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Abstract. Let f be a transcendental entire function, and assume that f is hyperbolic
with connected Fatou set; we say that such a function is “of disjoint type”. It is known
that a disjoint-type function provides a model for the dynamics of all maps in the
same parameter space near infinity; the goal of this article is to study the topological
properties of the Julia set of f .

Indeed, we give an almost complete description of the possible topology of the com-
ponents of Julia sets for entire functions of disjoint type. More precisely, let C be a
component of such a Julia set, and consider the Julia continuum Ĉ := C ∪ {∞}. We

show that ∞ is a terminal point of Ĉ, and that Ĉ has span zero in the sense of Lelek;
under a mild additional geometric assumption the continuum Ĉ is arc-like. (Whether
every span zero continuum is also arc-like was a famous question in continuum theory,
posed by Lelek in 1961, and only recently resolved in the negative by work of Hoehn.)
Conversely, every arc-like continuum X possessing at least one terminal point can occur
as the Julia continuum of a disjoint-type entire function. In particular, the sin(1/x)-
curve, the Knaster buckethandle and the pseudo-arc can all occur as components of
Julia sets of entire functions.

We also give similar descriptions of the possible topology of Julia continua that
contain periodic points or points with bounded orbits, and we answer a question of
Barański and Karpińska regarding the accessibility of components of the Julia set from
the Fatou set. We also show that the Julia set of a disjoint-type entire function may
have components on which the iterates tend to infinity pointwise, but not uniformly.
This property is related to a famous conjecture of Eremenko concerning escaping sets
of entire functions.

1. Introduction

We consider the iteration of transcendental entire functions; i.e. of non-polynomial
holomorphic self-maps of the complex plane. This topic was founded by Fatou in a
seminal article of 1921 [Fat26], and has received particular interest over the past decade
or so, partly due to emerging connections with the fields of rational and polynomial
dynamics. For example, work of Inou and Shishikura as well as of Buff and Chéritat
implies that certain well-known features of transcendental dynamics occur naturally
near non-linearizable fixed points of quadratic polynomials [Shi09]. These results and
their proofs are motivated by properties first discovered in the context of transcendental
dynamics. It is to be hoped that a better understanding of the transcendental case will
lead to further insights also in the polynomial and rational setting.
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In this article, we consider a particular class of transcendental entire functions, namely
those that are of disjoint type; i.e. hyperbolic with connected Fatou set. To provide the
required definitions, recall that the Fatou set F (f) of a transcendental entire function f
consists of those points z for which the family of iterates

fn := f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

is equicontinuous with respect to the spherical metric in a neighbourhood of z. (I.e.,
these are the points where small perturbations of the starting point z result only in small
changes of fn(z), independently of n.) Its complement J(f) := C \ F (f) is called the
Julia set ; it is the set on which f exhibits “chaotic” behavior. We also recall that the
set S(f) of (finite) singular values is the closure of all critical and asymptotic values of
f in C. Equivalently, it is the smallest closed set S such that f : C \ f−1(S)→ C \ S is
a covering map.

1.1. Definition (Hyperbolicity).
An entire function f is called hyperbolic if the set S(f) is bounded and every point in
S(f) tends to an attracting periodic cycle of f under iteration. If f is hyperbolic and
furthermore F (f) is connected, then we say that f is of disjoint type.

Hyperbolic dynamical systems (also referred to as Axiom A, using Smale’s terminol-
ogy) are those that exhibit the simplest type of dynamics; understanding the hyperbolic
case is usually the first step in building a more general theory. In [Rem09, Theorem 5.2],
it is shown that the dynamics of any hyperbolic entire function on its Julia set can be
obtained, via a suitable semi-conjugacy, as a quotient of the dynamics of a disjoint-type
entire function; this was later generalized to certain non-hyperbolic functions by Mihal-
jević-Brandt [MB12]. Furthermore, suppose that f belongs to the Eremenko-Lyubich
class

B := {f : C→ C transcendental entire : S(f) is bounded}.

(By definition, this class contains all hyperbolic entire functions, as well as the par-
ticularly interesting Speiser class S of functions for which S(f) is finite.) Then the
map

fλ : C→ C; z 7→ λf(z)

is of disjoint type for sufficiently small λ, and it is shown in [Rem09, Theorem 1.1] that
the maps f and fλ have the same dynamics near infinity.

Hence a good understanding of the possible dynamics of disjoint-type entire functions
should be the first step to a general theory of entire functions in the classes S and B.
As a simple example, consider the maps

Sλ(z) := λ sin(z), λ ∈ (0, 1).

Already Fatou observed that J(Sλ) contains infinitely many curves on which the iterates
tend to infinity (namely, iterated preimages of an infinite piece of the imaginary axis),
and asked whether this is true for more general classes of functions. It turns out that, in
fact, the entire set J(Sλ) can be written as an uncountable union of arcs, each connecting
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a finite endpoint with ∞.1 Each point on such a curve, with the possibility of the finite
endpoint, tends to infinity under iteration. This led Eremenko [Ere89] to strengthen
Fatou’s question by asking whether, for an arbitrary entire function f , every point of
the escaping set

I(f) := {z ∈ C : fn(z)→∞}
could be connected to infinity by an arc in I(f). We remark that, when f ∈ B, the set
I(f) is always contained in the Julia set [EL92, Theorem 1].

It turns out that the situation is not as simple as suggested by this question. Indeed,
while the answer to Eremenko’s question is positive when f ∈ B has finite order of
growth [RRRS11, Theorem 8.4], there exists a disjoint-type entire function f ∈ B for
which J(f) contains no arcs. (When f is of disjoint type, the result for finite-order
functions was obtained independently by Barański [Bar07].) This suggests that the
possible topological types of components of J(f) can be rather varied, even for f of
disjoint-type, and it is natural to ask what types of objects can arise. We shall give
an almost complete solution to this problem. However, before describing the general
results, let us consider two particularly interesting applications of our methods.

A famous continuum (i.e., non-empty compact, connected metric space) that contains
no arcs is given by the pseudo-arc (see Definition 1.4), a certain hereditarily indecom-
posable continuum with the intriguing property of being homeomorphic to every one of
its non-degenerate subcontinua. In view of the results of [RRRS11] mentioned above, it
is tempting to ask whether the pseudo-arc can arise in the Julia set of a transcendental
entire function. We show that this is indeed the case; as far as we are aware, this is the
first time that a dynamically defined subset of the Julia set of an entire or meromor-
phic function has been shown to be homeomorphic to the pseudo-arc. Observe that the
following theorem sharpens [RRRS11, Theorem 8.4].

1.2. Theorem (Pseudo-arcs in Julia sets). There exists a disjoint-type entire function
f : C → C such that, for every connected component C of J(f), the set C ∪ {∞} is a
pseudo-arc.

A further motivation for studying the topological dynamics of disjoint-type functions
comes from a second question asked by Eremenko in [Ere89]: Is every connected com-
ponent of I(f) unbounded? This problem is now known as Eremenko’s Conjecture, and
has remained open despite considerable attention. For disjoint-type maps, and indeed
for any entire function with bounded postsingular set, it is known that the answer is
positive [Rem07]. However, the disjoint-type case nonetheless has a role to play in the
study of this problem. Indeed, as discussed in [Rem09, Section 7], we may strengthen
the question slightly by asking which entire functions have the following property:

(UE) For all z ∈ I(f), there is a connected and unbounded set A ⊂ C with z ∈ A such
that fn|A →∞ uniformly.

1To our knowledge, this fact was first proved by Aarts and Oversteegen [AO93, Theorem 5.7], at
least for λ < 0.85. Devaney and Tangerman [DT86] had previously discussed at least the existence of
“Cantor bouquets” of arcs in the Julia set, and the proof that the whole Julia set has this property
is analogous to the proof for the disjoint-type exponential maps z 7→ λez with 0 < λ < 1/e, first
established in [DK84, p. 50]; see also [DG87].
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If there exists a counterexample f to Eremenko’s Conjecture in the class B, then
clearly f cannot satisfy property (UE). It follows from [Rem09] that (UE) fails for every
map of the form fλ := λf . As noted above, fλ is of disjoint type for λ sufficiently
small, so we see that any counterexample f ∈ B would need to be closely related to a
disjoint-type function for which (UE) fails. It was stated in [Rem07, Rem09] that such
an example indeed exists; in this article we provide the first proof of this assertion. In
fact, as we discuss in more detail below, there is a surprisingly close relationship between
the topology of Julia continua and the existence of points z ∈ I(f) for which (UE) fails.
Hence our results allow us to give a good description of the cirucmstances in which
such points exist at all, which is likely to be important in any attempt to construct a
counterexample to Eremenko’s Conjecture. In particular, we can prove the following,
which strengthens the examples alluded to in [Rem07, Rem09].

1.3. Theorem (Non-uniform escape to infinity). There is a disjoint-type entire function
f and an escaping point z ∈ I(f) with the following property. If A ⊂ I(f) is connected
and {z} ( A, then

lim inf
n→∞

inf
z∈A
|fn(z)| <∞.

Topology of Julia continua. If f is of disjoint type, then it is easy to see that the
Julia set J(f) is a union of uncountably many connected components, each of which
is closed and unbounded. If C is such a component, we shall refer to the continuum
Ĉ := C∪{∞} as a Julia continuum of f . In the case of z 7→ λ sin(z) with λ ∈ (0, 1), every
Julia continuum is an arc, while for the example in Theorem 1.2 every Julia continuum
is a pseudo-arc. In order to discuss the possible topology of Julia continua in greater
detail, we shall require a small number of well-known concepts from continuum theory.

1.4. Definition (Terminal points; span zero; arc-like continua).
Let X be a continuum (i.e., a compact, connected metric space).

(a) A point x0 ∈ X is called a terminal point of X if, for any two subcontinua
A,B ⊂ X with x0 ∈ A ∩B, either A ⊂ B or B ⊂ A.

(b) X is said to have span zero if any subcontinuum A ⊂ X × X whose first and
second coordinates both project to the same subcontinuum A ⊂ X must intersect
the diagonal. (I.e., if π1(A) = π2(A), then there is x ∈ X such that (x, x) ∈ A.)

(c) X is said to be arc-like if, for every ε > 0, there exists a continuous function
g : X → [0, 1] such that diam(g−1(t)) < ε for all t ∈ [0, 1].

(d) X is called a pseudo-arc if X is arc-like and also hereditarily indecomposable (i.e.,
every point of X is terminal).

For the benefit of those readers who have not encountered these concepts before, let
us make a few comments regarding their meaning. A few examples of arc-like continua
and their terminal points are shown in Figure 1.

(1) One should think of terminal points as a natural analogue of the endpoints of an
arc. However, as the example of the pseudo-arc shows, a continuum may contain
far more than two terminal points.

(2) Roughly speaking, X has span zero if two points cannot exchange their position
by travelling within X without meeting somewhere.
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(a) The arc (b) The sin(1/x)-continuum

(c) Knaster bucket-handle (d) A double bucket-handle

Figure 1. Some examples of arc-like continua; terminal points are
marked by grey circles. (The numbers of terminal points in these con-
tinua are two, three, one and zero, respectively.)

(3) Intuitively, a continuum is arc-like if it looks like an arc at arbitrarily small scales.
As we discuss in Section 7, there are a number of equivalent definitions, the most
important of which is that X is arc-like if and only if it can be written as an
inverse limit of arcs with surjective bonding maps.

(4) Any two pseudo-arcs, as defined above, are homeomorphic [Bin51a, Theorem 1];
for this reason, we also speak about the pseudo-arc. See Exercise 1.23 in [Nad92]
for a construction that shows the existence of such an object, and the introduction
to Section 12 in the same book for a short history.

(5) It is well-known [Lel64] that every arc-like continuum has span zero. A long-
standing question, posed by Lelek [Lel71, Problem 1] in 1971 and featured on
many subsequent problem lists in topology, asked whether every continuum with
span zero must be arc-like. (It is known that this is true when the continuum is
hereditarily decomposable; see Definition 2.10.) The question remained open for
40 years, until Hoehn [Hoe11] recently constructed a counterexample.

In order to make the most precise statements about the possible topology of Julia
continua, we shall need to make a very mild function-theoretic restriction on the entire
functions under consideration.



6 LASSE REMPE-GILLEN

1.5. Definition (Bounded slope [RRRS11]).
An entire function is said to have bounded slope if there exists a curve γ : [0,∞) → C
such that |f(γ(t))| → ∞ as t→∞ and such that

lim sup
t→∞

| arg(γ(t))|
log |γ(t)|

<∞.

Remark 1. Any function f ∈ B that is real on the real axis has bounded slope. So does
the counterexample to Eremenko’s question constructed in [RRRS11], as has, as far as
we are aware, any specific example or family of functions f ∈ B whose dynamics has
been considered in the past.

Remark 2. In all results stated in this section, “bounded slope” can be replaced by the
considerably weaker condition of having “arc-like tracts”, as per Definition 5.1.

With these preparations, we can state our main theorem.

1.6. Theorem (Topology of Julia continua). Let Ĉ be a Julia continuum of a disjoint-

type entire function f . Then Ĉ has span zero and ∞ is a terminal point of Ĉ. If,
additionally, f has bounded slope, then Ĉ is arc-like.

Conversely, there exists a disjoint-type entire function f of bounded slope with the
following property. If X is any arc-like continuum having a terminal point x0 ∈ X,
then there exists a Julia continuum Ĉ of f and a homeomorphism ψ : X → Ĉ such that
ψ(x0) =∞.

Remark. The fact that ∞ is always a terminal point of Ĉ appears essentially already in
[Rem07, Corollary 3.4] (though it is not quite stated there).

In particular, Theorem 1.6 gives a complete description of the possible topology of
Julia continua for disjoint-type entire functions with bounded slope. The class of arc-like
continua is extremely rich (e.g., there are uncountably many pairwise disjoint arc-like
continua), and hence we see that, indeed, Julia sets of disjoint-type entire functions are
topologically very varied. In the case where f does not have bounded slope (or, indeed,
“arc-like tracts”, which is a much more general condition), we do not obtain a complete
classification. We note that any additional Julia continua would be of span zero but
not arc-like, and hence of considerable topological interest in view of Lelek’s question.
Indeed, it is plausible that one could construct a disjoint-type entire function having a
Julia continuum of this type, thus yielding a new proof of Hoehn’s theorem mentioned
above. However, we will not pursue this investigation here.

Nonescaping points and accessible points. Let us now turn to the behavior of
points in a Julia continuum Ĉ = C ∪ {∞} under iteration. In the case of disjoint-type
sine (or exponential) maps, and indeed for any disjoint-type entire function of finite
order, each component C of the Julia set contains at most one point that does not tend
to infinity under iteration, namely the finite endpoint of C. (Recall that C ∪ {∞} is an
arc in this case.) Furthermore, this finite endpoint is always accessible from the Julia
set of f ; no other point can be accessible from F (f). (Compare [DG87].) This suggests
the following questions:

(a) Can a Julia continuum contain more than one nonescaping point?
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(b) Is every nonescaping point accessible from F (f)?
(c) Does every Julia continuum contain a point that is accessible from F (f)? This

question is raised in [BK07, p. 393], where the authors prove that the answer is
positive when a certain growth condition is imposed on the external address (see
Definition 2.5) of the component C.

To answer these questions, let us introduce one more topological notion.

1.7. Definition (Irreducibility).
Let X be a continuum, and let x0, x1 ∈ X. We say that X is irreducible between x0 and
x1 if no proper subcontinuum of X contains both x0 and x1.

We shall apply this notion only in the case where x0 and x1 are terminal points of
X. In this case, irreducibility of X between x0 and x1 means that, in some sense, the
points x0 and x1 lie “on opposite ends” of X. For example, the sin(1/x)-continuum of
Figure 1(b) is irreducible between the terminal point on the right of the image and either
of the two terminal points on the left, but not between the two latter points (since the
limiting interval is a proper subcontinuum containing both of these).

1.8. Theorem (Nonescaping and accessible points). Let Ĉ be a Julia continuum of a

disjoint-type entire function f . Any nonescaping point z0 in Ĉ is a terminal point of Ĉ,
and Ĉ is irreducible between z0 and ∞. The same is true for any point z0 ∈ Ĉ that is
accessible from F (f).

Furthermore, the set of nonescaping points in Ĉ has Hausdorff dimension zero. On
the other hand, there exist a disjoint-type function having a Julia continuum for which
the set of nonescaping points is a Cantor set and a disjoint-type function having a Julia
continuum that contains a dense set of nonescaping points.

Note that, in particular, the two functions whose existence is asserted in this theorem
will have nonescaping points that are not accessible from F (f), since a Julia component
can contain at most one accessible point. Furthermore, we can apply Theorem 1.6 to the
bucket-handle continuum of Figure 1(c), which has only a single terminal point. Hence
the corresponding Julia continuum contains neither nonescaping nor accessible points.
In particular, this answers the question of Barański and Karpińska.

