belonging to

the user specified as the <recipient> parameter will be used to encrypt the file. The

updated version of the program can be seen in Appendix G.

5.5 Running PGP from a network drive

 Having written a program that could run PGP to automatically sign and encrypt a

file we then had to test that the PGP command line, and pgp_triads, could be

successfully run when stored on a University network drive.

 To accomplish this the PGP command line, the pgp_triads program, and the PGP

keyrings were copied to a network drive that could be mapped to from any Windows

2000 PC within the University.

 Running the pgp_triads program from a network drive highlighted a problem that

had not been previously encountered. Whenever the program was executed the

following error message was being output, and PGP was failing to encrypt and sign

the file:

"CMD.EXE was started with ‘\\U507\ES\APPS\1-ESGY105-TRIAL’ as

the current directory path. UNC paths are not supported.

Defaulting to Windows directory"

 The problem here was that the Windows directory was being used as the default

directory for PGP. This caused a problem because the keyring files that PGP needs

are not stored in the Windows directory so PGP couldn’t find them, and as a result the

encrypted/signed document was not being created.

 In order to fix this problem a new command line argument was used when

pgp_triads was run. This new parameter specified the location where pgp_triads, the

PGP command line, and the PGP keyrings were stored. Therefore the parameters now

used to call the pgp_triads program are:

pgp_triads <current_dir> <answers_file> <recipient> <sender>

Additionally the PUBRING, and SECRING, command line parameters for PGP were

also used to specify the exact location of the public and private keyrings files. An

example of the code used for this updated version of pgp_triads can be seen in

Chapter 5: Integrating PGP with a TRIADS assessment

 22

Appendix H. Once these changes were made the updated version of the program was

executed again, and this time the program ran successfully.

5.6 Running PGP from within Authorware

 Having written a program that could be successfully run from a network drive to

sign and encrypt a file, then we needed to be able to run the pgp_triads program from

within a TRIADS assessment. Authorware had a command available called

JumpOutReturn. This command can be used to launch another program from within

Authorware, and keep Authorware open in the background while the other application

is being executed. JumpOutReturn was therefore used to run the pgp_triads program

from within a TRIADS assessment.

The syntax for the JumpOutReturn command is:

JumpOutReturn ("program", ["document"])

 The first parameter program identifies the application that is to be executed. The

optional second parameter document is used to pass any arguments to the program

parameter. For example:

JumpOutReturn ("pgp_triads", "\\U507\ES\ answers.txt examiner student")

 Running this JumpOutReturn command from within an Authorware application

opens a command window, as shown in Fig. 5.5.

Fig. 5.5 – Using JumpOutReturn to execute pgp_triads

 Although the JumpOutReturn command can be used to run pgp_triads from within

Authorware, the command window, as shown in Fig. 5.5, pops up at the front of the

Chapter 5: Integrating PGP with a TRIADS assessment

 23

screen whenever the JumpOutReturn command is used. This causes a problem, as the

pgp_triads program should run hidden in the background. Therefore, an alternative to

JumpOutReturn needed to be found.

5.7 Buddy API

 Following some searching on the WWW some additional functions for Authorware

were discovered, collectively known as the Buddy API. The Buddy API is a library of

over 100 additional commands for use with an Authorware application, and it is free

to educational institutions for non-commercial use. For more information please visit

http://www.mods.com.au/budapi.

 By using the Buddy API it was possible to use the additional commands that it

offered within the TRIADS assessment. In particular, the command baRunProgram

could be used to run the pgp_triads program, instead of the JumpOutReturn

command. The syntax for the baRunProgram command was:

baRunProgram ("program", state, wait)

The table shown in Fig. 5.6 gives an explanation of the parameters that are used by

the baRunProgram command.

The following command gives an example of how the baRunProgram command can

be used to execute the pgp_triads program from within Authorware:

baRunProgram ("pgp_triads \\U507\ES\ answers.txt examiner student", hidden, TRUE)

 Using this command to launch the pgp_triads program instead of the

JumpOutReturn command meant that the PGP command line was executed without

asking the user for any input, and it was completely hidden.

Chapter 5: Integrating PGP with a TRIADS assessment

 24

Parameter Description

program Identifies the application that is to be executed together with any
input parameters.

state Defines how the program will run, can be one of the following:

“Normal” Program runs in its usual state

“Hidden” Program is not visible

“Maximised” Program runs in a maximised window

“Minimised” Program runs as a minimised icon

wait Set to TRUE if Authorware is to wait for the external program to
finish before continuing. Otherwise set to FALSE.

Fig. 5.6 – baRunProgram command parameters

5.8 Incorporating the pgp_triads program with TRIADS

 Having worked out how to execute PGP automatically from a network drive, and

how to run it hidden from within Authorware, the next stage was to incorporate the

pgp_triads program into a TRIADS assessment, and then test that the assessment

would run on any Windows 2000 PC in the University.

 In order to run pgp_triads from within a TRIADS assessment a few alterations were

made to the engine. These changes were made by CIADS (Centre for Interactive

Assessment Development at the University of Derby), who are responsible for the

development and maintenance of TRIADS.

 By adding new icons to the TRIADS engine this meant that new code could be

easily added so that pgp_triads could be setup, and executed from within an

assessment. Fig. 5.7 gives an indication of where the pgp_triads program was setup to

run from within an assessment.

The TRIADS assessment actually sends three different emails to the examiner. The

first email is simply an overall score. The second message contains all of the

individual question scores together with the overall score, and the third is a complete

transcript of the student’s answers. Obviously all three of these messages had to be

encrypted and signed.

Chapter 5: Integrating PGP with a TRIADS assessment

 25

pgp_triads setup
and run from
within here

New elements
added to the
TRIADS engine

Fig. 5.7 – Incorporating pgp_triads with the TRIADS engine

 Using the updated TRIADS engine the examiner was able to write the code that

would be used to setup, and execute the pgp_triads program. An example of the code

used in TRIADS to setup PGP can be seen in Appendix I.

 Once the parameters had been defined then the pgp_triads program was executed.

An example of the code used in TRIADS to launch the program can be seen in

Appendix J. After the pgp_triads program was executed TRIADS emailed the

encrypted/signed results to the examiner.

 Finally, once the email had been sent then TRIADS deleted any temporary files

created by the program, an example of the code for this can be seen in Appendix K.

 Now that pgp_triads had been setup to run from within a TRIADS assessment the

final stage was to ensure that the assessment could be run on any Windows 2000 PC

within the University.

5.9 Not enough Random Data on PC’s

 In order to test the pgp_triads program, and the PGP command line, a test TRIADS

assessment was generated that would call PGP to encrypt/sign the student’s answers.

 To test this assessment in a University teaching centre, all required files (TRIADS

assessment file, PGP command line, the pgp_triads program, and the public/private

keyrings) were copied to a network drive.

Chapter 5: Integrating PGP with a TRIADS assessment

 26

 The assessment appeared to run correctly on the teaching centre PCs, but afterwards

the examiner had been sent 3 blank email messages instead of the student’s

encrypted/signed results. Further investigation into the problem revealed the

pgp_triads program was expecting some input from the user, as shown in Fig. 5.8.

User has to
input some
random data

Fig. 5.8 – Not enough random data

 The problem was that PGP required a certain amount of random data before it could

encrypt/sign a file. This was similar to the way that PGP required random data in

order to generate unique keys. This problem had not been previously encountered

because the PGP command line had always been run on a PC that had PGP installed

on it. It was only in testing on a teaching centre PC, that did not have PGP installed

locally, that the problem become apparent.

 This was a potentially serious problem. We didn’t want to install a local copy of

PGP onto every machine, nor did we want the students to have to input random data

so their answers could be encrypted.