We remark that it is also possible to construct an inaccessible Julia continuum that
does contain a finite terminal point z0. Indeed, the examples mentioned in the second
half of the preceding theorem must have this property (by the final statement of Theorem
3.10). Such an example can also be achieved by ensuring that the continuum is embedded

in the plane in such a way that z0 is not accessible from the complement of Ĉ (see Figure
2); we shall not discuss the details of such a construction here.

Bounded-address and periodic Julia continua. We now turn our attention to the
different type of dynamics that f can exhibit on a Julia continuum. We shall see that
each Julia continuum Ĉ in Theorem 1.6 can be constructed either such that fn|C →∞
uniformly, or such that minz∈C |fn(z)| < R for some R > 0 and infinitely many n.
However, our construction will always require that also minz∈C |fnk(z)| → ∞ for some
subsequence fnk of iterates. In particular, the Julia continuum cannot be periodic.

We shall now consider when we can improve on this behaviour, in the following sense.
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1.9. Definition (Periodic and bounded-address Julia continua).

Let Ĉ = C ∪ {∞} be a Julia continuum of a disjoint-type function f . We say that Ĉ is
periodic if fn(C) = C for some n ≥ 1.

We also say that Ĉ has bounded address if there is R such that, for every n ∈ N, there
is z ∈ C such that |fn(z)| ≤ R.

With some reflection, it becomes evident that not every one of the continua in Theorem
1.6 can arise as a Julia continuum with bounded address. Indeed, it is easy to show that
every Julia continuum Ĉ at bounded address contains a unique point with a bounded
orbit (and hence that every periodic Julia continuum contains a periodic point). In

particular, by Theorem 1.8, Ĉ contains some terminal point z0 such that Ĉ is irreducible
between z0 and ∞. So if X is an arc-like continuum that does not contain two terminal
points between which X is irreducible (such as the Knaster buckethandle), then X
cannot be realized by a bounded Julia continuum. It turns out that this is the only
restriction.

1.10. Theorem (Classification of bounded Julia continua). There exists a bounded-
slope, disjoint-type entire function f with the following property.

Let X be an arc-like continuum, and let x0, x1 ∈ X be two terminal points between
which X is irreducible. Then there is a Julia continuum Ĉ of f with bounded address and
a homeomorphism ψ : X → Ĉ such that ψ(x0) = ∞ and such that ψ(x1) has bounded
orbit under f .

We also observe that not every continuum as in Theorem 1.10 can occur as a periodic
Julia continuum. Indeed, if Ĉ is a periodic Julia continuum, then fp : Ĉ → Ĉ is a
homeomorphism, where p is the period of Ĉ, and all but one point of Ĉ tends to ∞
under iteration by fp. However, if X is, say, the sin(1/x)-continuum from Figure 1,
then every self-homeomorphism of X must map the limiting interval on the left to itself.
Hence there cannot be any periodic Julia continuum Ĉ that homeomorphic to X. The
following theorem describes exactly which continua can occur in this setting.

1.11. Theorem (Periodic Julia continua). Let X be a continuum and let x0, x1 ∈ X.
Then the following are equivalent:

(a) There exists a bounded-slope, disjoint-type entire function f , a periodic Julia

continuum Ĉ of f , say of period p, and a homeomorphism ψ : X → Ĉ such that
ψ(x0) =∞ and fp(ψ(x1)) = ψ(x1).

(b) There is a continuous function h : [0, 1]→ [0, 1] such that h(0) = 0, h(1) = 1 and
h(x) < x for all x ∈ (0, 1), and such that X is homeomorphic to the inverse limit
space generated by h, with x0 and x1 corresponding to the points 1 ←[ 1 ←[ . . .
and 0←[ 0← [ . . . , respectively.

Remark 1. Recall that the inverse limit generated by h is the space of all backward
orbits under h, equipped with the product topology (Definition 2.12).
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Remark 2. This result is slightly less satisfactory than Theorems 1.6 and 1.10. Indeed,
both of those results can be stated in the following form: Any (resp. any bounded-
address) Julia continuum has a certain intrinsic topological property P, and any arc-
like continuum with property P can be realized as a Julia continuum (resp. bounded-
address Julia continuum) of a disjoint-type, bounded-slope entire function. It would
be interesting to investigate whether Theorem 1.11 can also be phrased in such terms.
However, we remark that there is e.g. no known natural topological classification of those
arc-like continua that can be written as an inverse limit with a single bonding map.

Remark 3. By a classical result of Henderson [Hen64], the pseudo-arc can be written
as an inverse limit as in (b). Hence we see from Theorem 1.11 that it can arise as an
invariant Julia continuum of a disjoint-type entire function. It follows from the nature
of our construction in the proof of Theorem 1.11 that, in this case, all Julia continua
are pseudo-arcs (see Section 12), establishing Theorem 1.2 as stated at the beginning of
this introduction.

(Non-)uniform escape to infinity. We now return to the question of rates of escape
to infinity, and the “uniform Eremenko property” (UE). Recall that it is possible to

construct a Julia continuum Ĉ that contains no finite terminal points, and hence has
the property that C ⊂ I(f). Also recall that we can choose Ĉ in such a way that the
iterates of f do not tend to infinity uniformly on C. This easily implies that there is
some point in C for which the property (UE) fails.

To study this type of question in greater detail, we make the following natural defini-
tion.

1.12. Definition (Uniformly escaping components).
Let f be a transcendental entire function, and let z ∈ I(f). The uniformly escaping
component µ(z) is defined to be the union of all connected sets A ⊃ z such that fn|A →
∞ uniformly.

We also define µ(∞) to be the union of all unbounded connected sets A such that
fn|A →∞ uniformly.

There is an interesting connection between uniformly escaping components and the
topology of Julia continua. Recall that the composant of a point x0 in a continuum X
is the union of all proper subcontinua of X containing x0.

1.13. Theorem (Composants and uniformly escaping components). Let Ĉ = C ∪ {∞}
be a Julia continuum of a disjoint-type entire function, and suppose that fn|C does not

tend to infinity uniformly. Then the composant of∞ in Ĉ is given by {∞}∪(µ(∞)∩Ĉ).

If Ĉ is periodic, then Ĉ is indecomposable if and only if Ĉ ∩ I(f) \ µ(∞) 6= ∅.
Any indecomposable continuum has uncountably many composants, all of which are

pairwise disjoint. Hence we see that complicated topology of Julia continua automati-
cally leads to the existence of points that cannot be connected to infinity by a set that
escapes uniformly. However, our proof of Theorem 1.6 also allows us to construct Julia
continua that have very simple topology, but nonetheless contain points in I(f) \µ(∞).

1.14. Theorem (A one-point uniformly escaping component). There exists a disjoint-

type entire function f and a Julia continuum Ĉ = C ∪ {∞} of J(f) such that:
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(a) Ĉ is an arc, with one finite endpoint z0 and one endpoint at ∞;
(b) C ⊂ I(f), but lim infn→∞minz∈C |fn(z)| < ∞. In particular, there is no nonde-

generate connected set A 3 z0 on which the iterates escape to infinity uniformly.

Observe that this implies Theorem 1.3.

Number of tracts and singular values. So far, we have not said much about the
nature of the functions f that occur in our examples, except that they are of disjoint
type. Using recent results of Bishop [Bis12, Bis13], we can say considerably more:

1.15. Theorem (Class S and number of tracts). All examples of disjoint-type entire
functions f mentioned in this section can be constructed in such a way that f has exactly
two critical values and no finite asymptotic values, and such that all critical points of f
have degree at most 4.

Furthermore, with the exception of Theorem 1.10, the function f can be constructed
such that

TR := f−1({z ∈ C : |z| > R})
is connected for all R. In Theorem 1.10, the function f can be constructed so that TR
has exactly two connected components for sufficiently large R.

Remark. On the other hand, if TR is connected for all R, then it turns out that every
Julia component at a bounded address is homeomorphic to a periodic Julia component
(Proposition 6.1). Hence it is indeed necessary to allow TR to have two components in
Theorem 1.10.

As pointed out in [BFR14], this leads to an interesting observation. By Theorem 1.15,
the function f from Theorem 1.2 can be constructed such that #S(f) = 2, such that f
has no asymptotic values and such that all critical points have degree at most 4. Let
v1 and v2 be the critical values of f , and let c1 and c2 be critical points of f over v1

resp. v2. Let A : C → C be the affine map with A(v1) = c1 and A(v2) = c2. Then the
function g := f ◦ A has super-attracting fixed points at v1 and v2. By the results from
[Rem09] discussed earlier, the Julia set J(g) contains infinitely many invariant subsets,
each of whose one-point compactification is homeomorphic to the pseudo-arc. On the
other hand, J(g) is locally connected by [BFR14, Corollary 1.9]. Hence we see that, in
contrast to the polynomial case, local connectivity of Julia sets does not imply simple
topological dynamics, even for hyperbolic functions.

Embeddings. Given an arc-like continuum X, there are usually different ways to em-
bed X in the plane. That is, there might be continua C1, C2 ⊂ Ĉ such that X is
homeomorphic to C1 and C2, but such that no homeomorphism Ĉ→ Ĉ can map C1 to
C2. (That is, C1 and C2 are not ambiently homeomorphic.) Our construction in Theo-
rem 1.6 is rather flexible, and we can indeed construct different Julia continua that are
homeomorphic but not ambiently homeomorphic. In particular, as briefly mentioned in
the discussion of results concerning accessibility above, it would be possible to construct
a Julia continuum Ĉ that is homeomorphic to the sin(1/x)-continuum, and such that

the limiting arc is not accessible from the complement of Ĉ. (See Figure 2).
For a disjoint-type entire function which has bounded slope, every Julia continuum

can be covered by a chain with arbitrarily small links such that every link is a connected
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(a) (b)

Figure 2. Two embeddings of the sin(1/x)-continuum that are not am-
biently homeomorphic

subset of the Riemann sphere. (For the definition of a chain, compare the remark after
Proposition 7.2.) It is well-known [Bin51b, Example 3] that there are embeddings of
arc-like continua without this property.

It is natural to ask whether this is the only restriction on the continua that can arise
by our construction, but we shall not investigate this question further here.

Structure of the article. In Section 2, we collect background on the dynamics of
disjoint-type entire functions. In particular, we review the logarithmic change of variable,
which will be used throughout the remainder of the paper. We also recall some basic
facts from the theory of continua. Following these preliminaries, the article essentially
splits into two parts, which can largely be read independently of each other:

• General topology of Julia continua. In the first part of the article, we study general
properties of Julia continua of disjoint-type entire functions. More precisely,
in Section 3 we show that each such continuum has span zero, and prove the
results concerning terminal points stated earlier. In Section 4, we investigate the
structure of uniformly escaping components. Section 5 studies conditions under
which all Julia continua are arclike, and establishes one half of Theorem 1.11.
Finally, Section 6 shows that, in certain circumstances, different Julia continua
are homeomorphic to each other.
• Constructing prescribed Julia continua. The second part of the paper is concerned

with the constructions that allow us to find entire functions having prescribed
arc-like Julia continua, as outlined in the theorems stated in this section. We
review topological background on arc-like continua in Section 7 and, in Section
8, give a detailed proof of a slightly weaker version of Theorem 1.6 (where the
function f is allowed to depend on the arc-like continuum in question). Section
9 applies this general construction to obtain the examples from Theorems 1.3,
1.14 and 1.8. The construction of bounded-address continua is very similar to
that in Section 8; we sketch it in Section 10. Sections 11 and 12 contain the
proofs of Theorems 1.11 and 1.2. Finally, we briefly discuss the modifications
of the construction necessary to prove Theorems 1.6 and 1.10 as stated in the
introduction (Section 13), and how to obtain Theorem 1.15.
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Basic notation. As usual, we denote the complex plane by C and the Riemann sphere
by Ĉ. We also denote the unit disk by D and the right half-plane by H.

We shall also continue to use the notations introduced throughout the introduction.
In particular, the Fatou, Julia and escaping sets of an entire function are denoted by
F (f), J(f) and I(f), respectively. Euclidean distance is denoted by dist.

In order to keep the paper accessible to readers with a background in either continuum
theory or transcendental dynamics, but not necessarily both, we aim to introduce all
notions and results required from either area. For further background on transcendental
iteration theory, we refer to [Ber93]. For a wealth of information on continuum theory,
including the material treated here, we refer to [Nad92]. In particular, [Nad92, Chapter
12] contains a detailed treatment of arc-like continua.

We shall assume that the reader is familiar with plane hyperbolic geometry; see e.g.
[BM07]. If U ⊂ C is simply-connected, then we denote the density of the hyperbolic
metric by ρU : U → (0,∞). In particular, we shall frequently use the standard estimate
on the hyperbolic metric in a simply-connected domain:

(1.1)
1

2 dist(z, ∂U)
≤ ρU(z) ≤ 2

dist(z, ∂U)

We also denote hyperbolic diameter in U by diamU , and hyperbolic distance by distU .
Furthermore, the derivative of a holomorphic function f with respect to the hyperbolic
metric is denoted by ‖Df(z)‖U . (Note that this is defined whenever z, f(z) ∈ U .)

Acknowledgements. I would like to thank Chris Bishop, Clinton Curry, Toby Hall,
Phil Rippon and Gwyneth Stallard for interesting and stimulating discussions regarding
this research.

2. Preliminaries

Disjoint-type entire functions. Recall that a transcendental entire function f : C→
C is of disjoint type if it is hyperbolic with connected Fatou set. The following (see
[BK07, Lemma 3.1] or [MB12, Proposition 2.8]) provides an alternative definition of
disjoint-type entire functions, which is the one that we shall work with.

2.1. Proposition (Characterization of disjoint-type functions). A transcendental entire
function f : C→ C is of disjoint type if and only if there exists a bounded Jordan domain
D with S(f) ⊂ D and f(D) ⊂ D.

Let f be of disjoint type, and consider the domain W := C \D, with D as in Propo-
sition 2.1. Since S(f) ∩ W = ∅, if V is any connected component of V := f−1(W ),
then f : V → W is a covering map. These components are called the tracts of f (over
∞). Since f is transcendental, it follows from the classification of covering maps of the
punctured disc [For99, Theorem 5.10] that every tract V is simply-connected and that
f : V → W is a universal covering map. In fact, ∂V is an unbounded Jordan domain,
i.e. a Jordan domain whose boundary passes through ∞. (This follows by choosing a
slightly larger domain D̃ ⊃ D and applying the above observation: we see that ∂V is a
preimage component of the simple closed curve ∂D under a universal covering map.)

Note that ∂W ∩ ∂V = ∅; this is why we use the term disjoint type. It follows easily
that the Julia set J(f) consists precisely of those points whose iterates remain in W
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forever. Indeed, the latter set has no interior, compare [Rem09, Lemma 2.3], and D is
clearly contained in the Fatou set (and indeed in the immediate basin of an attracting
fixed point). For our purposes, we could also take this description as the definition of
the Julia set of a disjoint-type entire function.

2.2. Proposition (Julia sets). If f is of disjoint type and D is as in Proposition 2.1,

J(f) = {z ∈ C : fn(z) /∈ D for all n ≥ 0}.

The logarithmic change of variable. Following Eremenko and Lyubich [EL92], we
study f using the logarithmic change of variable. To this end, let us assume for simplicity
that f(0) ∈ D; this can always be achieved by conjugating f with a translation. Set
H := exp−1(W ) and T := exp−1(V). Then there is a holomorphic function F : T → H
such that f ◦ exp = exp ◦F . We may choose this map F to be 2πi-periodic, in which
case we refer to it as a logarithmic transform of f .

This representation is extremely convenient: for every component T of T , the map
F : T → H is now a conformal isomorphism (rather than a universal covering map as in
the original coordinates). This makes it much easier to consider inverse branches. From
now on, we shall always study the logarithmic transform of f . In fact, it turns out to
be rather irrelevant that the map F has arisen from a globally defined entire function,
which leads to the following definition, following [Rem09, RRRS11].

2.3. Definition (The classes Blog and Bp
log).

The class Blog consists of all holomorphic functions

F : T → H,

where F , T and H have the following properties:

(a) H is a 2πi-periodic unbounded Jordan domain that contains a right half-plane.
(b) T 6= ∅ is 2πi-periodic and Re z is bounded from below in T , but unbounded from

above.
(c) Every component T of T is an unbounded Jordan domain that is disjoint from

all its 2πiZ-translates. For each such T , the restriction F : T → H is a conformal
isomorphism whose continuous extension to the closure of T in Ĉ satisfies F (∞) =
∞. (T is called a tract of F ; we denote the inverse of F |T by F−1

T .)
(d) The components of T have pairwise disjoint closures and accumulate only at ∞;

i.e., if zn ∈ T is a sequence of points all belonging to different components of T ,
then zn →∞.

If F ∈ Blog. then the Julia set and escaping set of F are defined by

J(F ) := {z ∈ H : F n(z) ∈ T for all n ≥ 0} and

I(F ) := {z ∈ J(F ) : ReF n(z)→∞ as n→∞}.

If furthermore F is 2πi-periodic, then we say that F belongs to the class Bp
log. If

T ⊂ H, then we say that F is of disjoint type.