5.10 Using the PGP SDK to add random data

 In order to fix the problem highlighted in section 5.9, there needed to be some way

to increase the random pool of data on the teaching centre PCs, so that PGP could

sign and encrypt the student’s answers automatically.

 One possible solution was to use the PGP SDK. In particular there are a number of

functions available that allow a developer to check the amount of data in the random

pool, and increase it automatically where necessary.

 At first we thought it would be possible to add code to increase the global random

pool of data to the existing pgp_triads program, and then call the PGP command line.

Chapter 5: Integrating PGP with a TRIADS assessment

 27

However this solution did not appear to work as it resulted in the same output as

shown in Fig. 5.9. Therefore the only way to increase the random pool of data, and

encrypt/sign the answers file, was to include all of the PGP functionality in one

pgp_triads program. The code for the new version of the pgp_triads program can be

seen in Appendix L.

 Before trying to sign and encrypt the file containing the answers, the program

checked to see if the random pool contained enough data. If it didn’t then the random

pool was increased. Once this had been done then the answers file was signed, and

encrypted.

 This final version of the pgp_triads program was successfully tested on a number of

different teaching centre PCs. Each time the trial assessment was run the pgp_triads

program encrypted and signed the answers, and TRIADS then sent the encrypted

answers in the body of an email to the examiner. The execution of the program also

required no input from the user, and it remained completely hidden. Upon receipt of

the emails, the examiner was able to decrypt the answers, and verify the student’s

identity.

5.11 Summary

 In order to execute PGP from within a TRIADS assessment the PGP command line

6.5.8 was originally used. A C++ program, pgp_triads, was written that setup and

launched the PGP command line automatically.

 In order to execute PGP from within a TRIADS assessment, so that it was

completely hidden from the students, the command baRunProgram was used from the

Buddy API. Additionally some alterations were made to the TRIADS engine by

CIAD to allow the setup, and execution, of the pgp_triads program.

 However when it came to executing the PGP command line from within a TRIADS

assessment on a teaching centre PC the user was required to enter some random data

so that the answers could be signed and encrypted.

 Therefore the PGP SDK was used as an alternative to the PGP command line. Using

the SDK an updated version of the pgp_triads program was written that ensured there

was sufficient random data to be able to sign and encrypt the answers. The program

then signed, and encrypted, the file containing the student’s answers.

Chapter 5: Integrating PGP with a TRIADS assessment

 28

 Once pgp_triads had finished then the student’s signed/encrypted results were sent

to the examiner by TRIADS in the body of an email message. Upon receipt the

examiner was able to successfully decrypt and verify the email to reveal the student’s

answers.

 Now that the implementation was completed the final stage was to run a

PGP/TRIADS assessment with a group of students. The details of such a test are

covered in the next chapter.

Chapter 6: Running a PGP/TRIADS assessment

29

6.0 Running a PGP/TRIADS assessment

 Having come up with a method of using PGP to encrypt, and sign, a student’s

answers to an assessment, it was time to test out the solution with an actual TRIADS

assessment.

 The assessment used was an Earth Sciences exam held on the 14th January 2002. In

total there were 80 students who were taking the exam, which comprised of 84

questions.

 After each student completed the assessment, their results were signed and

encrypted. The results were then sent in the body of an email message to the

examiner.

6.1 Preparation for the assessment

Before the assessment was run the following preparations had to be made:

• The examiner installed PGP onto their PC and created their own PGP key

pair. They also installed a PGP email plug-in so that they can easily

decrypt/verify the messages.

• The program genkey was used to create the temporary PGP key pairs for the

students. In total 100 PGP key pairs were created for the usernames scese00

through to scese99. All key pairs were set to expire on the 14th February

2002. The program created 2 new keyring files containing all of the keys

(pubring.pkr, and secring.skr)

• The examiner imported their public key into the public keyring file

(pubring.pkr) that was created by the genkey program. This was because in

order for the student’s answers to be encrypted PGP must have access to the

examiner’s public key

• A TRIADS assessment was created that called the pgp_triads program with

the correct parameters in order to encrypt and sign the student’s answers

• All files required by the TRIADS assessment, including the pgp_triads

program, and the keyring files (pubring.pkr, and secring.skr), created by the

genkey program were copied into a directory on a University network drive.

Chapter 6: Running a PGP/TRIADS assessment

 30

6.2 Running the assessment

On the day of the exam the following stages were carried out:

• The examiner logged into every computer that would be used for the

assessment, using the temporary usernames, before allowing any students

into the examination room

• The students were then admitted to the teaching centre, and began the

assessment

• Once the assessment was completed the pgp_triads program automatically

encrypted, and signed, the student’s answers, and then emailed them to the

examiner.

6.3 Decrypting/Verifying the student’s answers

 Once the assessment was completed the examiner returned to their PC to

decrypt/verify the email messages that they had been sent. The following stages were

involved in the decryption/verification process:

• The examiner altered the PGP settings on their PC so that PGP will use the

public keyring file (pubring.pkr) that was created by the genkey program.

This is because in order for the student’s signatures to be verified PGP must

have access to the student’s public keys.

• The examiner was then able to decrypt each message using their private

key, and verify the signature using the student’s public keys. As 80 students

took part in the assessment, and there are 3 emails sent from each student,

this meant that the examiner had 240 messages to decrypt/verify. The first

email simply summarises the overall score. The second contains all of the

individual question scores together with the overall score. The third is a

complete transcript of the student’s responses, which is useful if the student

claims to have done better than the computer recorded. For processing

marks, the second set of emails is most appropriate. Decrypting these 80

emails, appending them together, importing into a spreadsheet, sorting rows

and then deleting all extraneous material took approximately 10 minutes.

Chapter 6: Running a PGP/TRIADS assessment

 31

6.4 Summary

 The assessment chosen to test the use of PGP with TRIADS was very successful.

Once all preparations had been made then the assessment ran smoothly without any

problems. The students answers were encrypted, and signed, using the correct keys,

and the whole process was done without any indication to the user. When the

examiner came to reveal the answers there were no problems with the

decryption/verification process.

Chapter 7: Conclusions and Future Improvements

32

7.0 Conclusions and Future Improvements

 The main objective of the project was to incorporate the use of PGP within a

TRIADS assessment, and this was successfully achieved. The process of running PGP

with TRIADS required a small amount of preparation work, but once all the

preparations had been made then the assessment ran without any problems.

Future improvements on this project might include:

• There is a potential security weakness with the student’s keys because the

passphrase used for the private key is the same as the username associated

with the key.

A possible improvement would be to incorporate some form of simple

transformation algorithm, between the username and passphrase, into the

genkey and pgp_triads programs. Therefore the passphrase will not be the

same as the username, but the correct passphrase can still be derived from

each username.

• Speeding up the decryption/verification process for the examiner. One

option that we have considered could be to send the students results in

PGP/MIME format, instead on inline PGP. However as a lot of email

programs cannot handle PGP/MIME messages then there could be an

option in the pgp_triads program as to whether the results will be sent as

inline PGP, or PGP/MIME.

• The possibility of encrypting the students answers to more than one

examiner.

• Update the genkey program from a Windows console application to a

Windows GUI application.

• The random number generation method used in the genkey and pgp_triads

programs need improving.

Appendix A

33

A.1 PGP (Pretty Good Privacy)

 PGP is an email and file encryption program originally developed by Phil

Zimmerman in 1991.

 PGP uses a technique called public-key cryptography, whereby each user generates

their own public and private key, known as a key pair. The two keys are related, but

they are not deducible from each other. If the public key is used to encrypt a message

then the private key is used to decrypt it, and vice-versa.

The public key can be made available to as many people as possible; it is freely

distributable. For users to be able to share secure email they must have access to other

users’ public keys.

 The private key however is exactly what the names suggests, private, and it should

be kept secret by the user. As added protection the private key is encrypted using a

passphrase. Whenever the private key is required the corresponding passphrase must

be entered first. Therefore if someone else were to obtain a user’s private key it would

be useless to them without the correct passphrase. For more information see The

International PGP Homepage at http://www.pgpi.org.

A.1.1 Public and Private Keyrings

 PGP creates two keyring files on the users computer for storage of PGP keys. The

public keyring (pubring.pkr) contains the users own public key, and a collection of

other people’s public keys. In order to send an encrypted message, or verify a

signature, the user must have the other users’ public key stored in their public keyring.

 The private keyring (secring.skr) contains the users own private key. The private

key is encrypted with a passphrase that has to be entered every time the user wishes to

sign a message, or decrypt a message that they have been sent.

A.1.2 Encrypting a Message with PGP

Encrypting a message provides the following benefit:

• Prevention of unauthorised reading of an email message

For example, Alice wants to send an encrypted message to Bob. To accomplish this

the following steps are carried out:

Appendix A

 34

a) Alice types a message for Bob

b) PGP encrypts the message using Bob’s public key

c) The encrypted message is then sent to Bob

d) Upon arrival PGP decrypts the message by using Bob’s private key

e) As Bob is the only person who knows his private key, then he is the only

person who can decrypt the message

Fig. A.1 shows an example of how keys are used to encrypt/decrypt an email

message.

Fig. A.1 – Encrypting a Message

A.1.3 Signing a Message with PGP

Signing a message provides the following benefits:

• Confirmation of the origin of a message

• Proof that the message has not been altered

For example, Alice wants to send a signed message to Bob. To accomplish this the

following steps are carried out:

a) Alice writes a message for Bob

b) PGP runs the message through a mathematical function

c) A value is generated by the function

Appendix A

 35

d) PGP encrypts this value using Alice’s private key, this creates a digital

signature

e) The digital signature is put at the end of the message, and it is then sent to

Bob

f) Upon arrival PGP verifies the digital signature by using Alice’s public key.

This reveals the original value generated by the mathematical function

g) As Alice is the only person who knows her private key then only she could

have created the digital signature

h) PGP again runs the message through a mathematical function

i) If the value generated at Bob’s end is different to the one sent in the digital

signature by Alice then the contents of the message has been altered

Fig. A.2 shows an example of how keys are used to sign/verify an email message.

Fig. A.2 – Signing a Message

A.1.4 Signing & Encrypting a Message with PGP

 Signing and encrypting of a message both offer different advantages. However

combining the two methods will provide the benefits of both techniques. When using

both methods the message is signed first, and then it is encrypted. Once the email is

received it will be decrypted first, and then the signature will be verified.

Appendix B

36

// Output of the pgp –kg command
// Answers to the questions have been underlined

Choose the public key algorithm to use with your new key
1) DSS/DH (a.k.a. DSA/ElGamal) (default)
2) RSA
Choose 1 or 2: 1

Choose the type of key you want to generate
1) Generate a new signing key (default)
2) Generate an encryption key for an existing signing key
Choose 1 or 2: 1

Pick your DSS "master key" size:
1) 1024 bits – Maximum size (Recommended)
Choose 1 or enter desired number of bits: 1

Generating a 1024-bit DSS key

You need a user ID for your public key. The desired form for this user ID is your
name, followed by your E-mail address enclosed in <angle brackets>, if you have an E-
mail address.
For example: John Q. Smith <jqsmith@nai.com>
Enter a user ID for your public key: scese00

Enter the validity period of your signing key in days from 0 – 10950
0 is forever (the default is 0): 30

You need a pass phrase to protect your DSS secret key. Your pass phrase can be any
sentence or phrase and may have many words, spaces, punctuation, or any other
printable characters.
Enter pass phrase: scese00
Enter same pass phrase again: scese00
PGP will generate a signing key. Do you also require an encryption key? (Y/n) Y

Pick your DH key size:
1) 1024 bits – High commercial grade, secure for many years
2) 2048 bits – "Military" grade, secure for foreseeable future
3) 3072 bits – Archival grade, slow, highest security
Choose 1, 2, 3, or enter desired number of bits: 2

Enter the validity period of your encryption key in days from 0 – 30
0 is forever (the default is 0): 30

Note that key generation is a lengthy process.

PGP needs to generate some random number data. This is done by measuring the time
intervals between your keystrokes. Please enter some random text on your keyboard
until the indicator reaches 100%.
Press ^D to cancel

Enough, thank you
****.........................*****.........

Make this the default signing key? (Y/n) n

Key generation completed.

Appendix C

37

/*
 Author Simon Hatton
 Filename genkey.c
 Date Started 16/10/2001
 Last Updated 04/01/2002
 See Also key_gen.exp

 Description This file is a C program that generates a file containing a
 list of all users who need PGP key pair. The program also
 calculates how long the PGP keys should be valid for.

 This number, along with the file are used by the expect script
 key_gen.exp. It is within this expect script that the PGP
 keys are actually created.

 This program has been written so that temporary keys can be
 created automatically for use with TRIADS assessments.
*/

#include <stdio.h>
#include <string.h>
#include <time.h>

int main(int argc, char *argv[])
{
 char start_str[10],
 end_str[10],
 username[10],
 out_file[50],
 buffer[100];

 int start_num,
 end_num,
 counter,
 end_day,
 end_month,
 end_year;

 size_t end_len;

 time_t rawtime,
 start_sec,
 end_sec;

 struct tm * timeinfo;
 double dif;
 FILE *pgpkeys;

// Ask the user to enter the output filename and the format that the temporary
// usernames will consist of.

 printf ("\nAUTOMATIC PGP KEY GENERATION\n");
 printf ("============================\n\n");
 printf ("Please enter the filename to store the list of usernames: ");
 scanf ("%s", out_file);
 printf ("\nPlease enter the username, start number, and end number format that will
 be used\nfor the PGP keys. Please enter any leading zero's\n\n");
 printf ("Format : <username> <start_num> <end_num>\n");
 printf ("Example: scese 0000 0100\n\n");
 printf ("Enter Details: ");
 scanf ("%s %s %s", username, start_str, end_str);

// Convert the start_num and end_num parameters into integers.

Appendix C

 38

 start_num = atoi (start_str);
 end_num = atoi (end_str);

// Calculate the length of the number format for the usernames.

 end_len = strlen (end_str);

// Open the output file.

 pgpkeys = fopen (out_file, "w");

// Output each username into a file. Place the correct number of leading
// zero's in each username.

 for (counter = start_num ; counter <= end_num ; counter++)
 {
 switch (end_len)
 {
 case 1 : fprintf (pgpkeys, "%s%01d\n", username, counter);
 break;
 case 2 : fprintf (pgpkeys, "%s%02d\n", username, counter);
 break;
 case 3 : fprintf (pgpkeys, "%s%03d\n", username, counter);
 break;
 case 4 : fprintf (pgpkeys, "%s%04d\n", username, counter);
 break;
 case 5 : fprintf (pgpkeys, "%s%05d\n", username, counter);
 break;
 default : printf ("\nLine 92. The number you have input has more than 5
 digits.\nYou need to add a new switch statement that can
 handle the number of digits\nfor your required
 username.\n");
 fclose (pgpkeys);
 exit (1);
 break;
 }
 }

 fclose (pgpkeys);

 printf ("\nThe file \"%s\" has been created. This contains all usernames
 that\nrequire a PGP keypair.\n\n", out_file);

// Get the current date and time.

 time (&rawtime);

// Set the time to 00:00, for the current day.

 timeinfo = localtime (&rawtime);
 timeinfo->tm_hour = 0;
 timeinfo->tm_min = 0;
 timeinfo->tm_sec = 0;

// Calculate the number of seconds between January 1st 1970 and 00:00 on
// todays date.

 start_sec = mktime (timeinfo);