Remark. If F ∈ Blog has disjoint type, then, by conjugation with an isomorphism H → H
that commutes with translation by 2πi, we obtain a disjoint-type function G ∈ Blog that
is conformally conjugate to F and whose range is the right half-plane H. It is not difficult
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to see that all geometric properties discussed in this paper, such as bounded slope, are
invariant under this transformation. Hence we could always assume that H = H in the
following. However, we prefer to work directly with the above class, which retains a
more direct connection to the original entire functions.

Any logarithmic transform F of a disjoint-type entire function, as described above,
belongs to the class Bp

log and has disjoint type. The following result, due to Bishop,
shows essentially that the converse also holds.

2.4. Theorem (Realization of disjoint-type functions). Let G ∈ Bp
log be of disjoint type

and let g be defined by g(exp(z)) = exp(G(z)). Then there exists a disjoint-type function
f ∈ B such that f |J(f) is topologically (and, in fact, quasiconformally) conjugate to
g|exp(J(G)).

Furthermore, there is a disjoint-type function f̃ ∈ S such that every connected com-
ponent of J(G) is homeomorphic to a connected component of J(f̃) (but not necessarily
vice-versa). The function f may be chosen to have exactly two critical values, no as-
ymptotic values, and with all critical points of degree at most 4.

Proof. The first statement is Corollary 1.4 in [Bis12], which is a consequence of Theorem
1.2 in the same paper and [Rem09, Theorem 3.1]. The second statement follows in the
same way, using Theorem 1.5 from [Bis12] rather than Theorem 1.2. �

Hence, in order to construct the examples of disjoint-type entire functions described
in the introduction, it will be sufficient to construct suitable functions in the class Bp

log.
We remark that, with some extra care, the realization of our class B examples could also
be carried out using the earlier approximation result in [Rem13, Theorem 1.9].

The combinatorics of Julia continua. Let F ∈ Bp
log be of disjoint type. The Markov

partition provided by the tracts of F and their iterated preimages allows us to introduce
a notion of symbolic dynamics as follows.

2.5. Definition (External addresses and Julia continua).
Let F ∈ Blog have disjoint type. An external address of F is a sequence s = T0T1T2 . . .
of tracts of F .

If s is such an external address, then we define

Js(F ) := {z ∈ J(F ) : F n(z) ∈ Tn for all n},

Ĵs(F ) := Js(F ) ∪ {∞} and

Is(F ) := I(F ) ∩ Js(F ).

When Js(F ) is nonempty, we say that s is allowable (for F ). In this case, Ĵs(F ) is
called a Julia continuum of F . An address s is called bounded if it contains only finitely
many different tracts, and periodic if there is p ≥ 1 such that Tj = Tj+p for all j ≥ 0.

Remark 1. By definition, we can write Ĵs as a nested intersection of compact, connected

sets (namely the pullback of Tj ∪ {∞} under the appropriate branch of F−j) and hence

Ĵs is indeed a continuum.
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Remark 2. It follows from [Rem07] that Js(F ) is always connected. We reprove this fact

below, by showing that ∞ is a terminal point of Ĵs(F ). Indeed, a terminal point of a

continuum X can never be a cut point of X, so Js(F ) = Ĵs(F ) \ {∞} is connected.
In particular, if f is an entire function of disjoint type and F ∈ Bp

log is a logarithmic
transform of f , then every (arbitrary/bounded-address/periodic) Julia continuum of
f , as defined in the introduction, is homeomorphic to a Julia continuum of F at an
(allowable/bounded/periodic) address, and vice versa.

Hyperbolic expansion. In order to study disjoint-type functions, we shall use the
fact that they are expanding on the Julia set, with respect to the hyperbolic metric
on H. Recall that ‖DF (z)‖H denotes the hyperbolic derivative of F , measured in the
hyperbolic metric of H, and that diamH denotes hyperbolic diameter in H.

2.6. Proposition (Expanding properties of F ). Let F : T → H be a disjoint-type func-
tion in Blog. Then there is a constant Λ > 1 such that

‖DF (z)‖H ≥ Λ,

for all z ∈ T ; furthermore ‖DF (z)‖H →∞ as Re z →∞.
Also, for every R > 0 there is M > 0 such that, for every z ∈ H:

diamH({w ∈ T : |z − w| ≤ R}) ≤M.

Proof. The first fact is well-known and follows from standard estimates on the hyperbolic
metric; see e.g. [BK07, Lemma 3.3] or [RRRS11, Lemma 2.1]. The second fact follows
from the assumption that the closure of T is contained in H, that T is 2πi-periodic,
and the fact that the density ρH(ζ) of the hyperbolic metric of H tends to zero as
Re ζ →∞. �

A simple consequence of hyperbolic expansion is the fact, mentioned in the intro-
duction, that each Julia continuum at a bounded address contains a unique point with
bounded orbit.

2.7. Proposition (Points with bounded orbits). Let F ∈ Blog, and let s be a bounded
external address. Then there is a unique point z0 ∈ Js(F ) with supj≥0 ReF j(z0) < ∞.
If s is periodic of period p, so is z0.

Proof. Uniqueness is clear from the expanding property of F , and the final claim in the
statement follows from uniqueness. Hence it only remains to prove the existence of z0.

Choose an arbitrary base point ζ0 and set

D := max
i≥0

distH(ζ0, F
−1
Ti

(ζ0)),

where s = T0T1 . . . . Note that the maximum exists because s contains only finitely
many different tracts.

Define δ := D · Λ/(Λ− 1), where Λ > 1 is the constant from Proposition 2.6. Let ∆0

be the closed hyperbolic disc of radius δ around ζ0. If z ∈ ∆0, then we have

distH(F−1
Ti

(z), ζ0) ≤ distH(F−1
Ti

(z), F−1
Ti

(ζ0)) +D ≤ 1

Λ
distH(z, ζ0) +D ≤ δ

Λ
+D = δ.
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Hence F−1
Ti

(∆0) ⊂ ∆0 for all i ≥ 0. It follows that the compact sets

∆j := F−1
T0

(F−1
T1

(. . . (F−1
Tj

(∆0)) . . . ))

satisfy ∆j+1 ⊂ ∆j, and hence their intersection contains some point z0 with F j(z0) ∈ ∆0

for all j ≥ 0. �

The expanding property also implies that points within the same Julia continuum
must eventually separate under iteration (see e.g. [RRRS11, Lemma 3.2]).

2.8. Lemma (Separation of real parts). Let s be an allowable external address, and let
z, w ∈ Js(F ) with z 6= w. Then |ReF n(z)− ReF n(w)| → ∞ as n→∞.

Results from continuum theory. We shall frequently require the following fact.

2.9. Theorem (Boundary bumping theorem [Nad92, Theorem 5.6]). Let X be a con-
tinuum, and let E ( X be nonempty. If K is a connected component of X \ E, then
K ∩ ∂E 6= ∅.

We also recall some background on (in-)decomposable continua and composants.
These are mainly used in Section 4.

2.10. Definition ((In-)decomposable continua).
A continuum X is called decomposable if it can be written as the union of two proper
subcontinua of X. Otherwise, X is indecomposable.

Furthermore X is called hereditarily (in-)decomposable if every non-degenerate sub-
continuum of X is (in-)decomposable.

Recall that the composant of a point x ∈ X is the union of all proper subcontinua
containing X. We say that X is irreducible at a point x ∈ X if there is some y ∈ X
such that X is irreducible between x and y (in the sense of Definition 1.7).

2.11. Proposition (Properties of composants). Let X be a continuum.

(a) A point x ∈ X is irreducible if and only if its composant is a proper subset of X.
(b) A point x ∈ X is terminal if and only if x is irreducible in K for every subcon-

tinuum K 3 x.
(c) A continuum is hereditarily indecomposable if and only if every point of x is a

terminal point.
(d) If C is a composant of X, then X \ C is connected.
(e) A decomposable continuum has either one or three different composants.
(f) An indecomposable continuum has uncountably many composants, every two of

which are disjoint, and each of which is dense in X.

Proof. The first claim is immediate from the definition, and (b) is a simple exercise. By
definition, X is hereditarily indecomposable if and only if any two subcontinua of X
are either nested or disjoint. Clearly this is the case if and only if all points of X are
terminal. The remaining statements can be found in Theorems 11.4, 11.13 and 11.17
and Exercise 5.20 of [Nad92]. �

Finally, we recall the definition of inverse limits ; see [Nad92, Chapter 2] for more
information on this topic.
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2.12. Definition (Inverse limits).
Let (Xj)j≥0 be a sequence of continua, and let fj : Xj → Xj−1 be a continuous function
for every j ≥ 1.

Let X be the set of all “inverse orbits”, (x0 ←[ x1 ←[ x2 ←[ . . . ), with xj ∈ Xj for all
j ≥ 0 and fj(xj) = xj−1 for all j ≥ 1. Then X, with the product topology, is called the
inverse limit of the functions (fj), and denoted lim←−(fj)

∞
j=1. The inverse limit is again a

continuum. The maps fj are called the bonding maps of the inverse limit X.

The introduction of some further topological background concerning arc-like continua
will be delayed until Section 7, as it is only required in the second part of this article.

3. Topology of Julia continua

We now study the general topological properties of Julia continua for a function in
the class Blog. In particular, we prove that every such Julia continuum has span zero.
The idea of the proof is rather simple: Since each tract T cannot intersect its own
2πi-translates, two points cannot exchange position by moving inside T without coming
within distance 2π of each other. Now let s be an allowable external address. By
applying the preceding observation to the tract Tj, for j large, and using the expanding
property of F , we see that two points cannot cross each other within Js(F ) without
passing within distance ε of each other, for every ε > 0. This establishes that Js(F ) has
span zero. (This idea is similar in spirit to the proof of Lemma 2.2 and Corollary 3.4 in
[Rem07], which we in fact recover below.)

However, some care is required, since the tract T can very well contain points whose
imaginary parts differ by a large amount (see Figure 3). Hence we shall have to take
some care in justifying the informal argument above, by studying the possible structure
of logarithmic tracts somewhat more closely.

3.1. Definition (Logarithmic tracts).
A Jordan domain T that does not intersect its 2πi translates and that is unbounded to
the right (i.e., Re z → +∞ as z → ∞ in T ) is called a logarithmic tract. In particular,
every tract of a function F ∈ Blog is a logarithmic tract.

Within such a tract, we wish to understand when points can move around without
having to come close to each other. To study this question, we introduce the following
terminology.

3.2. Definition (Separation number).
For any z ∈ C, we denote by Iz the line segment

Iz := {z + i · t : t ∈ [−2π, 2π]}.

Let T be a logarithmic tract, and let z ∈ T . If a, b ∈ T \Iz, then we define sepT (a, b; z)
to denote the smallest number of intersections of a curve connecting a and b in T with
the segment Iz.

(The tract T will usually be fixed in the following, and we shall then suppress the
subscript T in this notation.)
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T

T + 2πi

z

Iz

(a)

z

a

b

(b)

Figure 3. A tract containing points whose imaginary parts are further
apart than 2π. Subfigure (a) illustrates the definition of the segment Iz,
while the configuration in (b) shows that the number sepT (a, b; z) can
decrease under perturbation of z (it will change from 2 to 0 if we move
the point z slightly to the right).

3.3. Proposition (Continuous parity of separation numbers). Let T be a logarithmic
tract, let a, b, z ∈ T , and suppose that a, b /∈ Iz. Then the parity of sepT (a, b; z) varies
continuously for small perturbations of a, b and z.

That is, if X denotes the set of points (a, b; z) ∈ T 3 with a, b /∈ Iz, then the function

sepT : X → Z2; (a, b; z) 7→ sepT (a, b; z) (mod 2)

is continuous.
On the other hand, as a (or b) passes through the segment Iz transversally, the number

sepT (a, b; z) changes parity.

Remark. The function sepT (a, b; z) itself need not be continuous in z, although it is
always upper semi-continuous (i.e., under a small perturbation of z, the separation
number might decrease.

Proof. Observe that Iz ∩ T is a union of vertical cross-cuts of the tract T . Clearly
sep(a, b; z) is precisely the number of such cross-cuts that separate a from b in T . Recall
that each cross-cut C separates T into precisely two components, one on each side of C.
In particular, as the point a (or b) crosses Iz, keeping the other points fixed, the number
sep(a, b; z) increases or decreases by 1. This proves the final claim.

Also observe that, if γ γ ⊂ T is a curve connecting a and b, and γ intersects Iz only
transversally, then the number of intersections between γ and Iz has the same parity as
sep(a, b; z). Indeed, The curve γ must intersect every cross-cut that separates a from b
in an odd number of points, and every cross-cut that does not separate a from b in an
even number of points.
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So let a, b, z ∈ T with a, b /∈ Iz. Clearly a sufficiently small perturbation of a or of b
does not change the value (and hence the parity) of sep(a, b; z), so we only need to focus
on what happens when we perturb z to a nearby point z̃.

Let γ be a curve, as above, conencting a and b and intersecting Iz only transversally.
If z̃ is close enough to z, then γ also intersects Iz̃ only transversally, and in the same
number of points. Hence we see that sep(a, b; z) and sep(a, b; z̃) have the same parity,
as claimed. �

We are now ready to prove the statement alluded to at the beginning of the section,
which then allows us to deduce that every Julia continuum has span zero.

3.4. Proposition (Bounded span of tracts). Let T be a logarithmic tract, and let A ⊂
T ∪ {∞} be compact and connected. Suppose furthermore that X ⊂ (T ∪ {∞})2 is a
connected set whose first and second components both project to A.

Then there is a point (z, w) ∈ X ∩ T 2 such that z ∈ Iw. In particular, |z − w| < 2π.

Proof. We shall prove the contrapositive: suppose that X ⊂ (T ∪ {∞})2 is any set
whose first and second component both project to A, and such that z /∈ Iw whenever
(z, w) ∈ X ∩ T 2. We shall show that X is disconnected.

Let a be a left-most point of A; i.e. Re a = minz∈A Re z. Let U consist of the set of all
points (z, w) ∈ X such that w /∈ Ia and such that sep(a, z;w) is even. By Proposition 3.3,
this set is open in X.

On the other hand, we claim that V := X \ U is also open in X. Let (z, w) ∈ V . If
w /∈ Ia, then V contains a neighborhood of (z, w) in X by Proposition 3.3.

Now suppose that w ∈ Ia. Let z̃, w̃ ∈ T be chosen close to z and w (not necessarily
in A). If Re w̃ < Rew = Re a, then clearly sep(a, z̃; w̃) = 0. Hence it follows from
Proposition 3.3 that sep(a, z̃; w̃) = 1 when Re w̃ > Re a. If (z̃, w̃) ∈ X, then we either
have w̃ ∈ Ia or Re w̃ > Re a (provided the initial perturbation was small enough), and
hence (z̃, w̃) ∈ V in either case, as required.

Furthermore, both U and V are nonempty. Indeed, by assumption there are z, w ∈ A is
such that (a, w), (z, a) ∈ X. We have (z, a) ∈ V by definition (since a ∈ Ia). Similarly, we
have w /∈ Ia by assumption on X, and sep(a, a;w) = 0 by definition. Hence (a, w) ∈ U .

We have shown that X is disconnected, as desired. �

3.5. Theorem (Julia continua have span zero). Let F ∈ Blog be of disjoint type, and let

Ĉ be a Julia continuum of F . Then Ĉ has span zero.

Proof. Suppose that X ⊂ Ĉ2 is a continuum whose projections to the first and second
coordinates are the same set A ⊂ T ∪ {∞}. For n ≥ 0, consider An := F n(A) and
Xn := {(FN(z), FN(w)) : (z, w) ∈ X}.

Then for each n, An is contained in Tn ∪ {∞} for some tract Tn of F . By Proposi-
tion 3.4, Xn contains a point (ζn, ωn) such that |ζn − ωn| < 2π. Let zn, wn ∈ A such
that ζn = F n(z) and ωn = F n(w). Since the hyperbolic distance between ζn and ωn is
uniformly bounded by Proposition 2.6, and F uniformly expands the hyperbolic metric,
it follows that the hyperbolic distance in T between ζn and ωn tends to zero. Thus
|ζn − ωn| → 0. Hence (ζ, ζ) ∈ X, where ζ is any limit point of (ζn). Hence we have

shown that Ĉ has span zero. �
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We shall next prove the fact that infinity, as well as any nonescaping or accessible
point, is terminal in each Julia continuum. To do so, it will be helpful to note down the
following consequence of Proposition 3.3. (It is essentially an extension of the idea used
in the proof of Proposition 3.4.)

3.6. Corollary (Moving along a connected set). Let T be a logarithmic tract, and let
A ⊂ T ∪∞ be compact and connected. Choose a, b ∈ A be such that

Re a = min
z∈A

Re z and Re b = max
z∈A

Re z.

(Here we use the convention that Re∞ = +∞.)
Let z ∈ A such that a, b /∈ Iz. Then sep(a, b; z) is odd. In particular, Iz separates a

from b in T .

Remark 1. Note that the number sep(a,∞; z) = limb̃→∞(a, b̃; z) is well-defined by Propo-
sition 3.3.

Remark 2. The statement of this corollary means that, in order to move from the left-
most point to the right-most point of A, we must pass along within distance at most 2π
of all of A. This is the key statement we shall require in the following.

Proof. Let us assume, for simplicity, that ∞ /∈ A, so that b is finite (the case where
b =∞ follows easily by a limiting argument). By the previous proposition, the set of z
such that sep(a, b; z) is odd is relatively open and closed in A \ (Ia ∪ Ib).

Let K be a component of A \ (Ia ∪ Ib). Then, by the boundary bumping theorem
(Theorem 2.9), the closure of K intersects Ia or Ib; let us suppose without loss of
generality that z0 ∈ Ia ∪K.

If z ∈ K is sufficiently close to z0, then sep(a, b; z) = 1, just as in the proof of
Proposition 3.4. By continuity, sep(a, b; z) is odd for all z ∈ K, as desired. �

3.7. Theorem (The role of ∞). Let Ĉ be a Julia continuum of a disjoint-type function

F ∈ Blog. Then ∞ is a terminal point of Ĉ.

Remark. Theorems 3.5 and 3.7 together establish the first part of Theorem 1.6.

Proof. Let s = T0T1T2 . . . be the address of Ĉ. Suppose that Â1, Â2 ⊂ Ĉ are subcontinua
both containing ∞. Let us set Â := Â1 ∪ Â2. We also define A := Â \ {∞} and
An := F n(A) for n ≥ 0. The sets Ajn, with n ≥ 0 and j ∈ {1, 2}, are defined analogously.

For each n, let an be a left-most point of An as in Corollary 3.6. There is j ∈ {1, 2}
such that ank

∈ Ajnk
for an infinite sequence (nk). Without loss of generality, we may

suppose that j = 1; we shall show that A2 ⊂ A1.
Indeed, let z ∈ A2. We claim that zk := F nk(z) satisfies dist(zk, A

1
nk

) ≤ 2π. If
zk ∈ Iank

, then this is clearly true. Otherwise, Izk separates ank
from∞ in the tract Tnk

by Corollary 3.6. Hence Izk intersects A1
nk

, and thus indeed dist(zk, A
1
nk

) ≤ 2π.
By the expanding property of F , it follows that dist(z, A1) = 0, and hence z ∈ A1, as

claimed. �

We now turn out attention to nonescaping points in Julia continua.
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3.8. Theorem (Nonescaping points are terminal). Let F ∈ Blog be of disjoint type, and

let Ĉ be a Julia continuum of F . If z0 ∈ Ĉ \ {∞} is nonescaping, then z0 is a terminal

point of Ĉ, and Ĉ is irreducible between z0 and ∞.

Proof. Let s = T0T1 . . . be the address of Ĉ. Since z0 is a nonescaping point, there is a
number R > 0 and a sequence (nk) such that ReF nk(z0) < R for all k.

Let Â1, Â2 ⊂ Ĉ be subcontinua both containing z0. Similarly as in the preceding
proof, let us set Â := Â1 ∪ Â2, and let bk be the right-most point of Ak := F nk(Â ∩ C).
By relabelling, and by passing to a further subsequence if necessary, we may assume
that bk ∈ A1

k := F nk(Â1 ∩ C. We shall show that A2 ⊂ A1 (where Aj = Âj ∩ C).
Recall that, up to translations in 2πiZ, only finitely many tracts intersect the vertical

line at real part R. In particular, we can find a constant Q > 0, indepenent of k, with
the following property. Any two points in Tnk

both of whose real parts are at most R
can be connected by a curve γ ⊂ Tnk

that consists entirely of points at real parts less
than Q. (Simply choose Q sufficiently large to make sure that no bounded component
of Tnk

\ {z ∈ C : Re z = R} contains a point of real part greater than Q.)
Now let z ∈ A2, and consider the point zk := F nk(z). Also let ak be the left-most

point of Ak. By Corollary 3.6, the segment Izk separates ak from bk. Furthermore, we
have |Re zk − ReF nk(z0)| → ∞ by Lemma 2.8, and hence Re zk ≥ Q when k is chosen
sufficiently large. Hence Izk also separates F nk(z0) from bk, and therefore intersects A1

k.
As before, it follows from the expansion of F that z ∈ A1.

This proves that z0 is a terminal point. Furthermore, if Â1 ⊂ Ĉ is a continuum
containing both z0 and ∞, then we can choose Â2 = Ĉ in the above argument, and
conclude that Ĉ = Â1. Thus Ĉ is indeed irreducible between z0 and ∞. �

We remark that the set of nonescaping point in any given Julia continuum is geomet-
rically rather small. (We refer to [Fal90] for the definition of Hausdorff dimension.)

3.9. Proposition (Hausdorff dimension of nonescaping points with a given address).

Let F ∈ Blog be of disjoint type, and let Ĉ be a Julia continuum of F . Then the Hausdorff

dimension of the set of nonescaping points in Ĉ is zero.

Proof. If z is a nonescaping point, then by definition there is K > 0 such that ReF n(z) ≤
K infinitely often. So the set of nonescaping points in Ĉ = Js(F ) can be written as

Js(F ) \ I(f) =
⋃
K>0

⋂
n0∈N

⋃
n≥n0

F−ns ({z ∈ Tn : Re z ≤ R}),

where s = T0T1 . . . is the address of Ĉ.
Since a countable union of sets of Hausdorff dimension zero has Hausdorff dimension

zero, it is sufficient to fix K > 0 and show that the set

S(K) :=
⋂
n0∈N

⋃
n≥n0

F−ns ({z ∈ Tn : Re z ≤ R})

has Hausdorff dimension zero.
We again use the fact that, up to translation, there are only finitely many tracts that

intersect the line {Re z = K}. For each such tract, the set of points with real part ≤ K
is a bounded subset of H, and hence has finite hyperbolic diameter (in H). In other
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words, for every K, there is a number C such that, for every tract T of F , the set of
points in T with real part ≤ K has hyperbolic diameter bounded above by C.

Keeping in mind that the map F : Tn → H is a hyperbolic isometry, it follows that

diamT0

(
F−ns ({z ∈ Tn : Re z ≤ R})

)
≤ C · Λ−(n−1)

for n ≥ 1, where Λ > 1 is the expansion constant from Proposition 2.6. Hence, by the
standard estimate (1.1), the Euclidean diameter of this set is bounded by 2π ·C ·Λ−(n−1).

Let t > 0. Then for every n0 ≥ 1 the t-dimensional Hausdorff measure of S(K) is
bounded by∑

n≥n0

diam(F−ns ({z ∈ Tn : Re z ≤ R}))t ≤
∑
n≥n0

(
2π · C · Λ(−(n−1))

)t
= (2πC)t ·

∑
n≥n0−1

(Λt)n.

As this quantity tends to zero as n0 →∞, we see that dim(S(K)) ≤ t. Since t > 0 was
arbitrary, we have dim(S(K)) = 0, as claimed. �

Our final topic in this section is the study of points in J(F ) that are accessible from
H \ J(F ).

3.10. Theorem (Accessible points). Let F ∈ Bp
log be of disjoint type, and let Ĉ = C∪∞

be the Julia continuum containing z0. Suppose that z0 ∈ C is accessible from C \ J(F ).

Then z0 is a terminal point of Ĉ, and Ĉ is irreducible between z0 and∞. Furthermore,
z0 is the unique point of Ĉ that is accessible from C \ J(F ), and Ĉ \ {z0} ⊂ I(F ).

Proof. Let γ be an arc that connects ∂H to z0 without intersecting J(F ) in any other
points. Then, for every n ≥ 0, the image F n(γ) contains a piece that connects F n(z0)
to ∂H.

Let an be a left-most point of Cn := F n(C), and let γk be a piece of F n(γ) that
connects F n(z0) with a point of real part Re an, containing no point of real part less
than Re an. Since γn does not intersect the 2πiZ-translates of C, it follows that the set

C̃n := Cn ∪ γn
is disjoint from its own 2πiZ-translates. It is not difficult to see that we can find a
logarithmic tract T̃n with T̃n ⊃ C̃n. Note that T̃n is not a tract of F , but that we can
nonetheless apply the methods of this section to its compact connected subsets.

With this observation, the proof that z0 is terminal, and that Ĉ is irreducible between
z0 and ∞, is completely analogous to Theorem 3.8. Indeed, suppose that Â1, Â2 are
subcontinua of Ĉ both containing z0, and consider the sets

An := A1
n ∪ A2

n ∪ γk
(where Ajn is again the image under F n of Aj := Âj \ {∞}). Let bn be the right-most
point of An; we assume that the sets are labelled such that bn ∈ A1

n for infinitely many
n. Corollary 3.6 implies that Iz ∩ A1

n ∪ γn 6= ∅ for every z ∈ A2
n. Hence A2 ⊂ A1 ∪ γ.

Since γ ∩ Ĉ = {z0}, it follows that in fact Â2 ⊂ Â1, as required.

Now suppose that ζ0 ∈ Ĉ is a nonescaping point; say ReF nk(ζ0) ≤ R for a suitable
infinite sequence (nk). Set ζk := F nk(ζ0) and zk := F nk(z0); then Re zk → ∞. Let ωk
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be the left-most point of γnk
(so Reωk = Re ank

). By Corollary 3.6, either ωk ∈ Iζk ,
or the segment Iζk separates the right-most point of γ from infinity. As in the proof of
Theorem 3.8, this segment then also separates the former point from zk, provided that
Re zk is sufficiently large. Hence we see that Iζk ∩γnk

6= ∅ for all sufficiently large k. But
this implies that ζ0 ∈ γ, which is a contradiction.

A similar argument shows that Ĉ cannot contain two different accessible points. We
omit the details since this fact is well-known. Indeed, the set Ĉ is precisely the impression
of a unique prime end of C \ J(F ) (see e.g. [BK07], and hence contains at most one
accessible point. (This also follows from the results of Section 6 below.) �

Remark. A similar argument shows that, if Ĉ contains both an accessible point z0 and a
nonescaping point z1, then z0 = z1. In particular, any Julia continuum containing more
than one nonescaping point (such as those we construct later on in the paper) cannot
contain any accessible points.

4. Uniform escape

We next discuss the connection between topological properties of Julia continua and
uniformly escaping components.

4.1. Definition (Uniformly escaping component).
Let F ∈ Blog be of disjoint type, and let s be an allowable external address. If z ∈ Is(F ),
then the uniformly escaping component of z, denoted µ(z) := µs(z), is the union of all
connected sets A ⊂ J(F ) with z ∈ A for which ReF n|A converges to infinity uniformly.

We also define

µs(∞) := {z ∈ Js(F ) : there is an unbounded, closed, connected set

A ⊂ Js(F ) such that z ∈ A and ReF n|A →∞ uniformly}.

Remark. The set µs(∞) appears implicitly in [Rem07, Corollary 3.4], which implies that
it is always connected as a subset of the complex plane. In particular, if z ∈ µs(∞),
then µs(z) = µs(∞).

For the remainder of the section, we shall fix a disjoint-type function F ∈ Blog and
an allowable external address. In [Rem07, Proposition 3.2], given any z ∈ Js(F ), an
unbounded and connected subset of Is(F ) is constructed whose points escape “as fast
as possible” in a certain sense. This shows that µs(∞) is non-empty, and suggests the
following definition.

4.2. Definition (s-fast escaping points).
Let s = T0T1 . . . be an external address for F that is realized. We say that a point z ∈
Js(F ) belongs to the s-fast escaping set As(F ) if there exists an open set D0 intersecting
Js(F ) with the following property: If we inductively define Dj+1 := F (Tj ∩ Dj), then
F j(z) belongs to the unbounded connected component of Tj \Dj for all j.

Remark. The definition is reminiscent of, and motivated by, the description of the fast
escaping set A(f) of an entire function that was given by Rippon and Stallard [RS05].
However, we note that there is no simple relation between the two sets. Indeed, it is
not only possible that the s-fast escaping set contains points that are not “fast” for the
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global function, but also that some points that are “fast” for the global function may
not belong to As(F ). We shall not discuss this relation further here.

4.3. Proposition (Existence of s-fast escaping points). If z ∈ As(F ), then there exists
an unbounded closed connected set A ( As(F ) that contains z, and on which the iterates
escape to infinity uniformly. In particular, As(F ) ⊂ µs(F ). Furthermore, As(F ) is
dense in Js(F ).

Proof. The first claim is clear from the definition. Indeed, let Aj be the unbounded
connected component of Tj \Dj as in Definition 4.2. Then F−1

Tj
(Aj+1) ⊂ Aj by definition.

It follows that

Â :=
⋂
n≥0

F−1
T0

(F−1
T1

(. . . (F−1
Tn

(An+1)) . . . )) ∪ {∞}

is a compact and connected set containing both z and ∞. Furthermore, the set A :=
Â \ {∞} is contained in As(F ) by definition, and it is connected since ∞ is a terminal

point of Ĉ. The fact that points in A escape uniformly follows from the fact that, for
every R, the set Dn separates all points in Tn that have real part at most R from ∞.
(Compare [Rem07, Lemma 3.1].)

To prove density of As(F ), let z ∈ Js(F ), and let D0 be a small disc around z. Then
the set A, constructed in the preceding paragraph, must intersect ∂D0. This proves
that As(F ) is dense in Js(F ). (See also [Rem07, Corollary 3.6].) This also shows that
A ( As(F ). �

Interestingly, it turns out that we can define As(F ) purely using the topology of Ĵs(F ):

4.4. Proposition (Composants and uniform escape). Âs(F ) := As(F ) ∪ {∞} is the

composant of ∞ in Ĵs(F ).

In other words, Ĵs(F ) is irreducible between z and ∞ if and only if z /∈ As(F ).

Proof. By Proposition 4.3, Âs(F ) is contained in the composant of ∞.

On the other hand, let K ( Ĵs(F ) be a proper subcontinuum containing ∞; we must

show that K ⊂ Âs(F ). Since Ĵs(F ) ∩ K 6= ∅, by the final statement in Proposition

4.3, we see that Âs(F ) \ K 6= ∅.Hence, by the first part of Proposition 4.3, there is a

continuum A ⊂ Âs(F ) with ∞ ∈ A and A 6⊂ K. Since ∞ is a terminal point of Ĵs(F ),

we have K ⊂ A ⊂ Âs(F ), as desired. �

4.5. Corollary (Characterisation of decomposability). The set Js(F ) \ As(F ) is non-
empty and connected. Moreover, the following are equivalent:

(a) Ĵs(F ) is a decomposable continuum;
(b) Js(F ) \ As(F ) is bounded.

Proof. Let us set Ĉ := Ĵs(F ) and A := As(F ) ∪ {infty}; that is, A is the composant of

∞ in Ĉ.
The set B := Js(F ) \As(F ) = Ĉ \A is nonempty because∞ is a terminal point of Ĉ,

and hence irreducible by Proposition 2.11 (b). It is connected by Proposition 2.11 (d).

If Ĉ is indecomposable, then B is unbounded by Proposition 2.11 (f).
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On the other hand, suppose that Ĉ is decomposable, say Ĉ = X ∪Y , where X and Y
are proper subcontinua, say with∞ ∈ X. Then X ⊂ A by definition, and hence B ⊂ Y .
Since ∞ is a terminal point, we see that ∞ /∈ Y , and hence Y is bounded. �

In many instances, the following statement will allow us to infer that there exist points
in Is(F ) \µs(F ); i.e., escaping points that can not be connected to infinity by a set that
escapes uniformly.

4.6. Corollary (Existence of different uniformly escaping components). Suppose that
the set Js(F ) \ As(F ) contains more than one point. Then Is(F ) \ As(F ) 6= ∅.

If additionally

min
z∈Js(F )

ReF n(z) 6→ ∞

as n→∞, then Is(F ) \ µs(F ) 6= ∅.

Proof. By Corollary 4.5, the setX := Js(F )\As(F ) is connected, and the set of nonescap-
ing points has Hausdorff dimension zero by Proposition 3.9. Hence, if X contains more
than one point, it must intersect I(f). (Indeed, this intersection has Hausdorff dimension
at least 1.)

To prove the second claim, suppose that the iterates do not escape uniformly on
Js(F ). Since As(F ) is the composant of ∞ in Ĵs(F ), we see that no point in Js(F ) \
As(F ) can belong to µs(∞). Hence µs(F ) = Js(F ), and the claim follows from the first
statement. �

Proof of Theorem 1.13. The first statement follows from Proposition 4.4, together with
the final part of the preceding proof.

If s is a periodic address, then Js(F ) contains a unique periodic point, and every other

point of Js(F ) escapes to ∞. Hence Corollaries 4.5 and 4.6 imply that either Ĵs(F ) is
an indecomposable continuum, or Js(F ) \ As(F ) consists of a single periodic point. �

5. Arc-like tracts

We now turn to a class of functions for which we can say more about the topology of
Julia continua.