// Ask the user to enter the date for the PGP keys to expire on.

 printf ("Please enter the date when the PGP keys should Expire\n");
 printf ("Format : dd mm yyyy\n");

Appendix C

 39

 printf ("Example: 12 03 2002\n\n");
 printf ("Enter Date: ");
 scanf ("%d %d %d", &end_day, &end_month, &end_year);

// Calculate the number of seconds between January 1st 1970 and 00:00 on
// the date that the PGP will expire.

 time (&rawtime);

 timeinfo = localtime (&rawtime);
 timeinfo->tm_mday = end_day;
 timeinfo->tm_mon = end_month - 1;
 timeinfo->tm_year = end_year - 1900;
 timeinfo->tm_hour = 0;
 timeinfo->tm_min = 0;
 timeinfo->tm_sec = 0;

 end_sec = mktime (timeinfo);

// Calculate the time difference (in seconds) between todays date, and the date
// when the keys will expire.

 dif = difftime (end_sec, start_sec);

// Convert the time difference (in seconds) into days.

 dif = (((dif / 60) / 60) / 24);

 counter = dif;

// Launch the expect script key_gen.exp, with the output filename and the
// number of days as input parameters.

 sprintf (buffer, "key_gen.exp %s %d", out_file, counter);

 system (buffer);

 return 0;
}

Appendix D

40

#!/usr/local/bin/expect --

Author Simon Hatton
Filename key_gen.exp
Date Started 22/10/2001
Last Updated 26/11/2001
See Also genkey.c
Description This file is an expect program that automatically generates
PGP key pairs. The program reads from a file of usernames.
For each username in the file a PGP key pair is generated.

The expect script takes two input parameters which are the
file containing the list of the usernames, and the number of days
that the key is valid. These parameters are generated in the program
genkey.c

This program has been written so that temporary keys can be
created automatically for use with TRIADS assessments.

Set the send_slow command to avoid any problems with input being sent before
the program is ready for it.

set send_slow {1 2}

set arg1 [lindex $argv 0]
set arg2 [lindex $argv 1]

Open the input file for reading.

set keyfile [open $arg1 r]

Extract a username from the file, store it in the variable user. If there
are no usernames left to extract then exit the loop.

while {[gets $keyfile user] != -1} {

Check variable initially set to 0.

 set check 0

Execute the pgp command line with the key generation (-kg) parameter.

 spawn pgp -kg

Select the DSS/DH algorithm to use with the new key.

 expect "Choose 1 or 2:"
 send -s "1\r"

Select to generate a new signing key.

 expect "Choose 1 or 2:"
 send -s "1\r"

Pick the DSS 'master key' size of 1024 bits.

 expect "Choose 1 or enter desired number of bits:"
 send -s "1\r"

Enter a user ID for the public key. This will be the value of the variable
user that was extracted from the file username.

 expect "Enter a user ID for your public key:"

Appendix D

 41

 send -s "$user\r"

Enter the validity period of the signing key in days.

 expect "0 is forever (the default is 0):"
 send -s "$arg2\r"

Enter a pass phrase. This will be the value of the variable user.

 expect "Enter pass phrase:"
 send -s "$user\r"

 expect "Enter same pass phrase again:"
 send -s "$user\r"

Choose to create an encryption key as well as a signing key.

 expect "encryption key? (Y/n)"
 send -s "Y\r"

Select the DH key size of 2048 bits.

 expect "Choose 1, 2, 3, or enter desired number of bits:"
 send -s "2\r"

Enter the validity period of the encryption key in days.

 expect "0 is forever (the default is 0):"
 send -s "$arg2\r"

 set random_number [expr int(rand()*10)]
 expect "required data"
 send -s "$random_number\r"

Keep entering random numbers every 1 or 2 seconds until the indicator
reaches 100%.

 while {$check == 0} {

Enter a random number between 0 and 9 inclusive.

 set random_number [expr int(rand()*10)]
 expect "required data" {send "$random_number\r"}

Set the timeout to 1 or 2 seconds.

 set random_time [expr int(rand()*2) + 1]
 set timeout $random_time

If enough random numbers have been entered, then set the check variable to
1 and exit the loop.

 expect "Enough, thank you" {set check 1}
 }

Disable the timeout.

 set timeout -1

Don't make the new key the default signing key.

 expect "Make this the default signing key? (Y/n)"

Appendix D

 42

Reset the timeout back to the default of 10 seconds.

 set timeout 10

 send -s "n\r"

 expect "Key generation completed"

 wait
}

Close the input file.

close $keyfile

Appendix E

43

/*
Author Simon Hatton
Date Started 08/01/2002
Last Updated 13/05/2002
Description This program automatically generates PGP key pairs. This program
 was written to be used with a TRIADS assessment so that each
 individual PGP key pair didn't have to be created manually.

 The user types in the usernames that they wish to create PGP
 keypairs for, and the program automatically creates a key pair
 for each one.

 For a full explanation of the commands used in this program please
 refer to the PGP SDK Reference Guide, which can be found at:

 http://www.pgpi.org/products/sdk/c++/pgpsdk/

 NOTE: The following Random Number Generation files and code used in
 this program were obtained from http://www.agner.org/random/

 randomc.h
 mersenne.cpp
*/

#include <iostream>
#include "stdafx.h"
#include "genkey.h"
#include "headers\pgpKeys.h"
#include "headers\pgpErrors.h"
#include "headers\pgpRandomPool.h"
#include "headers\pgpUtilities.h"
#include "headers\pgpEncode.h"

// RNG (Random Number Generation) files obtained from http://www.agner.org/random/

#include "headers\randomc.h" // define classes for RNG
#include "headers\mersenne.cpp" // Members of class TRandomMersenne

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

#define PUBLIC_KEY_SIZE 2048
#define PRIVATE_KEY_SIZE 1024
#define PRIVATE_ALGORITHM kPGPPublicKeyAlgorithm_DSA
#define PUBLIC_ALGORITHM kPGPPublicKeyAlgorithm_ElGamal

///
// The one and only application object

CWinApp theApp;

using namespace std;

COleDateTimeSpan daysValid; // Time span for how long the keys are valid
FILE *pgpkeys; // File containing a list of each username

PGPContextRef context = kInvalidPGPContextRef; // Default context
PGPKeySetRef theKeyRing = kInvalidPGPKeySetRef; // Identifier for the keyring
PGPFileSpecRef pubFileRef = kInvalidPGPFileSpecRef; // Identifier for pubring.pkr
PGPFileSpecRef privFileRef = kInvalidPGPFileSpecRef; // Identifier for secring.skr

Appendix E

 44

int Shutdown(const int); // Function to shutdown PGP

int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
 int nRetCode = 0;
 void getPGPKeyDetails(); // Function to get details of PGP keys
 void createPGPKeys(); // Function to generate PGP keys

// initialize MFC and print and error on failure
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0))
 {
// TODO: change error code to suit your needs
 cerr << _T("Fatal Error: MFC initialization failed") << endl;
 nRetCode = 1;
 }
 else
 {
 getPGPKeyDetails();
 cout << "\n\nCreating PGP keys. Please Wait.\n";
 createPGPKeys();
 nRetCode = Shutdown(0);
 cout << "\nDONE\n";
 }
 return nRetCode;
}