5.1. Definition (Arc-like tracts).
Let F : T → H be a disjoint-type function in the class Blog. We say that a tract T is
arc-like if there exists a continuous function ϕ : T → [0,∞) with ϕ(z)→∞ as z →∞
and a constant C > 0 such that

diamH(ϕ−1(t)) ≤ C

for all t. If all tracts of F are arc-like with the same constant C, then we say that F has
arc-like tracts.

The following two cases of arc-like tracts are particularly important.

5.2. Definition (Bounded slope and bounded decorations).
Let F : T → H be a disjoint-type function in the class Blog. We say that F has bounded
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slope if there exists a curve γ : [0,∞)→ T and a constant C such that Re γ → +∞ and

| Im γ(t)| ≤ C · Re γ(t)

for all t.
We say that F has bounded decorations if there is a constant C such that

diamH(F−1
T ({z ∈ H : |z| = ρ})) ≤ C

for all ρ ≥ 0 and all tracts T of F .

Remark. Note that, if f has bounded slope, as defined in the Introduction, then any
logarithmic transform of F has bounded slope in the sense defined here (and vice versa).

The following result makes it easy to verify the bounded decorations condition. (It
will be used in the second part of the paper.)

5.3. Proposition (Characterization of bounded decorations). Let T be a logarithmic
tract with T ⊂ H, and let F : T → H be a conformal isomorphism with F (∞) =∞.

Set γ+ := F−1(i · [0,∞)) and γ− := F−1(i · (−∞, 0]. The following are equivalent:

(a) T has bounded decorations.
(b) Every point of γ+ can be connected to some point of γ− by a curve in T whose

hyperbolic diameter (in H) is uniformly bounded.

Proof. This follows from well-known results in geometric function theory (compare the
appendix of [RRRS11].) �

5.4. Observation (Examples of arc-like tracts). If F has bounded-slope or bounded
decorations, then F has arc-like tracts.

Proof. The desired function ϕ is given by functions ϕ(z) = Re z and ϕ(z) = |F (z)|,
respectively. �

The key reason for the above definitions is given by the following observation, which
(together with Theorems 3.5 and 3.7) completes the proof of the first half of Theorem 1.6.

5.5. Proposition (Arc-like tracts imply arc-like continua). Suppose that F has arc-like
tracts. Then every Julia continuum of F is arc-like.

Proof. Let T0T1T2 . . . be the external address of a Julia continuum Ĉ. For each Tj, let
ϕj be the corresponding function from the definition of arc-like tracts. We set

gj : Ĉ → [0,∞]; gj(z) :=

{
ϕj(F

j(z)) if z ∈ C
∞ if z =∞.

.

By hyperbolic expansion (Proposition 2.6),

dimH(g−1
j (t)) ≤ Λ−j · diamH(ϕ−1

j (t)) ≤ C

Λj

for all t ∈ [0,∞). It follows that Ĉ is arc-like. �

Our final result in this section proves one direction of Theorem 1.11, concerning the
topology of periodic Julia continua.
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5.6. Theorem (Invariant continua in arc-like tracts). Let F ∈ Blog be of disjoint type

with arc-like tracts, and suppose that Ĉ is a periodic Julia continuum of F .
Then there is a continuous function h : [0,∞] → [0,∞] such that h(0) = 0, h(∞) =

∞, h(x) < x for x ∈ (0, 1) and such that Ĉ is homeomorphic to lim←− f .

Under this homeomorphism, the point ∞ ← [ ∞ ← [ . . . corresponds to ∞ ∈ Ĉ, and
0←[ 0← [ . . . corresponds to a periodic point in Ĉ.

Proof. By passing to an iterate, we may assume that Ĉ is invariant. That is, we are
in the situation where T is an arc-like logarithmic tract, F : T → H is a conformal
isomorphism and Ĉ consists of all points that stay in T under iteration, together with
∞.

Let ϕ and C be as in the definition of arc-like tracts. We may assume that the map
ϕ : T → [0,∞) is surjective. We may also suppose that the unique fixed point p of F in
T has ϕ(p) = 0, and that ϕ extends continuously to the boundary of T . (The latter can
be achieved by restricting the function F to a slightly smaller domain.) Recall that the
hyperbolic diameter of ϕ−1(t) is bounded by C, independently of t.

Let us define a sequence ζj ∈ T inductively as follows. Let ζ0 = p. For j ≥ 0, let ζj+1 ∈
T be a point with distH(ζj, ζj+1) = 3C such that ϕ(ζj+1) > ϕ(ζj) and such that ϕ(ζj+1)
is minimal with this property. To see that such a point exists, note that ϕ−1(ϕ(ζj)) is
contained in the hyperbolic disc of radius 3C around ζj. Hence the boundary of the disc
must contain some points of ϕ−1((ζj,∞)) by continuity and surjectivity of ϕ, as well as
connectedness of T .

We also observe that, again by continuity of ϕ, we must have xj := ϕ(ζj) → ∞.
Postcomposing ϕ with a homeomorphism [0,∞]→ [0,∞], we may assume for simplicity
that xj = j for all j. Observe that, by construction, any point in ϕ−1([j, j + 1]) has
hyperbolic distance at most 3C from ζj, and hence diamH(ϕ−1([j, j + 1])) ≤ 6C for all
j ≥ 0.

For n ≥ 0, we define a function hn : [0,∞)→ [0,∞) by setting

hn(4j) := ϕ(F−n(ζ4j)),

for j ≥ 0 and interpolating linearly between these points.

Claim 1. If n is sufficiently large, then

(a) diam(ϕ(F−n(ϕ−1([4j, 4(j + 1)])))) ≤ 2;
(b) |hn(x)− hn(y)| ≤ |x− y|/2 for all x, y ∈ R, and
(c) hn(x) < x for all x > 0.

Proof. The hyperbolic diameter (in H) of Aj := ϕ−1([4j, 4(j + 1)]) is bounded by 24C
(independently of j). Let n be sufficiently large to ensure that Λn−1 > 48, where Λ is
once more the expansion factor from Proposition 2.6. Then, in the hyperbolic metric of
T , the diameter of F−n(Aj) is less than C/2. Let B be an open hyperbolic disc of T ,
of radius C and containing F−n(Aj). Then ϕ(B) ⊂ [0,∞) is connected. Furthermore,
ϕ(B) can contain at most one integer, since the hyperbolic distance between any point
of ϕ−1(m) and any point of ϕ−1(m + 1) is at least C, by construction. Hence ϕ(γ) has
diameter at most 2, as claimed in (a).
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In particular, we have |hn(x)− hn(y)| ≤ 2 for x = 4j and y = 4(j + 1). This implies
that the slope of hn on each interval of linearity is at most 1/2, establishing (c). Claim (c)
follows from (b), using y = 0. 4

Let us set h := hn, where n is as in the claim. Since h(x) → ∞ as x → ∞, we
can extend h continuously to a self-map of [0,∞]. This function has the following key
property, which essentially says that h behaves like the map F−n (using the translation
between the two coordinates provided by ϕ).

Claim 2. For all z ∈ T , |h(ϕ(z))− ϕ(F−n(z))| ≤ 4.

Proof. Choose j ≥ 0 such that ϕ(z) ∈ [4j, 4(j + 1)]. Recall from Claim 1 that both
h([4j, 4(j + 1)]) and ϕ(F−n(ϕ−1([4j, 4(j + 1)]))) have diameter at most 2. Hence both
h(ϕ(z)) and ϕ(F−n(z)) have distance at most 2 from the point h(4j), and the claim
follows. 4

It remains to prove that Ĉ is homeomorphic to the inverse limit lim←−h. This is a
standard dynamical conjugacy argument for expanding maps. To provide the details,
define maps ψj : Ĉ → [0,∞] by ψj(∞) =∞ and

(5.1) ψj(z) := lim
k→∞

hk−j(ϕ(F kn(z))).

Claim 3. For every j, the limit in (5.1) exists, and is uniform, with

|ψj(z)− ϕ(F jn(z))| ≤ 8

for all z ∈ Ĉ.
Furthermore, h(ψj+1(z)) = ψj(z) for all j. In particular, these coordinates define a

continuous function ψ : Ĉ → lim←−h.

Proof. We claim that

|hk−j(ϕ(F kn(z)))− ϕ(F jn(z))| ≤ 8

for all k ≥ j. Indeed, this is trivial for k = j. Moreover, if the inequality holds for j and
k, then a simple application of Claim 2 and the contracting property of h shows that it
is also true for k and j − 1. This inductively establishes the claim for all k and j.

In particular, it follows (again using the contracting property of h) that the sequence
of maps defining ψj is a Cauchy sequence, and hence the limit indeed exists, and is
uniform.

The fact that h(ψj+1(z)) = ψj(z) is immediate from the definition. 4

Note that we have ψ(p) = 0 ←[ 0 ←[ . . . and ψ(∞) = ∞ ← [ ∞ ← [ . . . . In particular,
each coordinate function ψj is surjective, which implies that ψ itself is also surjective.

Since Ĉ is compact, it only remains to prove that ψ is injective. We observe that
|ψj(z)−ϕ(F jn(z)| is uniformly bounded by Claim 3. On the other hand, if z, w ∈ Ĉ with
z 6= w, then |ϕ(F jn(z))− ϕ(F jn(w))| → ∞ as j →∞, because the hyperbolic distance
between F nk(z) and F nk(w) tends to infinity. Thus ψj(z) 6= ψj(w) for sufficiently large
j, and hence ψ(z) 6= ψ(w), as desired. �
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6. Homeomorphic subsets of Julia continua

To conclude this part of the paper, we shall establish that any two bounded Julia
continua of an entire function with a single tract are (ambiently) homeomorphic.

6.1. Proposition (Julia continua with similar addresses). Let F ∈ Bp
log, and let M ∈ N.

Let s1 = T 1
0 T

1
1 . . . and s2 = T 2

0 T
2
1 . . . be two external addresses such that T 2

j = T 1
j +2πimj

for some mj ∈ Z.

Suppose that K ⊂ Ĵs1 is compact, and that there is ϑ > 0 such that

Re f j(z) ≥ ϑ · |mj|

for all z ∈ K ∩ C and all j ≥ 0.
Then there exists a compact subset A ⊂ Ĵs2 and a homeomorphism ψ : K → A, with

the property that

(6.1) dH(F n(z), F n(ψ(z))) ≤ C

for all z ∈ K and n ≥ 0. Here the constant C depends on F and ϑ, but not otherwise
on K, s1 and s2.

Remark. The reader may wish to keep in mind the simplest case, where F has a single
tract, s1 is a fixed address and s2 is a bounded address, so that the sequence |mj| is

uniformly bounded. In this case we can take K = Ĵs2 , and it follows easily that A = Ĵs2
(see Corollary 6.2 below).

We shall use the more general statement in Section 12 below, in order to prove The-
orem 1.2.

Proof. This is essentially the same argument that appears in [Rem09] to construct con-
jugacies between subsets of Julia sets of different functions in the class Bp

log. Indeed,
we can think of the above statement as a non-autonomous version, where we allow the
function that is applied to vary at different times.

More precisely, we define maps ψjn : F n(K)→ T 2
n by ψ0

n(z) := z + 2πimn and

ψj+1
n (z) := F−1

T 2
n

(ψjn+1(F (z))).

Let Λ > 1 be the expansion factor of the map F with respect to the hyperbolic metric.
The assumption implies that there exists a constant ρ > 0 (depending only on F and ϑ)
such that

distH(F j(z), F j(z) + 2πimj) ≤ ρ

for all z ∈ K and all j ≥ 0. Set C1 := ϑ · Λ
Λ−1

.

Claim. distH(ψjn(z), F n(z)) ≤ C1 for all n, j ≥ 0 and all z ∈ K.

Proof. The proof is by induction on j. By choice of ρ, the claim is trivial for j = 0. Now
suppose that the claim is true for j, and let z ∈ K. Then

distH(ψj+1
n (z), F n(z) + 2πimn) = distH(ψj+1

n (z), F−1
T 2
n

(F n+1(z)))

≤
distH(ψjn+1(z), F n+1(z))

Λ
≤ C

Λ
.
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So

distH(ψj+1
n (z), F n(z)) ≤ ϑ+

C

Λ
= C.

4

It follows that the maps (ψjn)j≥0 form a Cauchy sequence for every n, and hence
converge to a map ψn. These maps satisfy F ◦ ψn = ψn+1 ◦ F . In particular, ψ := ψ0

satisfies (6.1). By expansion, this also implies that ψ is injective, and (if K is unbounded)
extends continuously to ∞ with ψ(∞) = ∞. So ψ is a homeomorphism onto its image
A := ψ(K), and we are done. �

6.2. Corollary (Homeomorphic Julia continua). With the notation of the preceding
Proposition, suppose that the sequence (mj) is uniformly bounded. Then Js1(F ) and
Js2(F ) are homeomorphic.

Proof. Apply the Proposition to K := Js1(F ) to obtain a map ψ1 : Js1(F ) → Js2(F ).
Then switch the roles of s1 and s2, and similarly obtain a map ψ2 : Js2(F )→ Js1(F ). By
expansion, it follows that ψ1◦ψ2 = id and ψ2◦ψ1 = id, and hence ψ1 is a homeomorphism
between Js1 and Js2 . �

6.3. Corollary (Bounded Julia continua are homeomorphic). Suppose that F ∈ Bp
log has

only a single tract up to translation by integer multiples of 2πi. Then any two bounded
Julia continua of F are homeomorphic. �

For completeness, we also note the following observation concerning the embedding
of the Julia continua considered.

6.4. Proposition (Ambient homeomorphism). The sets K and A in Proposition 6.1
are ambiently homeomorphic; i.e., the map ψ extends to a homeomorphism h : C→ C.

Moreover, as s2 → s1 (for fixed ϑ), the maps h = hs2 converge uniformly to the
identity.

Remark. The proof will show that h can even be taken quasiconformal.

Proof. Let U be a sufficiently small complex neighbourhood of the segment [0, 1]. For µ ∈
U , let us define the following modification of the maps ψjn from the proof of Proposition
6.1:

ψ0
n(z) := z + 2πimn · µ andψj+1

n (z) := F−1
T 1
n

(ψjn+1(F (z))) + 2πimn · µ.

Observe that, for µ = 0, each map is the identity, while for µ = 1 we recover the original
definition.

As in Proposition 6.1, we see that the maps ψj0 converge uniformly to a homeomor-
phism ψ0 from K to some set Aµ, for every µ. Here A0 = K and A1 = A. Since ψ0(z)
depends holomorphically on µ, these sets form a holomorphic motion of the set K. By
the λ-lemma of Bers and Royden [BR86, Lemma 1], each of these maps extends to an
orientation-preserving quasiconformal homeomorphism C→ C.

The second claim follows directly from the proof of Proposition 6.1 and the fact that
F is expanding. �
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7. Background on arc-like continua

In the second part of the article, we are now going to discuss the construction of
entire function with prescribed arc-like continua in the Julia set. In order to make these
constructions, we shall need to collect some further background on arc-like continua.
Let us begin by recalling their definition, and introduce some additional terminology.

7.1. Definition (ε-maps and arc-like continua).
An ε-map from a metric space A to a topological space B is a continuous function
g : A→ B such that g−1(x) has diameter less than ε for every x ∈ B.

A continuum X is called arc-like if, for every ε > 0, there exists an ε-map g from X
onto an arc.

Key to our construction of arc-like continua in Julia sets is the following characteri-
zation of arc-like continua in terms of inverse limits.

7.2. Proposition (Characterization of arc-like continua with terminal points). Let X
be a continuum, and let p ∈ X. The following are equivalent.

(a) X is arc-like and p is terminal;
(b) for every ε > 0, there is an ε-map g : X → [0, 1] with g(p) = 1;
(c) there is a sequence fj : [0, 1]→ [0, 1] of surjective and continuous functions with

fj(1) = 1 for all j such that there is a homeomorphism from X to lim←−((fj)
∞
j=1)

which maps p to the point (1←[ 1←[ 1←[ . . . ).

If any (and hence all) of these properties hold, and q is a second terminal point such
that X is irreducible between p and q, then the maps fj can be additionally chosen to fix
0, with the point q corresponding to the point 0 7→ 0 7→ . . . . Similarly, any ε-map g can
be chosen such that g(q) = 0.

Remark. An additional equivalent formulation is as follows: for every ε > 0, there is
an ε-chain in X that covers X and such that p belongs to the final link of this chain.
(That is, there is a finite sequence U1, . . . , Un of nonempty open subsets (“links”) of X
whose union equals X, such that two links intersect if and only if they are adjacent,
such that p ∈ Un and such that diam(Uj) < ε for all j.) See [Nad92, Definition 12.8] for
a discussion of chainability.

Proof. This result is well-known. Without the reference to terminal points, the equiva-
lence is proved in [Nad92, Theorem 12.19]. For completeness, let us briefly sketch the
proof, referring to [Nad92] and [Bin51b] where necessary.

First observe that (c) clearly implies (b), as we can let g be the projection to the j-th
coordinate, for j sufficiently large.

Conversely, it follows from the proof of Theorem 12.19 in [Nad92] that (b) implies (c).
Indeed, that proof constructs a suitable inverse limit, and an inspection of the proof of
Lemma 12.17 immediately show that the map ϕ constructed there, which is used in the
construction of the inverse limit, satisfies ϕ(1) = 1. (Indeed, with the notation of that
proof, we have tn = 1 and ϕ(1) = ϕ(tn) = si(n) = i(n)/m. Here the definition of i(n)
ensures that i(n) = m, provided that g1(p) = g2(p) = 1.)

That (b) implies (a) is elementary. Inded, suppose that A,B ⊂ X are continua such
that p ∈ A ∩ B, but A 6⊂ B and B 6⊂ A. Then, assuming ε is chosen sufficiently small,
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we also have g(A) 6⊂ g(B) and g(B) 6⊂ g(A) for any ε-map g. Since g(A) and g(B) are
closed subintervals of [0, 1], it follows that g(p) 6= 1.

Finally, Bing [Bin51b, Theorem 13] showed that (a) is equivalent to the statement on
chainable continua mentioned in the remark after the statement of the theorem. This,
in turn, is easily seen to imply (b).

The final part of the proposition follows analogously. �

Hence our challenge shall be to start with an arbitrary inverse limit Y as above, and
construct a function F ∈ Blog having a Julia continuum that is homeomorphic to Y .
This will be achieved using the following result, which implies, in certain circumstances,
that a continuum X is homeomorphic to the inverse limit Y . We shall construct our
function precisely in such a way that it satisfies these requirements. The Proposition is
essentially a special case of [Nad92, Proposition 12.18], which in turn originally appeared
as [MS63, Lemma 5]. (The result holds for arbitrary inverse limits of nonempty compact
metric spaces; for convenience, we are stating it only for inverse limits of arcs.)

7.3. Proposition (Continua homeomorphic to an inverse limit). Let Y be the inverse
limit of continuous maps fk : [0, 1]→ [0, 1] (i ≥ 1), and let (X, d) be an inverse limit of
nonempty compact metric spaces (Xk, dk)k≥0 with continuous bonding maps Ψk : Xk →
Xk−1 for d ≥ 1.

Suppose that, for each j ≥ 0, there are δj > 0 and εj > 0, tending to zero as j →∞,
and a surjective continuous function gj : Xj → [0, 1], such that the following hold:

(a) Let k ≥ 1 and suppose that A ⊂ [0, 1] with diam(A) ≤ δk. Then, for all j < k,

diam(fj+1(fj+2(. . . (fk(A)) . . . )) ≤ δj
2k−j

.

(b) For j ≥ 0, define g̃j : X → [0, 1] by g̃j := gj ◦ πj (where πj denotes projection
to the j-th coordinate). If x, x′ ∈ X and k is such that d(x, x′) ≥ 2εj, then
|g̃j(x)− g̃j(x′)| > 2δj.

(c) |gj−1(Ψj(x))− fj(gj(x))| ≤ δj−1/2 for all x ∈ Xj and all j ≥ 1.

Then X and Y are homeomorphic. More precisely, there exists a homeomorphism
h : X → Y such that

(7.1) |g̃j(x)− πj(h(x))| ≤ δj

for all j ≥ 0.

Proof. As mentioned above, this is essentially proved in [Nad92, Proposition 2.8]. How-
ever, the statement in in [Nad92, Proposition 2.8] is slightly different. In particular,
there the result is formulated only in the case where X is a fixed continuum, rather than
a direct limit (i.e., Xk = Xk−1 and Fk(x) = x for all k and all x ∈ Xk). Furthermore,
the final part of our statement does not appear in the statement of the Proposition in
Nadler’s book, but appears as property (c) in that proof.

For these reasons, let us sketch the proof, which is quite dynamical in nature; indeed,
it is once more essentially a standard conjugacy argument. We inductively define maps
ϑkj : Xk → [0, 1], for j ≤ k, by

ϑkk := gk; ϑkj−1 := fj ◦ ϑkj .
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That is, ϑkj involves first applying gk and then the maps fk, fk−1, . . . , fj+1.

Now consider hkj : X → [0, 1], hkj := ϑkj ◦ πk. Let us fix some j ≥ 0. It follows from
(a) and (c) that

|hk+1
j (x)− hkj (x)| ≤ δj

2k−j

for all x ∈ X and all k > j. In particular, the maps hkj form a Cauchy sequence as
k →∞, and

(7.2) |hkj (x)− g̃j(x)| ≤ δj

for all x ∈ X and all k > j. Let hj be the limit of this sequence. By definition, we
have hj−1 = fj ◦hj for all j, so the maps hj are the coordinates of a continuous function
h : X → Y .

Injectivity of the map h follows from (7.2) and condition (b). Hence h is a homeo-
morphism onto its image.

Finally, h is surjective, due to the surjectivity of the maps gk. Indeed, let t0 ←[ t1 ←[
t2 ←[ . . . be a point of Y . Then, for every k ≥ 0 there is xk ∈ Xk such that gk(x̃k) = tk.
Let x̂k be the partial inverse orbit defined by x̂kj := Ψj+1(Ψj+2(. . . (Ψk(xk)) . . . )), and let

x̂ ∈ X be an accumulation point of the sequence x̂k. By definition, ϑkj (x̂
k
k) = ϑkj (xk) = tj

for all j ≤ k. Arguing as in the proof of (7.2), we see from (a) that

ϑkj (x̂
k
j )→ tj

as k →∞ for fixed j. Hence hj(x) = tj for all j ≥ 0. �

When applying Proposition 7.3, the following observations will be useful.

7.4. Observation (Modifications of Proposition 7.3). Let X and Y be given as in
Proposition 7.3.

(1) If (δj)j≥0 is a sequence such that (a) holds, then the sequence δ̃j := n · δj also
satisfies this property, for every n ∈ N.

(2) Let (δj)j≥0 be a sequence of positive numbers and let n ∈ N. If

ε̃j := sup
x∈X

diam{x′ ∈ X : |g̃j(x)− g̃j(x′)| ≤ δj/n} → 0

as j →∞, then the sequence εj := ε̃j/(2n) satisfies (b).

Proof. Let (δj) be as in(1), and set δ̃j := n ·δj. To establish (a) for δ̃j, it is clearly enough

to consider the case where A is an interval. If diam(A) ≤ δ̃j, where (δj) satisfies (a),
then we can subdivide A into n intervals A1, . . . , An of length at most δj. The claim
now follows by applying (a) (for the sequence (δj)) to each of these intervals. Part (2)
is obvious. �

Finally, the following observation will allow us to realize all arclike continua with
terminal points at once as Julia continua of a single entire function.

7.5. Proposition (Countable generating set). There exists a countable set F of sur-
jective continuous functions f : [0, 1] → [0, 1] with f(1) = 1 such that all maps in
Proposition 7.2 (c) can be chosen to belong to F .
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Proof. For general arc-like continua, this is stated in [Nad92] (without the assumption
that f(1) = 1); we remark that in fact two maps are sufficient to construct all arc-like
continua.

The proof in our case is entirely analogous. Indeed, we can let F consist of all maps
that are piecewise linear, with any point of linearity rational, and with rational values at
rational points. Clearly this set is countable. Furthermore, let (fj) be any sequence as in

7.2 (c). Clearly we can construct a sequence (f̃j) with f̃j ∈ F such that f̃j is sufficiently
close to fj to ensure that Proposition 7.3 can be applied to the inverse limits Y = lim←−(fj)

and X = lim←−(f̃j) (with gj = id for all j). Hence X and Y are homeomorphic. If all maps

fj fix 0, then we can choose f̃j to have the same property. �

8. Every arc-like continuum is a Julia continuum

The goal of this section is to prove the main part of Theorem 1.6. More precisely, given
an arc-like continuum X with a terminal point x0, we construct a function F ∈ Bp

log and

an external address such that the Julia continuum Ĉ = Js(F ) ∪ {∞} is homeomorphic
to X, with ∞ corresponding to the point x0. Here, we shall allow the function F to
depend on the continuum X. In Section 13, we discuss how to adopt this argument to
show how the map F can be constructed independently of X, and hence complete the
proof of Theorem 1.6.

Let us begin with a few remarks.

(a) Our function will have a single tract T , up to translation by 2πiZ. That is, the
map F is uniquely determined by specifying the simply-connected domain T ,
with T ⊂ H, and a conformal isomorphism from T to H.

For simplicity of notation, we shall identify this conformal isomorphism with
the map F ∈ Bp

log generated by it.
(b) As in the previous section, we do not require that T is a Jordan domain; we only

require that T is simply connected, does not intersect its 2πiZ-translates and
that F (z)→∞ as z →∞ in T .

In order to obtain a function in Bp
log, we replace T by {z ∈ T : ReF (z) > ε},

where ε > 0 is sufficiently small to ensure that the resulting function is still of
disjoint type.

(c) The tracts of the map F are all of the form T+m, where m ∈ Z. We shall simplify
notation by identifying an external address s = (T + s0)(T + s1)(T + s2) . . . with
the sequence s0s1s2 . . . of integers.

The aim of this section is to prove the following theorem.

8.1. Theorem. Let fk : [0, 1] → [0, 1], for k ≥ 1, be a sequence of continuous and
surjective maps with fk(1) = 1, and let Y = lim←−(fk).

Then there exists a logarithmic tract T with T ⊂ H, symmetric with respect to the real
axis, a conformal isomorphism F : T → H, and an external address s such that Ĵs(F )
is homeomorphic to Y , with ∞ corresponding to the point 1←[ 1←[ . . . .

More precisely, the address s is of the form

s = 0N1 s(1) 0N2 s(2) 0N3 s(3) . . . ,
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where s(k) ∈ Z and Nk ≥ 0 for all k ≥ 1. Set nk := k +
∑

j≤kNj for k ≥ 0. Given any

sequence (Mk) with Mk ≥ 5 for all k, the construction can be carried out such that the
following hold for all z ∈ Js(F ).

(a) ReF n(z) ≥ ReF nj(z) ≥ Mk − 1 for nk ≤ n < nk+1. (In particular, z ∈ I(F ) if
and only if limk→∞ReF nk(z) =∞.)

(b) Let hk : Ĵs → [0, 1] denote the k-th component of the homeomorphism h : Ĵs → Y
whose existence is asserted in the first part of the theorem. Then

hk(z) = 0 =⇒ ReF nk(z) ≤Mk + 1

and
lim inf
k→∞

hk(z) > 0 =⇒ ReF nk(z)−Mj →∞.

Remark. The key point here is that we can choose the sequence (Mj) to be constant,
and in this case the Julia continuum will not escape to infinity uniformly. Moreover,
the final statement in the theorem will allow us to construct examples where the set of
nonescaping points is empty, and examples where this set is uncountable.

By Theorem 2.4, the existence of a function in Bp
log automatically yields a function

f ∈ B, and even a function f ∈ S (possibly with more than one tract) having a Julia
continuum homeomorphic to Y .

We devote the remainder of the section to the proof of Theorem 8.1. Let us fix the
maps fj and the sequence (Mj) from now on.

Description of the tract T . The tract T is chosen as a subset of {z+ iy : x > 1, |y| <
π}. It consists of a central straight strip, to which a number of “side channels”, domains
Uk, are attached that mimic the behaviour of the maps fk. Between the places where
Uk−1 and Uk are attached, the domain will be narrowed to a window of size χk. (See
Figure 4.)

Let us be more precise. Define

S := {x+ iy : x > 1 and |y| < π/2}.
The tract T is determined by a sequence (Rk)k≥1 with Rk+1 − 1 > Rk > 2 for all k, a
sequence χk ∈ (0, π], k ≥ 1, as well as a sequence of domains Uk ⊂ H, where

Uk ⊂ {x+ iy : Rk−1 < x < Rk + 1 and π > y > π/2}
(where we use the convention that R0 = 2) and

{x+ iπ/2 : x ∈ [Rk, Rk + 1]} ⊂ ∂Uk.

Then the tract T is defined by

T :=

(
S \

⋃
k≥1

{Rk + iy : |y| ≥ χk/2}

)
∪
⋃
k≥1

(
Uk ∪ Ũk ∪ {x+ iy : Rk < x < Rk + 1 and |y| = π/2}

)
.

Here Ũk = {x+ iy : x− iy ∈ Uk} denotes the set of all complex conjugates of points in
Uk.
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Re(z) = 1 Re(z) = R1 Re(z) = R2

U1 U2

2
χ1 χ2

Ũ1 Ũ2

Figure 4. The tract T .

The conformal isomorphism F : T → H is determined uniquely by requiring that
F (2) = 2 and F ′(2) > 0. Since T is symmetric with respect to the real axis, this implies
that F ([2,∞)) = [2,∞). By the expanding property of F , we must have F (t) > t for
t > 2.

We also define “partial tracts” TK , with K ≥ 0, as

TK :=

(
S \

K⋃
k=1

{Rk + iy : |y| ≥ χk/2}

)

∪
K⋃
k=1

(
Uk ∪ Uk ∪ {x+ iy : Rk < x < Rk + 1 and |y| = π/2}

)
,

and let FK : TK → H be the corresponding conformal isomorphism.
A key fact in our inductive construction is that we can estimate the behavior of the

map F on an initial part of the tract by that of the map FK , independently of further
choices.

8.2. Observation (Continuity of the construction). Let K, J ∈ N, let ε > 0 and let
A ⊂ H be compact. Then there is a number R(TK , J, ε, A), depending only on the partial
tract TK, on J , on ε and on the set A, with the following property.

If T is chosen in such a way that RK+1 ≥ R(Tk, J, ε, A), then

|F−j(z)− F−jK (z)| ≤ ε and |F−jk′ (z)− F−jK (z)|
for all z ∈ A, all j ≤ J and all k′ > K.
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Proof. This follows from the fact that, if we let RK+1 tend to infinity, then the resulting
tracts converge to TK with respect to Carathéodory kernel convergence. �

A second observation relates to the expanding properties of our functions:

8.3. Observation (Expansion of the maps F and FK). Let G = F or G = FK for some
K ≥ 0. Then the map G satisfies |G′(z)| ≥ 1

2
whenever ReG(z) ≥ 1. Furthermore,

|(Gn)′(z)| ≥ 2 for all n ≥ 5 and all z with ReGn(z) ≥ 1.
In addition, if z ∈ T with G(z) ∈ T and Re z ≥ 4, then ReG(z) > Re z.

Proof. For each of these claims, we consider the hyperbolic metric on the right half-
plane, and let U be the domain of G (i.e., U = T or U = TK). Let S̃ = {a + ib : a >
1 and |b| < π}. Since G : U → H is a conformal isomorphism, it is an isometry from U
to H with their respective hyperbolic metrics. Furthermore, since U is contained in the
strip S̃ := {a + ib : a > 1 and |b| < π}, we have ρU(z) ≥ ρS̃(z) ≥ 1/2 for all z ∈ G, by
Pick’s theorem. Hence

|G′(z)| =
ρS̃(z)

ρH(G(z))
≥ ReG(z)

2
≥ 1

2
.

To prove the second claim, we observe that the hyperbolic derivative of G with respect
to the hyperbolic metric of H satisfies

‖DG(z)‖H =
ρU(z)

ρH(z)
≥ ρS̃(z)

ρH(z)
=: λ(z).

We claim that λ(z) ≥ 3/2. Indeed, as above we have λ(z) ≥ Re z/2 for all z, and hence
we are done when Re z ≥ 3. On the other hand, ρS̃(z) ≥ 1/(Re z − 1) for all z ∈ S̃, by
comparison with a right half plane. Hence, for Re z ≤ 3, λ(z) ≥ 1 + 1/(Re z− 1) ≥ 3/2,
as claimed.

Hence, ‖DGn−1(z)‖H ≥ (3/2)n−1 ≥ 4 for n ≥ 5 (wherever defined), and therefore

|(Gn)′(z)| = ρU(z) · ‖DGn−1(G(z))‖H ·
1

ρH(Gn(z))
≥ 1

2
· (3/2)n−1 ·ReGn(z) ≥ 2 ReGn(z)

for all z ∈ U for which Gn(z) is defined. In the first equality, we again used the fact
that G : U → H is a conformal isomorphism.

The final claim follows in a similar manner, considering the hyperbolic distances be-
tween the fixed point 2 and the points z and G(z). We leave the details to the reader. �

Inductive construction. The construction of the tract proceeds inductively, along
with the construction of a number of additional objects:

(a) Sequences s(k) ∈ Z and Nk ∈ N, for k ≥ 1, as already mentioned in the theorem.

Recall that nk is determined by the numbers Nk, as nk = k +
∑k

j=1 Nj.

(b) A sequence δk, with k ≥ 0, for use with Proposition 7.3. These will be chosen to
be rational numbers of the form δk = 1/∆k, with ∆k ∈ N.