// Function to get the details about the PGP keys the are to be generated

void getPGPKeyDetails()
{
 char user[256], // User ID for each key pair e.g. scese
 startString[50], // String of the first User ID e.g. 000
 endString[50], // String of the final User ID e.g. 099
 endDayString[50], // String of the day that each key pair expires
 endMonthString[50], // String of the month that each key pair expires
 endYearString[50]; // String of the year that each key pair expires

 int startNum, // Number of the first User ID e.g. 000
 endNum, // Number of the final User ID e.g. 099
 lenEndNum, // Length of the endString variable
 userCount, // Loop counter
 counter, // Loop counter
 lenUserCount, // Length of the userCount variable
 leadingZerosCounter, // Counter for the number of leading zeros
 endDay, // Day that each key pair expires
 endMonth, // Month that each key pair expires
 endYear; // Year that each key pair expires

 char answer; // Answer to any (Y/N) questions

 CString strEndNum, // CString of the final User ID e.g. 099
 strUserCount, // CString of the UserCount loop counter
 strLeadingZeros; // CString containing any leading zeros

 COleDateTime today, // The current date and time
 endOfToday, // 23:59:59 on todays date
 endOfExpiryDate; // 23:59:59 on the date when the keys expire

// Open an output file for the list if usernames to be written to

 pgpkeys = fopen("TEMPKEYS.TXT", "w");

 cout << "\nAUTOMATIC PGP KEY GENERATION for Windows 2000\n";

Appendix E

 45

 cout << "===";

// Ask the user to enter the format that the temporary usernames will consist of

 do
 {
 answer = 0;
 cout << "\n\nPlease enter the username, start number, and end number format
 cout << "that\nwill be used for the PGP keys.";
 cout << "Please enter eny leading zeros\n\n";
 cout << "Format : <username> <start_num> <end_num>\n";
 cout << "Example: scese 0000 0099\n\n";
 cout << "Enter Details: ";
 cin >> user >> startString >> endString;

// Convert the startString, and endString, variables into integers

 startNum = atoi (startString);
 endNum = atoi (endString);

// Check that startString variable is a valid integer

 for (counter = 0 ; counter < strlen (startString) ; counter++)
 {
 if ((!isdigit (startString[counter])))
 answer = 'N';
 }

 if (answer == 'N')
 cout << "\nERROR: The <start_num> parameter MUST be a valid integer";

// Check that the endString variable is a valid integer

 else
 {
 for (counter = 0 ; counter < strlen (endString) ; counter++)
 {
 if ((!isdigit (endString[counter])))
 answer = 'N';
 }

 if (answer == 'N')
 cout << "\nERROR: The <end_num> parameter MUST be a valid integer";
 }

 if (answer != 'N')
 {

// If the start number isn't the same length as the end number then re-enter the data

 if (strlen (startString) != strlen (endString))
 {
 cout << "\nERROR: The <start_num> and <end_num> parameters MUST be the same";
 cout << " length";
 answer = 'N';
 }

// If the start number is greater than the end number then re-enter the data

 else if (startNum > endNum)
 {
 cout << "\nERROR: The <start_num> parameter MUST be less than the <end_num>";
 cout << " parameter";

Appendix E

 46

 answer = 'N';
 }

// Else ask the user to confirm that the username details are correct

 else
 {
 cout << "\nYou have chosen to create a PGP key for each of the following";
 cout << "usernames:\n\n";
 cout << user << startString << " to " << user << endString;
 cout << "\n\nIs this correct? (Y/N): ";

 cin >> answer;
 cin.ignore (80, '\n');
 answer = toupper(answer);
 }
 }
 } while (answer != 'Y');

// Calculate the length of the endString variable

 strEndNum.Format("%s", endString);
 lenEndNum = strEndNum.GetLength();

// Output each username into the temp file. Place the correct number of leading zeros
// in each username

 counter = 0;

 for (userCount = startNum ; userCount <= endNum ; userCount++)
 {
 strLeadingZeros = "";
 strUserCount.Format("%d", userCount);
 lenUserCount = strUserCount.GetLength();
 leadingZerosCounter = lenEndNum - lenUserCount;

 while (leadingZerosCounter > 0)
 {
 strLeadingZeros += '0';
 leadingZerosCounter--;
 }

 fprintf (pgpkeys, "%s%s%d\n", user, strLeadingZeros, userCount);
 }

 fclose(pgpkeys);

// Ask the user to enter the date when each PGP key pair will expire

 do
 {
 cout << "\n\nPlease enter the date when the PGP keys should Expire.\n";
 cout << "Format : DD MM YYYY\n";
 cout << "Example: 01 01 2003\n\n";
 cout << "Enter Date: ";
 cin >> endDayString >> endMonthString >> endYearString;

// Check that the date is in the format DD MM YYYY

 if ((strlen (endDayString) != 2) || (strlen (endMonthString) != 2) ||
 (strlen (endYearString) != 4))
 {
 cout << "\nERROR: Please enter the date in the format DD MM YYYY";

Appendix E

 47

 answer = 'N';
 }

// Check that the Day value is a valid integer

 else if ((!isdigit (endDayString[0])) || (!isdigit (endDayString[1])))
 {
 cout << "\nERROR: Invalid Day value entered";
 answer = 'N';
 }

// Check that the Month value is a valid integer

 else if ((!isdigit (endMonthString[0])) || (!isdigit (endMonthString[1])))
 {
 cout << "\nERROR: Invalid Month value entered";
 answer = 'N';
 }

// Check that the Year value is a valid integer

 else if ((!isdigit (endYearString[0])) || (!isdigit (endYearString[1])) ||
 (!isdigit (endYearString[2])) || (!isdigit (endYearString[3])))
 {
 cout << "\nERROR: Invalid Year value entered";
 answer = 'N';
 }
 else
 {

// Convert the endDayString, endMonthString, and endYearString, variables into
// integers

 endDay = atoi(endDayString);
 endMonth = atoi(endMonthString);
 endYear = atoi(endYearString);

// Get the current date and time

 today = COleDateTime::GetCurrentTime();

// Set the endOfToday variable to 23:59:59 on the current date

 endOfToday.SetDateTime(today.GetYear(), today.GetMonth(), today.GetDay(), 23,
 59, 59);

// Set the endOfExpiryDate variable to 23:59:59 on the Expiry date

 endOfExpiryDate.SetDateTime(endYear, endMonth, endDay, 23, 59, 59);

// If an invalid date has been entered then re-enter the date

 if (endOfExpiryDate.GetMonth() == -1)
 {
 cout << "\nERROR: You have entered an Invalid Date";
 answer = 'N';
 }

// If a date less than today has been entered then re-enter the date

 else if (endOfExpiryDate <= endOfToday)
 {
 cout << "\nERROR: The keys must expire AFTER today";

Appendix E

 48

 answer = 'N';
 }

// Else ask the user to confirm that the date is correct

 else
 {
 printf ("\nThe PGP keys will Expire on the %02d/%02d/%02d. ");
 printf ("Is this correct? (y/N): ", endDay, endMonth, endYear);
 cin >> answer;
 cin.ignore (80, '\n');
 answer = toupper(answer);
 }
 }
 } while (answer != 'Y');

// Calculate the difference between the current date and the expiry date

 daysValid = endOfExpiryDate - endOfToday;
}

// Function to create each PGP key

void createPGPKeys()
{
 char const *pubKeyRing = "pubring.pkr"; // Public keyring file
 char const *privKeyRing = "secring.skr"; // Private keyring file

 CFileFind finder;
 BOOL fileAvailable;

 char username[100]; // User ID for each key pair

 long int seed = time(0); // Random seed
 TRandomMersenne randNumGenerator(seed); // Instance of random number generator
 long int randomInteger; // Random integer number

 PGPError err = kPGPError_NoErr; // Resultant errors
 PGPKeyRef theKey = kPGPInvalidRef; // Key to create
 PGPSubKeyRef subKey = kPGPInvalidRef; // Subkey to create
 PGPUInt32 entropyNeeded; // Random data required to create key

 void DisplayPGPError(PGPError *, const char *); // Function to display errors

// Initialise the PGP SDK libraries

 err = PGPsdkInit();
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Initialising the PGP SDK");
 Shutdown (1);
 }