(c) Finite subsets Ξk−1,Ωk ⊂ [0, 1], for k ≥ 1. Here

Ξk−1 =

{
0,

1

∆k

,
2

∆k

,
3

∆k

, . . . ,
∆k − 1

∆k

}
,

In the following we abbreviate ξj := ξjk := j/∆k; so Ξk−1 = {ξ0, ξ1, . . . , ξ∆k−1}.
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(d) A surjective, continuous and non-decreasing map ϕk : [0,∞] → [0, 1], for every
k ≥ 0. This map will have the property that ϕk(x) = 0 for x ≤ Mk, and
ϕk|[Mk,∞] is a homeomorphism. Furthermore, ϕk is chosen such that ϕ−1

k (x) =
o(− log(1− x)) as x→ 1.

In a slight abuse of notation, we shall use ϕ−1
k to denote the inverse of the

restriction of ϕk to the interval [Mk,∞).

The idea of the construction is summarized in Figure 5: the map ϕk provides an
identification between the real line in the dynamical plane of F and the domain of the
map fk, or equivalently the range of the map fk+1. The domain Uk is constructed so
that a suitable branch of F−(Nk+1) has essentially the same mapping behaviour as the
function fk.

We now begin the inductive construction. To anchor it, let ϕ0 be any map with the
properties described above. We then proceed as follows, for each k ≥ 1:

I1. We define ∆k−1, and hence δk−1 and Ξk−1. We also choose the set Ωk, depending
on Ξk−1.

I2. We define Nk and Rk.
I3. We define the domain Uk.
I4. We define the opening size χk and the entry s(k).
I5. We define the map ϕk.

I1. Begin by choosing ∆k−1 sufficiently large such that the following hold. (Recall
that ∆k−1 determines δk−1 = 1/∆k−1 as well as the set Ξk−1.)

(I1.1) Property (a) of Proposition 7.3 holds (for the sequence δj, as far as it has been
defined). Since each fj is uniformly continuous, this will hold whenever δk−1 is
sufficiently small, depending on the values of δj for j < k − 1. Note that this
condition is empty for k = 1.

(I1.2) Let I = [ξj, ξj+1], with 0 ≤ j < ∆k−1 − 1. Then the Euclidean length of ϕ−1
k−1(I)

is less than 1/6. (This is possible due to the asymptotic behavior of ϕ−1
k−1 at ∞.)

(I1.3) Finally, let Qk−1 ≥ M0 + k be minimal such that F nj(Qk−1) ≥ (2s(j) + 1)π for
j = 1, . . . , k − 1. We assume that ∆k−1 is chosen sufficiently large to ensure
that ϕ−1

k−1(ξ∆k−1−1) ≥ F
nk−1

k−1 (Qk−1). (For k = 1, this condition should mean that

ϕ−1
k−1(ξ∆k−1−1) ≥M0 + 1.)

Finally, we let Ωk ⊂ [0, 1) be a finite set with the following properties.

(I1.4) The image, under fk, of any complementary interval of Ωk has length at most
δk−1/2.

(I1.5) Ωk ∩ f−1
k (0) 6= ∅.

(I1.6) No complementary interval of Ωk has length greater than 1/k.

Observe that (I1.4), together with the fact that fk(1) = 1, ensures that the largest point
of Ωk is mapped to the interval [ξ∆k−1 , 1].

Remark. In most situations, it is useful to simply imagine that Ωk := f−1
k (Ξk−1). Indeed,

if the map fk is piecewise strictly montone and nowhere locally constant, we can always
take Ωk to be defined in this way. It is well-known that every arc-like continuum can be
represented in such a way that all fk have this property, but for us it will be convenient
in some instances e.g. to allow intervals on which the map fk is constant.
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fk

ξ0

ξ1

ξ2

ξ3

ω0 ω1 ω2 ω3 ω4 ω5

ϕk

ϕk−1

ϑ0 ϑ1 ϑ2 ϑ3

FNk
k−1

z 7→ Fk(z)− 2πs(k)

MkMk−1 η1 η2 η3 η4 η5

U0
k U1

k U2
k

U3
k

U4
k U5

k

1

Figure 5. Construction of the domain Uk.
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For orientation, let us briefly explain these choices, using Figure 5. Property (I1.1)
and the conditions on Ωk are arranged so that the partitions of the domain and range are
sufficiently fine to encode the essential mapping properties of the map fk. The remaining
requirements ensure that the preimages of the points ξj under the map ϕk − 1 – i.e.,
the black dots in the centre left of the picture – provide a sufficiently fine partition
of the interval [Mk,∞). In particular, (I1.3) ensures that the last of these points lies
sufficiently far to the right of the picture.

I2. The next step is to choose the numbers Nk and Rk. Choose αk−1 ≤ 1 such that

(8.1) 0 < αk−1 ≤ min
{
|x− y| : |ϕk−1(x)− ϕk−1(y)| ≥ 1

∆k

}
.

Now we choose Nk ≥ N sufficiently large that

FNk
k−1(Mk) > Rk−1 + 1 and(8.2)

Nk > 5 · log(90)− log(αk−1)

log 2
.(8.3)

(This ensures, by way of Observation 8.3, that the application of FNk
k−1 will separate our

reference points by a large definite distance, as shown at the bottom of Figure 5.) We
next choose

(8.4) Rk > FNk
k−1(ϕ−1

k−1(ξ
∆k−1−1
k−1 ))

sufficiently large to ensure that, for G = F or G = Fj with j ≥ k,

(8.5) |G−Nk(x)− F−Nk
k−1 (x)| ≤ αk−1

2

for 1 ≤ x ≤ FNk
k−1(ϕ−1

k−1(ξ
∆k−1−1
k−1 )). This is possible by Observation 8.2. Finally, we claim

that we can also choose Rk so large that

(8.6) |F−1(z)− F−1
k−1(z)| ≤ 1 or ReF−1(z) ≥ Rk−1 + 2

for z = x + 2πis(k − 1) with Re x ≥ 1. Indeed, let x0 ≥ 2πs(k − 1) be minimal such
that ReF−1

k−1(x0 + 2πis(k − 1)) ≥ Rk−1 + 7. For x ∈ [1, x0], we can ensure (8.6) using
Observation 8.2. On the other hand, for x ≥ x0, the hyperbolic distance between z and
x in H is bounded from above by 1, and hence the hyperbolic distance in T between
F−1(z) and F−1(x) is also bounded by 1. So |F−1(z)− F−1(x)| ≤ 2, and thus

ReF−1(z) ≥ F−1(x)− 2 ≥ F−1(x0)− 2 ≥ ReF−1(x0 + 2πis(n− 1))− 4

≥ ReF−1
k−1(x0 + 2πis(n− 1))− 5 ≥ Rk−1 + 2,

as required.
I3. Now we define the domain Uk. For 0 ≤ j ≤ ∆k−1 − 1, let

ϑj := ϑjk−1 := FNk
k−1(ϕ−1(ξjk−1));

see the bottom of Figure 5. We define Uk so that it follows the same structure as the
map fk; i.e., the domain Uk runs across the real parts ϑj in the same order that the
graph of fk runs along the points of Ξk−1.

More precisely, Uk is defined as the union of a sequence of quadrilaterals as follows.
Let ω0 < ω1 < · · · < ωm be the points of Ωk. For j ∈ {0, . . . ,m}, let `j be maximal such
that fk(ω

j) ≥ ξ`j . By choice of Ω, we have `m = ∆k − 1 and |`k − `j+1| ≤ 1 for all j.
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Let (U j
k)mj=0 be a sequence of pairwise disjoint Jordan domains, disjoint from S, to-

gether with arcs (Cj
k)
m+1
j=0 in their boundaries, with the following properties. (For sim-

plicity of notation, we suppress the subscript k.)

(I3.1) Cj ∪ Cj+1 ⊂ ∂U j for all j, and Ci ∩ ∂U j 6= ∅ for i 6= j, j + 1.
(I3.2) Cm+1 = {x+ iπ/2 : Rk < x < Rk + 1}.
(I3.3) For all j ∈ {0, . . . ,m−1}, the set U j has real parts within distance 1 of the interval

between ϑ
`j
k and ϑ

`j+1

k . That is, if `− := min(`j, `j+1) and `+ := max(`j, `j+1),

then ϑ`
−

k − 1 < Re z < ϑ`
+

k + 1 for all z ∈ U j.
(I3.4) For all z ∈ Um, ϑ`mk − 1 < Re z < Rk + 1.

(I3.5) For all j ≤ m and z ∈ Cj, ϑ
`j
k − 1 ≤ Re z ≤ ϑ

`j
k + 1.

(I3.6) The modulus of the quadrilateral (U j, Cj, Cj+1) is larger than k. Since k > 1/2,
this ensures that there is a hyperbolic geodesic of T and Tk that separates Cj

k

from Cj+1
k ; see [Ahl73, Section 4.13]. It also ensures that the hyperbolic distance

between Cj
k and Cj+1

k (for j > 0) tends to infinity as k →∞.

Remark. There will generally be many different ways to choose the domains U j
k with

these properties. This may lead to different embeddings of the corresponding continua,
as discussed at the end of the introduction.

We now define

Uk :=
m⋃
j=0

U j
k ∪

m⋃
j=1

int(Cj
k).

(Here int(Cj
k) denotes the interior of the arc Cj

k; i.e. the arc without the two end points.)
I4. Next, we choose the number χk (and hence complete the choice of the tract Tk

and the function Fk). Along with χk, we also fix the positive integer s(k). We claim
that we can do so in such a way that

(I4.1) the point F−1
k (x+ 2πis(k)) belongs to the domain U0

k for Mk ≤ x ≤Mk + 1, and
(I4.2) For all x ≥ 0, the point F−1

k (x + 2πis(k)) either belongs to Uk or has real part
greater than Rk.

By (I3.6), the condition on the modulus of the quadrilaterals implies that, independently
of the choice of χk, the domain U0

k contains a geodesic γ of Tk separating the arc C0
k

from the arc C1
k . Moreover, the hyperbolic distance between γ and the point Rk + 1

remains bounded as χk → 0. Now Fk(γ) is a geodesic of H; i.e., it is a semi-circle
orthogonal to the imaginary axis. As Fk(Rk + 1) → ∞ as χk → 0, the radius of this
semi-circle must also tend to infinity. Therefore it eventually surrounds a segment of
the form {a + is(k) : a ∈ [Mk,Mk + 1]} for some s(k) ∈ 2πN}. This establishes (I4.1).
Claim (I4.2) follows immediately from Carathéodory convergence.

In Figure 5, the curve F−1
k (x + 2πis(k)), x ≥ Mk+1 is indicated in the bottom of

the picture. Our choice of χk and s(k) ensures precisely that this curve indeed looks
essentially as it is sketched there.

I5. Finally, it remains to define the map ϕk, which we do according to Figure 5. More
precisely, let ηj > Mk, for j = 1, . . . ,m, be minimal such that

(8.7) F−1
Tk

(ηj + 2πis(k)) ∈ Cj+1.
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By construction, we have Mk < η1 < . . . , and hence we can define an order-preserving
homeomorphism ϕk : [Mk,∞] → [0, 1] such that ϕk(η

j) = ωj for all j. We may extend
ϕk to [0,∞] by setting ϕk(x) := 0 for x < Mk, and such that the inverse ϕ−1

k satisfies
ϕ−1
k (x) = o(− log(1− x)) as x→ 1.
This completes the inductive construction.

Analysis of the construction. As indicated in Figure 5, the key property that we are
aiming to ensure is that the function

x 7→ ReF−(Nk+1)(x+ 2πis(k))

(essentially) maps the interval [Mk,∞] over the interval [Mk−1,∞] in the same way as
the function fk maps [0, 1] to [0, 1], using the identification provided by the maps ϕk and
ϕk−1. The following observation makes this precise.

8.4. Lemma. Let k ≥ 1. Suppose that w ∈ H with Rew ≥Mk − 1 and

(2s(k)− 1)π ≤ Imw ≤ (2s(k) + 1)π.

Set z := F−(Nk+1)(w).
Then Re z > Mk−1 − 1 and

|ϕk−1(Re z)− fk(ϕk(Rew))| ≤ 3δk−1.

Proof. Choose j ≥ 1 minimal such that ϕk(Rew) < ωjk. (Here we use the convention

that ωmk+1
k = 1, so that j is indeed defined.) Equivalently, j is minimal such that

Rew < ηj, with ηj = ηjk as defined in step I5, and using the convention that ηmk+1 =∞.
Set

ζ+ := max{ξ`j′k : max(0, j − 2) ≤ j′ ≤ j} and

ζ− := min{ξ`j′k : max(0, j − 2) ≤ j′ ≤ j − 1}.

Then |ζ+ − ζ−| ≤ 2δk by (I1.4). Consider the intervals I := [ζ−, ζ+] and

J := FNk
k−1(ϕ−1

k−1(I)).

Claim. The Euclidean distance from F−1(w) to J is bounded by 45.

Proof. Let w′ denote the point at the same real part as w and with imaginary part
equal to 2s(k)π. First suppose that the point ω′ := F−1

k (w′) belongs to the domain

U j̃
k for some j̃ < mk. Then j̃ ≤ j by choice of j and definition of ηj. Furthermore,

by (I3.6), the domain U j̃+1
k contains a geodesic separating the arc C j̃

k from C j̃+1
k . Since

any two geodesics intersect in at most one point, this implies that Rew < ηj̃+1, and
hence j̃ ≥ j−1. If we apply property (I3.3) to j̃, then we notice that ϑ`

−
and ϑ`

+
belong

to J , by choice of J . Hence the Euclidean distance between ω′ and the interval J is at
most π + 1.

On the other hand, if ω′ ∈ Umk
k , or ω′ /∈ U j̃

k for any j̃, then j = mk + 1, and

Reω′ > ϑ∆k−1
k − 1 by (I3.4) and (I4.2). Hence we again see that the distance between

ω′ and J is less than π + 1.



ARC-LIKE CONTINUA IN JULIA SETS 43

Recall that either |ω′ − F−1(w′)| ≤ 1 or ReF−1(w′) ≥ Rk + 2 by (8.6). In the latter
case, we have j = mk + 1 (as above), and hence dist(F−1(w′), J) ≤ π. Hence, using
Observation 8.3, we see that

dist(F−1(w),J) ≤ |F−1(w)− F−1(w′)|+ dist(F−1(w′), J)

≤ |F−1(w)− F−1(w′)|+ π + 2 ≤ 4π|w − w′|+ π + 2 ≤ 4π2 + π + 2 ≤ 45,

as claimed. 4

So there is x ∈ J such that distH(x, F−1(w)) ≤ 45. Then

(8.8) dist(F−Nk(x), I) ≤ αk−1

2
.

Indeed, if x̃ is a finite endpoint of the interval J , then x̃ ≤ ϑ
∆k−1−1
k−1 , and hence

dist(F−Nk(x), I) ≤ αk−1

2
≤ |F−Nk(x)− F−Nk

k−1 (x)| ≤ αk−1

2

by (8.5). Since I is an interval and FNk is monotone on R, this implies (8.8).
By (8.3), Observation 8.3 and the Claim, we see that

dist(F−Nk(x), z) ≤ 45 · 2−bNk/Nc ≤ 45 · αk−1

90
=
αk−1

2
.

So dist(z, I) ≤ αk−1. In particular,

Re z ≥Mk−1 − αk−1 > Mk−1 − 1,

as claimed in the statement of the Lemma. Consider ζ := fk(ω
j
k). By definition of αk−1,

and by choice of j, we have

|ϕk−1(Re z)− fk(ϕk(Rew))| ≤ |ϕk−1(Re z)− ζ|+ |ζ − Fk(ϕk(Rew))|
≤ dist(ϕk−1(Re z), I) + diam(I) + |ζ − Fk(ϕk(Rew))|

≤ 1

∆k−1

+
2

∆k−1

+
1

∆k−1

=
4

∆k−1

.

This completes the proof. �

Let us define

Xk := {x+ iy : x ≥Mk − 1 and |y| ≤ π} ∪∞
for k ≥ 0, and

Ψk : Xk → Xk−1; w 7→

{
∞ if w =∞
F−Nk+1(w + 2s(k)πi) otherwise

for k ≥ 1. Let X be the inverse limit of the maps (Ψk); then π0(X) is precisely the Julia
continuum of F̃ at the address

s = 0N1s(1)0N2s(2)0N3s(3) . . . ,

where we write F̃ ∈ Bp
log for the 2πi-periodic extension of F to avoid confusion. So we

have π0(X) = Ĵs(F̃ ), and since each Ψk is a homeomorphism, we see that π0 : X → Ĵs(F̃ )
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is also a homeomorphism. We would like to apply Proposition 7.3 to the functions

gk : Xk → [0, 1]; z 7→

{
1 if z =∞
ϕk(Re z) otherwise.

To do so, we shall need to check the following fact.

8.5. Lemma (Points do not stay far to the right). Let ẑ = z0 ←[ z1 ←[ · · · ∈ X. If
z0 6=∞, then there is some k0 such that Re zk < ϕ−1

k (ξ∆k−1
k ) for all k ≥ k0.