// Create a new PGP context. Most PGP functions require a valid PGPContext

 err = PGPNewContext (kPGPsdkAPIVersion, &context);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the PGP Context");
 Shutdown (1);
 }

// Create file descriptors for the public and private keyring files

Appendix E

 49

 err = PGPNewFileSpecFromFullPath (context, pubKeyRing, &pubFileRef);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the \"pubring.pkr\" File Descriptor");
 Shutdown (1);
 }

 err = PGPNewFileSpecFromFullPath (context, privKeyRing, &privFileRef);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the \"secring.skr\" File Descriptor");
 Shutdown (1);
 }

// Open the public and private keyring files. If this program is run in a directory
// where there are already existing pubring.pkr and secring.skr files, then these
// files will be updated. Otherwise new pubring.pkr and secring.skr files
// will be created.

 err = PGPOpenKeyRingPair (context, kPGPKeyRingOpenFlags_Create +
 kPGPKeyRingOpenFlags_Mutable, pubFileRef,
 privFileRef, &theKeyRing);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Opening the key ring");
 Shutdown (1);
 }

// Open the file containing the list of all usernames that need a PGP key pair

 pgpkeys = fopen("TEMPKEYS.TXT", "r");

// Create a PGP key pair for each username listed in the file

 fscanf (pgpkeys, "%s", username);

 while (!feof(pgpkeys))
 {

// Calculate the amount of random data required to generate a PGP key pair

 entropyNeeded = PGPGetKeyEntropyNeeded (
 context,
 PGPOKeyGenParams (context, PRIVATE_ALGORITHM, PRIVATE_KEY_SIZE),
 PGPOKeyGenFast (context, TRUE),
 PGPOLastOption (context));

 entropyNeeded = entropyNeeded +
 PGPGetKeyEntropyNeeded (
 context,
 PGPOKeyGenParams (context, PUBLIC_ALGORITHM, PUBLIC_KEY_SIZE),
 PGPOKeyGenFast (context, TRUE),
 PGPOLastOption (context));

// Make sure the Random Pool contains enough data. If it does not then increase
// the random pool until it contains the required amount of data. The random pool
// is increased by adding a random number between 0 and 999999.

 if (PGPGlobalRandomPoolGetEntropy() < entropyNeeded)
 {
 do
 {
 randomInteger = randNumGenerator.IRandom(0, 999999);

Appendix E

 50

 PGPGlobalRandomPoolAddKeystroke (randomInteger);
 } while (PGPGlobalRandomPoolGetEntropy() < entropyNeeded);
 }

// Create the Signing Key part

 err = PGPGenerateKey (
 context,
 &theKey,
 PGPOKeySetRef (context, theKeyRing),
 PGPOKeyGenParams (context, PRIVATE_ALGORITHM, PRIVATE_KEY_SIZE),
 PGPOKeyGenName (context, username, strlen(username)),
 PGPOPassphrase (context, username),
 PGPOExpiration (context, (int)daysValid.GetTotalDays()),
 PGPOKeyGenFast (context, TRUE),
 PGPOLastOption (context));

 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the Signing Key");
 Shutdown (1);
 }

// Create the encryption key part

 err = PGPGenerateSubKey (
 context,
 &subKey,
 PGPOKeyGenMasterKey (context, theKey),
 PGPOKeyGenParams (context, PUBLIC_ALGORITHM, PUBLIC_KEY_SIZE),
 PGPOPassphrase (context, username),
 PGPOExpiration (context, (int)daysValid.GetTotalDays()),
 PGPOKeyGenFast (context, TRUE),
 PGPOLastOption (context));

 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the Encryption Key");
 Shutdown (1);
 }

// Commit changes to the keyring files

 PGPCommitKeyRingChanges(theKeyRing);

// Delete all backup keyring files that have been created

 fileAvailable = finder.FindFile("*ring-bak-*.*kr");

 while (fileAvailable)
 {
 fileAvailable = finder.FindNextFile();
 remove (finder.GetFileName());
 }

 cout << "\nPGP keypair created for " << username << ".\n";

// Read the next username from the temp file

 fscanf (pgpkeys, "%s", username);
 }

 fclose (pgpkeys);

Appendix E

 51

// Reload the public and private keyrings

 PGPReloadKeyRings (theKeyRing);
}

// Function to display a PGP error message

void DisplayPGPError(PGPError *e, const char *errMesg)
{
 char errorString[256];

 PGPGetErrorString(*e, sizeof(errorString), errorString);
 cout << "PGP ERROR: " << errorString << "\n" << errMesg << endl;
}

// Function to shutdown the PGP SDK

int Shutdown (const int error)
{

// De-allocate all assigned key sets, file descriptions, etc.

 if (PGPFileSpecRefIsValid (pubFileRef))
 PGPFreeFileSpec (pubFileRef);

 if (PGPFileSpecRefIsValid (privFileRef))
 PGPFreeFileSpec (privFileRef);

 if (PGPKeySetRefIsValid (theKeyRing))
 PGPFreeKeySet (theKeyRing);

// Release the PGP context

 if (PGPContextRefIsValid (context))
 PGPFreeContext (context);

// Shutdown the PGP SDK library

 PGPsdkCleanup();

// Delete the temporary file containing the list of all of the usernames

 remove ("TEMPKEYS.TXT");

// If a PGP error was detected then exit the program here

 if (error == 1)
 exit(1);

 return 0;
}

Appendix F

52

/*
Author Simon Hatton
Program pgp_triads.exe
Description This program is used in conjunction with a TRIADS assessment. The code
 takes a file containing the answers to an assessment, and then creates
 a new signed and encrypted file of the answers. The program is called
 from within an Authorware application.
*/

#include <iostream>

using namespace std;

int main()
{

// Set the PGP timestamp variable. Setting this will remove the warning message, and
// the beep, that are output when PGP is run

 _putenv ("TZ=GMT0BST");

// Set the PGP passphrase environment variable. The passphrase is the same as the
// currently logged in username. Setting this will remove the prompt where the user
// has to enter their passphrase

 _putenv ("PGPPASS=student");

// Run the PGP command line to sign a file called answers.txt, using the private key
// of the currently logged in username, and encrypt the file using the public key
// that belongs to the examiner

 system ("pgp -seat answers.txt examiner -u student");

 return 0;
}

Appendix G

53

/*
Author Simon Hatton
Program pgp_triads.exe
Description This program is used in conjunction with a TRIADS assessment. The code
 takes a file containing the answers to an assessment, and then creates
 a new signed and encrypted file of the answers. The program is called
 from within an Authorware application with the following parameters:

 pgp_triads.exe <answers_file> <recipient> <sender>
*/

#include <iostream>

using namespace std;

int main (int argc, char *argv[])
{
// String variable that stores system commands to be executed

 char command[255];

// Set the PGP timestamp variable. Setting this will remove the warning message, and
// the beep, that are output when PGP is run

 _putenv ("TZ=GMT0BST");

// Set the PGP passphrase environment variable. The passphrase is the same as the
// <sender> input parameter. Setting this will remove the prompt where the user has
// to enter their passphrase

 sprintf (command, "PGPPASS=%s", argv[3]);
 _putenv (command);

// Set the PGP command line to sign and encrypt the file specified in the
// <answers_file> parameter. Sign the file using the private key belonging to the
// <sender> parameter, and encrypt the file using the public key that belongs to the
// <recipient> parameter

 sprintf (command,
 "pgp -seat %s %s -u %s", argv[1], argv[2], argv[3]);

// Execute the PGP command line

 system (command);

 return 0;
}

Appendix H

54

/*
Author Simon Hatton
Program pgp_triads.exe
Description This program is used in conjunction with a TRIADS assessment. The code
 takes a file containing the answers to an assessment, and then creates
 a new signed and encrypted file of the answers. The program is called
 from within an Authorware application with the following parameters:

 pgp_triads.exe <current_dir> <answers_file> <recipient> <sender>
*/

#include <iostream>

using namespace std;

int main (int argc, char *argv[])
{
// String variable that stores system commands to be executed

 char command[255];

// Set the PGP timestamp variable. Setting this will remove the warning message, and
// the beep, that are output when PGP is run

 _putenv ("TZ=GMT0BST");

// Set the PGP passphrase environment variable. The passphrase is the same as the
// <sender> input parameter. Setting this will remove the prompt where the user has
// to enter their passphrase

 sprintf (command, "PGPPASS=%s", argv[4]);
 _putenv (command);

// Set the PGP command line to sign and encrypt the file specified in the
// <answers_file> parameter. Use the public and private key rings files stored in the
// <current_dir> parameter. Sign the file using the private key belonging to the
// <sender> parameter, and encrypt the file using the public key that belongs to the
// <recipient> parameter

 sprintf (command,
 "%spgp -seat +PUBRING=%s\\pubring.pkr +SECRING=%s\\secring.skr %s %s -u %s",
 argv[1], argv[1], argv[1], argv[2], argv[3], argv[4]);

/*
For example if the following parameters are used to call the program:

pgp_triads \\U507\ES\ c:\temp\answers.txt examiner student

Then the contents of the command variable will be:

"\\U507\\ES\pgp -seat +PUBRING=\\U507\ES\pubring.pkr +SECRING=\\U507\ES\secring.skr
 c:\temp\answers.txt examiner –u student"

*/

// Execute the PGP command line

 system (command);

 return 0;
}

Appendix I

55

-- This code sets up the variables in TRIADS that will be used to run PGP.

-- Config data for SMTP knowledge object
PGPsmtpserver := "mail1.liv.ac.uk"

-- Get the current working directory. This will be the <current_dir> parameter for
-- pgp_triads
PGPpath := FileLocation

-- The name of the file to be encrypted. This will be the <answers_file> parameter
-- for pgp_triads.
TRIADSfile := "answers.txt"

-- Get the username currently logged onto the PC from the environment variable
-- "USERNAME". This will be the <sender> parameter for pgp_triads. This will also be
-- the passphrase used to access the students private key.
PGPsender := baEnvironment ("USERNAME")

-- Use the following email address to identify the examiners public key. This will be
-- the <recipient> parameter for pgp_triads.
PGPrecipient := "s.c.hatton@liverpool.ac.uk"

-- Subject headers for the 3 encrypted/signed emails that are sent to the examiner.
PGPsubjectheader1 := "ESGY105 trial test results 1 " ^ EngUserFileName
PGPsubjectheader2 := "ESGY105 trial test results 2 " ^ EngUserFileName
PGPsubjectheader3 := "ESGY105 trial test results 3 " ^ EngUserFileName

-- Store the current "USERPROFILE" environment variable in the variable userdir.
-- Then set the "USERPROFILE" environment variable to be "C:\temp".
-- This is because whenever the PGP command line is executed it will create a PGP
-- sub-directory within the directory specified in the "USERPROFILE" directory.
-- This way we know that the PGP sub-directory will always be created in "C:\temp".

PGPTempPath := "C:\\temp"
userdir := baEnvironment ("USERPROFILE")
del_result := baSetEnvironment ("USERPROFILE", PGPTempPath)

-- Path for temp files used by PGP
PGPTextFilePath := "C:\\temp\\"

-- Name of output file to be created by PGP.
PGPencrypted := TRIADSfile ^ ".asc"

-- Text to be encrypted
PGPtext1 := EngRecordForFile[1]
PGPtext2 := EngRecordForFile[2]
PGPtext3 := EngRecordForFile[3]

Appendix J

56

-- This code copies the data entered by the student into a temporary file called
-- "C:\temp\answers.txt". This file is then encrypted and signed by the pgp_triads
-- program to produce a ciphertext file called "C:\temp\answers.txt.asc". The
-- contents of this new file is then copied into an Authorware variable.

-- Copy the text entered by the user into the file "C:\temp\answers.txt".
WriteExtFile (PGPTextFilePath ^ TRIADSfile, PGPtext1)

-- Execute the program pgp_triads.exe. This program sets up, and runs, the PGP
-- command line. Afterwards the ciphertext file "answers.txt.asc" is created.
-- pgp_triads.exe <current_dir> <answers_file> <recipient> <sender>

baRunProgram ("\"" ^ PGPpath ^ "pgp_triads.exe\" \"" ^ PGPpath ^ "\\\" \"" ^
 PGPTextFilePath ^ TRIADSfile ^ "\" " ^ PGPrecipient ^ " " ^ PGPsender,
 "hidden", TRUE)

-- Copy the contents of "C:\temp\answers.txt.asc" into the variable PGPCipherText.
PGPCipherText := ReadExtFile (PGPTextFilePath ^ PGPencrypted)

Appendix K

57

-- This code deletes all files created by the pgp_triads program.

-- Delete the files "answers.txt", and "answers.txt.asc"

DeleteFile (PGPTextFilePath ^ TRIADSfile)
DeleteFile (PGPTextFilePath ^ PGPencrypted)

-- Delete the directory "C:\temp\Appication Data\PGP". This temporary directory is
-- created each time PGP is executed.

del_result := baDeleteXFiles (PGPTempPath ^ "\\Application Data\\PGP", "*.*")
del_result := baDeleteFolder (PGPTempPath ^ "\\Application Data\\PGP")
del_result := baDeleteFolder (PGPTempPath ^ "\\Application Data")

-- Reset the USERPROFILE environment variable to what is was originally before PGP
-- was run.

del_result := baSetEnvironment ("USERPROFILE", userdir)

Appendix L

 58

/*
Author Simon Hatton
Date Started 11/12/2001
Last Updated 23/03/2002
Description This program is used in conjunction with a TRIADS assessment. The
 code takes a file containing the answers to an assessment, and then
 creates a new signed and encrypted file of the answers. The program
 is called from within an Authorware application with the following
 parameters:

 pgp_triads.exe <current_dir> <answers_file> <recipient> <sender>

 For a full explanation of the commands used in this program please
 refer to the PGP SDK Reference Guide, which can be found at:

 http://www.pgpi.org/products/sdk/c++/pgpsdk/

 NOTE: The following Random Number Generation files and code used in
 this program were obtained from http://www.agner.org/random/

 randomc.h
 mersenne.cpp
*/

#include <iostream>
#include "headers\pgpKeys.h"
#include "headers\pgpErrors.h"
#include "headers\pgpRandomPool.h"
#include "headers\pgpUtilities.h"
#include "headers\pgpEncode.h"

// RNG (Random Number Generation) files obtained from http://www.agner.org/random/

#include "headers\randomc.h" // define classes for RNG
#include "headers\mersenne.cpp" // Members of class TRandomMersenne

using namespace std;

PGPContextRef context = kInvalidPGPContextRef; // Default context
PGPKeySetRef ourKeyRing = kInvalidPGPKeySetRef; // KeySet for key ring
PGPFilterRef filter = kInvalidPGPFilterRef; // KeySet search filter
PGPKeySetRef foundPubKey = kInvalidPGPKeySetRef; // KeySet for public keys
PGPKeySetRef foundPrivKey = kInvalidPGPKeySetRef; // KeySet for private keys
PGPFileSpecRef inFileRef = kInvalidPGPFileSpecRef; // File ref for input file
PGPFileSpecRef outFileRef = kInvalidPGPFileSpecRef; // File ref for output file
PGPFileSpecRef pubFileRef = kInvalidPGPFileSpecRef; // File ref for public keys
PGPFileSpecRef privFileRef = kInvalidPGPFileSpecRef; // File ref for priv keys
PGPKeyIterRef keyListIterator = kInvalidPGPKeyIterRef; // KeySet iterator