Proof. This is ensured by the choice of ∆k in (I1.3). Indeed, suppose that k is such that
Re zk ≥ ϕ−1

k (ξ∆k−1
k ). Then

Re zk ≥ F nk
k (Qk) and 2πs(k) + Im zk ≤ F nk

k (Qk),

where Qk is as in (I1.3). In particular, if we set xk := |zk|, then the hyperbolic distance
between xk and zk is at most π/4, and hence |F−1(xk)− F−1(zk)| ≤ π/2. By (8.6) and
expansion of F , we see that

Re zk−1 = ReF−Mk(F−1(zk)) ≥ ReF−Mk(F−1(xk))− 1 ≥ F
nk−1

k (Qk)− 2.

Continuing inductively, we see that Re zj ≥ F
nj

k (Qk)− 2 for j = 0, . . . , k. In particular,
Re z0 ≥ Qk − 2 ≥ k − 2.

Hence we are done if we take k0 > Re z0 + 2. �

Proof of Theorem 8.1. We apply Proposition 7.3 to the space X and the maps gk, as
defined above, using the sequence δ̃k := 6δk. By (I1.1) and Observation 7.4, this sequence
satisfies condition (a) of the Proposition. Condition (c) is precisely provided by Lemma
8.4.

By Observation 7.4, condition (b) is implied by the following.

Claim 1. Suppose that z0 7→ z1 7→ . . . and w0 7→ w1 7→ . . . are points of X such that
|gk(zk)− gk(wk)| ≤ δk for all k. Then zk = wk for all k.

Proof. We may suppose that z0 6= ∞. By Lemma 8.5, we then have gk(zk) ≤ 1 − δk
for sufficiently large k. In particular, we also have w0 6= ∞ and gk(wk) ≤ 1 − δk for
sufficiently large k. By (I1.2), this implies that |zk − wk| ≤ 1. The claim follows from
the expanding property of F (Observation 8.3). 4

By Proposition 7.3, we see that X is homeomorphic to the inverse limit Y . Let
h : X → Y be the homeomorphism be the homeomorphism; then

|πk(h(z))− gk(zn)| ≤ δ̃k = δk/6

for all k and all z = z0 ←[ z1 ←[ · · · ∈ X. In particular, we see that the point h(∞ ←[
∞←[ . . . ) = 1←[ 1←[ 1←[ . . . .

Claim 2. Let z = z0 ← [ z1 ← [ · · · ∈ X. If πk(h(z)) = 0 for some k, then Re zk ≤Mk + 1.

On the other hand, suppose that there is k0 such that πk(h(z)) > δ̃k+ω2
k for all k ≥ k0.

Then Re zk →∞.
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Proof. In the first case, we have gk(zk) ≤ δk/6, and thus Re zk ≤Mk + 1 by (I1.2).
If the hypothesis of the second claim is satisfied, then On the other hand, suppose

that πk(h(z)) > δ̃k + ω2
k for all k ≥ k0. Then ϕk(Re zk) > ω2

k, and hence Re zk > η2
k by

definition of ϕk. By (I3.6), we have η2
k− η1

k →∞ as k →∞, and hence Re zk →∞. 4

To deduce the theorem as stated, define h̃ : Ĵs(F̃ ) → Y by h̃ ◦ π0 := h. (Recall that

π0 : X → Ĵs(F̃ ) is a homeomorphism.)

Then h̃(∞) = 1←[ 1←[ . . . , as required. Furthermore, let z0 = π0(z) ∈ Ĵs(F̃ ), where
z = z0 ← [ z1 ← [ . . . . Then

F̃ nk(z0) = zk + 2πis(k)

for all k ≥ 0. In particular,

Re F̃ nk(z0) ≥Mk − 1

by Lemma 8.4. Furthermore, by Observation 8.3, we have ReF n(z0) ≥ ReF nk(z0) for
n = nk + 1, . . . , nk+1− 1. This proves the additional claim (a) of Theorem 8.1, while (b)
follows from Claim 2. (Recall that ω2

k → 0k as k →∞ by choice of Ωk in step I1.) �

9. Applications of the construction: point uniformly escaping
components and non-escaping points

We now proceed to some applications of Theorem 8.1. The following construction
(again together with Theorem 2.4) proves Theorem 1.14, which asserts the existence of

a Julia continuum Ĉ that is homemomorphic to an arc, and such that the finite endpoint
of Ĉ belongs to the escaping set but is not contained in any nondegenerate connected set
on which the iterates escape to infinity uniformly. Since Theorem 1.14 implies Theorem
1.3, this also completes the proof of the latter result.

9.1. Proposition (Inverse limit homeomorphic to an arc). There exists a surjective,
continuous function f : [0, 1]→ [0, 1] with f(1) = 1 and the following properties.

(a) lim←− f is homeomorphic to an arc;
(b) lim supn→∞ xn > 0 for all inverse orbits (xn) ∈ lim←− f .

Proof of Theorem 1.14, using Proposition 9.1. Let f be the function from Proposition
9.1, and set Y := lim←− f . Let F be the function constructed in Theorem 8.1, taking Mn =

5 for all n, and let Ĉ be the corresponding Julia continuum, which is homeomorphic to
Y . Then Ĉ is an arc, and every point of Ĉ escapes to infinity by (b).

One of the endpoints of Y is at x∞ := 1 7→ 1 7→ 1 7→ . . . ; let x be the other endpoint.
We claim that xk → x. Indeed, let γ ⊂ Y be the smallest arc containing both x∞ and
infinitely many xk. Since πk(x

k) = 0 and πk(x
∞) = 1, we see that πk(γ) = [0, 1] for

infinitely many k, and thus γ = Y . Thus we indeed have xk → x.
Let ζk ∈ Ĉ be the point corresponding to xk. Then ReF nk(ζk) ≤ 6 for all k, where nk

is defined as in Theorem 8.1, and in particular nk → ∞. Furthermore, as we just saw,
the points ζk converge to the finite endpoint ζ of Ĉ. Hence there is no nondegenerate
subcontinuum of Ĉ containing ζ on which the iterates escape to infinity uniformly.

Finally, by Theorem 2.4, there is a disjoint-type entire function having a Julia contin-
uum with the same properties. �
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(b) Proposition 9.3

Figure 6. The graph of the function f from the proof of Proposition
9.1 (left), and the function fa from the proof of Proposition 9.3 (with
a = 1/4).

Proof of Proposition 9.1. We define f by

f : [0, 1]→ [0, 1]; x 7→


x
2

+ 1
4

if x ≤ 1
2

3
2
− 2x if 1

2
< x ≤ 3

4

4x− 3 if x > 3
4
.

(See Figure 6.)
To see that f has the desired properties, let us define the following subsets of Y :=

lim←− f , for all k ≥ 0:

B := π−1
0 ([1/2, 1]); A2k := π−1

k+1([3/4, 7/8]); A2k+1 := π−1
k+2([7/8, 15/16]).

Here πj : Y → [0, 1] denotes the projection to the j-th component, as usual. Note that
xj ≤ 1/2 for j = 0, . . . , k when x ∈ A2k or x ∈ A2k+1.

Claim. The set B and all Aj are arcs. Furthermore, B shares one endpoint with A0, and
each Aj shares one endpoint with Aj+1.

Proof. Since the restriction f : [3/4, 1]→ [0, 1] is a homeomorphism, it follows that the
projection π0 maps the set B homeomorphically to [1/2, 1]. Similarly, the projections
πk+1 and πk+2 map A2k and A2k+1, respectively, to arcs. The claim about common
endpoints follows from the definitions. 4

Let a ∈ Y denote the fixed sequence defined by aj = 1/2 for all j. Observe that, on
[0, 1/2], fn → 1/2 uniformly. Hence the sets Aj converge to a as j →∞.

Furthermore, clearly we have

Y = B ∪
∞⋃
j=0

Aj ∪ {a}.
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So it follows that we can define a homeomorphism ϕ : [0,∞]→ Y that takes [0, 1] to B,
[j + 1, j + 2] to Aj and ∞ to a.

So Y is indeed an arc. Furthermore, for all (xn) ∈ Y \{a}, we have xn → 1 as n→∞.
This completes the proof. �

We now complete the proof of Theorem 1.8. Recall that the first half of the theorem
was established in Theorems 3.8 and 3.10. Also recall that the set of nonescaping points
in a given Julia continuum has Hausdorff dimension zero by Proposition 3.9. Hence it
remains to prove that there is a disjoint-type entire function f having a Julia continuum
Ĉ such that the set of nonescaping points in Ĉ is a Cantor set, and an entire function
having a Julia continuum containing a dense set of nonescaping points. Both results will
be proved using Theorem 8.1.

To prove the second statement, we shall use the following general topological fact.

9.2. Proposition. Let X be an arc-like continuum. Suppose that x0 is a terminal point
of X, and that E is a finite or countable set of terminal points. such that X is irreducible
between each of these points and x0.

Then there is a sequence fj : [0, 1] of continuous and surjective functions such that
Y := lim←−(fj) is homeomorphic to X, in such a way that x0 corresponds to the point
1←[ 1←[ . . . and such that every point of E corresponds to a point x0 ←[ x1 ← [ . . . such
that xj = 0 for infinitely many j.

Proof. This follows from the proof of [Nad92, Theorem 12.19], similarly as in the proof
of Proposition 7.2. We leave the details to the reader. �

To construct a Cantor set of non-escaping points, we make an explicit inverse limit
construction.

9.3. Proposition (Cantor sets in inverse limit spaces). There exists a sequence (fj) of
surjective continuous maps fj : [0, 1] → [0, 1], each fixing 1, such that the inverse limit
Y := lim←−(fj) has the following properties.

• The set A := {(xn) ∈ Y : xj = 0 for infinitely many j} is a Cantor set;
• every (xn) ∈ Y \ A satisfies lim infn→∞ xn > 0.

Proof. For a ∈ [0, 1), let us define

fa : [0, 1]→ [0, 1]; x 7→


a if x ≤ 1

4

a · (2− 4x) if 1
4
< x ≤ 1

2

0 if 1
2
< x ≤ 3

4

4x− 3 if 3
4
< x ≤ 1.

.

Each map fj will be of this form. That is, we set fj := faj , where the sequence (aj)
is defined inductively, starting with an arbitrary value a1 ∈ [0, 1).

Before we give the definition, we introduce some notation. Let

fn,k := fk+1 ◦ fk+2 ◦ · · · ◦ fn
for n ≥ k. (So fn,n−1 = fn for all n; more generally, fn,k takes the n-th component of a
point in the inverse limit to the k-th component.) If n > k, let us also say that n 7→ k

if fn,k(0) = 0 but fn,k̃(0) 6= 0 for k < k̃ < n.
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Now we can describe the inductive construction. Suppose that n ≥ 1 is such that
a1, . . . , an, and hence f1, . . . , fn, have already been chosen. Let k = k(n+ 1) ∈ {1, . . . n}
be the smallest number such that there are fewer than two values j ∈ {k + 1, . . . , n}
with j 7→ k.

Let an+1 be any number such that fn,k(a) = 0 and fn,k̃(a) 6= 0 for k < k̃ < n. Clearly
such a value always exists because 0 has more than one preimage under every fa.

Setting fn+1 := fan+1 , we have completed the inductive definition.
Note that n 7→ k(n) for all n ≥ 2. Furthermore, for every k ≥ 1 there are exactly two

values of n with k(n) = k, and k(n) → ∞ as n → ∞. (Indeed, we have k(n) = bk/2c
for all n ≥ 2.)

It remains to verify that A := {(xn) ∈ Y : xj = 0 for infinitely many j} has the
desired properties. First suppose that (xn) ∈ Y and lim infn→∞ xn = 0. Then there are
infinitely many values of n for which xn < 1/2, and hence xn−1 = fn(xn) = an = fn(0).
Since n 7→ k(n), we have

xk(n) = fn,k(n)(xn) = fn,k(n)(0) = 0,

so (xn) ∈ A.
Furthermore, if (xn) ∈ A, then for all k ≥ 0, there is n ∈ {2k, . . . , 2k+1 − 1} such that

xn = 0. This implies that A is closed, and hence compact.
Finally, since for every k ≥ 1 there are at least two values of n with k(n) = n, we see

that A contains no isolated points. So A is a Cantor set, and the proof is complete. �

9.4. Corollary. There exists a disjoint-type entire function f having a Julia continuum
Ĉ such that the set of nonescaping points is dense in Ĉ.

There also exists a disjoint-type entire function f having a Julia continuum Ĉ such
that the set of nonescaping points in Ĉ is a Cantor set.

Remark. This completes the proof of Theorem 1.8

Proof. Let Y be an arc-like continua containing a terminal point x0 and a dense countable
set E of terminal points such that Y is irreducible between x and e for all e ∈ E. Apply
Theorem 8.1 (together with Theorem 2.4) to the representation of Y as an inverse limit
guaranteed by Proposition 9.2. Each of the points in E then corresponds to a non-
escaping point, and we have proved the first claim.

(An example of a continuum Y with the desired property is given by the pseudo-arc.
Indeed, since every point is terminal, hence we can simply select a countably dense
subset E of one composant, and choose x0 in some other composant. We remark that it
is also straightforward to construct such an inverse limit Y with the desired properties
directly, without using Proposition 9.2.)

The second claim follows from Proposition 9.3. �

Remark. A continuum containing a dense set of terminal points must necessarily be
either indecomposable or the union of two indecomposable continua [CM87].

10. Bounded Julia continua

We now turn to proving that any arc-like continuum Y can be realized as a bounded-
address Julia continuum, provided that Y has two terminal points between which Y is
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irreducible. (Again, the fact that the same function can give all such continua will be
deferred until Section 13.)

The construction is very similar to the proof of Theorem 8.1. In order to construct a
bounded address, we cannot, however, use “side channels” of a single tract as in Section
8. Hence we will instead construct a function with two logarithmic tracts (the results of
Section 6 show that this is indeed necessary).

10.1. Theorem (Bounded-address Julia continua). Let (fk)k≥1 be a sequence of con-
tinuous functions fk : [0, 1] → [0, 1] with fk(0) = 0 and fk(1) = 1 for all k. Let
Y := lim←−(fk).

Then there exista a disjoint-type function F ∈ Bp
log and two tracts S and T of f , and

an external address s involving only the tracts S and T , such that Ĵs(F ) is homeomorphic

to Y . Furthermore, the point 0←[ 0←[ · · · ∈ Y corresponds to the unique point in Ĵs(F )
that has a bounded orbit, while 1←[ 1←[ . . . corresponds to ∞.

The first of the two tracts we consider is the half-strip

S := {x+ iy : x > 1 and |y| < π/2},
together with the function FS : S → H with FS(2) = 2 and F ′S(2) > 0. This tract will
play essentially the same role as the central strip of the tract from Section 8. The second
tract,

T ⊂ {x+ iy : x > 1 and π/2 < y < 3π/2}
is again constructed in a recursive fashion. It is determined by numbers R−k , R+

k with
1 < R−k < R+

k < R−k+1, domains

Uk ⊂ {x+ iy : R−k < x < R+
k and π/2 < y < 3π/2}

and arcs C−k and C+
k , with

C±k ⊂ ∂Uk ∩ {x+ iy : x = R±k }.
(See Figure 7.) The tract T is defined as

T :=
⋃
k≥1

{x+ iy : R+
k−1 < x < R−k and π/2 < y < 3π/2} ∪ C−k ∪ Uk ∪ C

+
k .

(Here we use the convention that R+
0 = 1.) The function FT : T → H is chosen such

that FT (2 + πi) = 2 and FT (∞) =∞.
We remark that, again, the tracts are not necessarily Jordan domains, and they do

not have pairwise disjoint closures, but that this can easily be achieved by restricted
the functions FS and FT to the preimages of a slightly smaller half-plane, once the
construction is complete.

The construction proceeds inductively, and for this purpose we define partial tracts

Tm :=

(
m⋃
k=1

{x+ iy : R+
k−1 < x < R−k and π/2 < y < 3π/2} ∪ C−k ∪ Uk ∪ C

+
k

)
∪ {x+ iy : x > R+

m and π/2 < y < 3π/2},

and associated conformal isomorphisms Fm : Tm → H. Observe that, by choosing R−m+1

sufficiently large, we can always ensure that Fm is close to the final function F on Tm.
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Re(z) = 1 Re(z) = R−1 Re(z) = R+
1

2

S

T

U1C−1

C+
1

Figure 7. The tracts S and T .

The external address in question will be of the form

s = SN1TSN2TSN3T . . . .

The construction is very similar to the proof of Theorem 8.1, and in fact perhaps slightly
simpler, since the function FS remains the same throughout the construction. The
domain Uk is chosen precisely so that the behaviour of the map F−Nk

S F−1
T mirrors that

of the function fk. (See Figure 8.) We shall leave the details to the reader.

11. Periodic Julia continua

We now turn to proving Theorem 1.11, about the construction of periodic Julia con-
tinua.

11.1. Theorem (Constructing invariant Julia continua). Let f : [0, 1] → [0, 1] be a
continuous function fixing 0 and 1, and satisfying f(x) < x for all x ∈