// Function to display a PGP error message.

void DisplayPGPError (PGPError *e, const char *errMesg)
{
 char errorString[256];

 PGPGetErrorString (*e, sizeof (errorString), errorString);
 printf ("PGP ERROR: %s\n%s\n", errorString, errMesg);
}

// Function to shutdown PGP.

int Shutdown (const int error)
{

Appendix L

 59

// De-allocate all assigned key sets, file descriptions, filters etc.

 if (PGPKeyIterRefIsValid (keyListIterator))
 {
 PGPFreeKeyIter (keyListIterator);
 }

 if (PGPFileSpecRefIsValid (pubFileRef))
 {
 PGPFreeFileSpec (pubFileRef);
 }

 if (PGPFileSpecRefIsValid (privFileRef))
 {
 PGPFreeFileSpec (privFileRef);
 }

 if (PGPFileSpecRefIsValid (inFileRef))
 {
 PGPFreeFileSpec (inFileRef);
 }

 if (PGPFileSpecRefIsValid (outFileRef))
 {
 PGPFreeFileSpec (outFileRef);
 }

 if (PGPFilterRefIsValid (filter))
 {
 PGPFreeFilter (filter);
 }

 if (PGPKeySetRefIsValid (foundPubKey))
 {
 PGPFreeKeySet (foundPubKey);
 }

 if (PGPKeySetRefIsValid (foundPrivKey))
 {
 PGPFreeKeySet (foundPrivKey);
 }

 if (PGPKeySetRefIsValid (ourKeyRing))
 {
 PGPFreeKeySet (ourKeyRing);
 }

// Release the PGP Context.

 if (PGPContextRefIsValid (context))
 {
 PGPFreeContext (context);
 }

// Shutdown the PGPsdk library.

 PGPsdkCleanup();

// If a PGP error was detected then exit the program here.

 if (error == 1)
 {
 exit (1);

Appendix L

 60

 }
 return 0;
}

// Entry point for the program.

int main (int argc, char *argv[])
{
// Initialise variables

 char const *currentDir = argv[1]; // Current directory
 char const *inFileName = argv[2]; // Plaintext file (C:\temp\answers.txt)
 char const *receiver = argv[3]; // Name of public key used to encrypt
 char const *sender = argv[4]; // Name of private key used to sign
 char const *keyPassphrase = argv[4]; // Passphrase for the private key

 char pubKeyRing[500]; // Location of public key ring
 char privKeyRing[500]; // Location of private key ring
 char outFileName[500]; // Output file

 long int seed = time(0); // Random seed
 TRandomMersenne randNumGenerator(seed); // Instance of random number generator
 long int randomInteger; // Random integer number

 PGPError err = kPGPError_NoErr; // Resultant errors
 PGPKeyListRef foundKeysList = kInvalidPGPKeyListRef; // KeyList search results
 PGPKeyRef signingKey = kInvalidPGPKeyRef; // Signing key

 void DisplayPGPError (PGPError *, const char *); // Function to display errors
 int Shutdown (const int); // Function to shutdown PGP

// Initialise the name of the output file. This will be the same as the input file,
// but with the extension ".asc" added.
// For example if inFileName = C:\temp\answers.txt, then outFileName =
// C:\temp\answers.txt.asc

 strcpy (outFileName, inFileName);
 strcat (outFileName, ".asc");

// Initialise the pubKeyRing, and privKeyRing string variables, to point to the
// public and private key ring files.

 strcpy (pubKeyRing, currentDir);
 strcat (pubKeyRing, "pubring.pkr");

 strcpy (privKeyRing, currentDir);
 strcat (privKeyRing, "secring.skr");

// Initialise the PGPsdk libraries.

 err = PGPsdkInit();
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Initialising the PGP SDK");
 Shutdown (1);
 }

// Create a new PGPContext. Most PGP functions require a valid PGPContext.

 err = PGPNewContext (kPGPsdkAPIVersion, &context);
 if (IsPGPError (err))

Appendix L

 61

 {
 DisplayPGPError (&err, "Creating the PGP context");
 Shutdown (1);
 }

// Make sure the Random Pool contains enough data. If it does not then increase
// the random pool until it contains the required amount of data. The random pool
// is increased by adding a random number between 0 and 999999.

 if (!PGPGlobalRandomPoolHasMinimumEntropy())
 {
 PGPUInt32 minEntropy;
 minEntropy = PGPGlobalRandomPoolGetMinimumEntropy();
 do
 {
 randomInteger = randNumGenerator.IRandom(0, 999999);
 PGPGlobalRandomPoolAddKeystroke (randomInteger);
 } while (PGPGlobalRandomPoolGetEntropy() < minEntropy);
 }

// Create file descriptions for the public and private keyring files.

 err = PGPNewFileSpecFromFullPath (context, pubKeyRing, &pubFileRef);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the \"pubring.pkr\" File Descriptor");
 Shutdown (1);
 }

 err = PGPNewFileSpecFromFullPath (context, privKeyRing, &privFileRef);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the \"secring.skr\" File Descriptor");
 Shutdown (1);
 }

// Create file descriptions for the "answers.txt" input file, and for the
// "answers.txt.asc" output file.

 err = PGPNewFileSpecFromFullPath (context, inFileName, &inFileRef);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the \"answers.txt\" File Descriptor");
 Shutdown (1);
 }

 err = PGPNewFileSpecFromFullPath (context, outFileName, &outFileRef);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the \"answers.txt.asc\" File Descriptor");
 Shutdown (1);
 }

// Open the public and private Key Ring files.

 err = PGPOpenKeyRingPair (context, kPGPKeyRingOpenFlags_None,
 pubFileRef, privFileRef, &ourKeyRing);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Opening the key ring");
 Shutdown (1);
 }

Appendix L

 62

// Create a filter to look for the key pair of the message sender.

 err = PGPNewUserIDStringFilter (context, sender, kPGPMatchSubString, &filter);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the Private Key filter");
 Shutdown (1);
 }

// Search for the message senders key pair.

 err = PGPFilterKeySet (ourKeyRing, filter, &foundPrivKey);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Searching for the Private Key");
 Shutdown (1);
 }

// Use the first matching key pair.

 err = PGPOrderKeySet (foundPrivKey, kPGPAnyOrdering, &foundKeysList);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Getting the Private Key (1)");
 Shutdown (1);
 }

 err = PGPNewKeyIter (foundKeysList, &keyListIterator);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Getting the Private Key (2)");
 Shutdown (1);
 }

 err = PGPKeyIterNext (keyListIterator, &signingKey);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Getting the Private Key (3)");
 Shutdown (1);
 }

// Create a filter to look for the key pair of the message recipient

 err = PGPNewUserIDStringFilter (context, receiver, kPGPMatchSubString, &filter);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Creating the Public Key filter");
 Shutdown (1);
 }

// Search for the message recipients key pair.

 err = PGPFilterKeySet (ourKeyRing, filter, &foundPubKey);
 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Searching for the Public Key");
 Shutdown (1);
 }

Appendix L

 63

// Sign and encrypt the file C:\temp\answers.txt, and output the results into
// the file C:\temp\answers.txt.asc.

 err = PGPEncode (context,
 PGPOArmorOutput (context, TRUE),
 PGPOSignWithKey (context, signingKey,
 PGPOPassphrase (context, keyPassphrase),
 PGPOLastOption (context)),
 PGPOEncryptToKeySet (context, foundPubKey),
 PGPOInputFile (context, inFileRef),
 PGPOOutputFile (context, outFileRef),

 PGPOLastOption (context));

 if (IsPGPError (err))
 {
 DisplayPGPError (&err, "Encrypting and Signing the file");
 Shutdown (1);
 }

 Shutdown (0);

 return 0;
}

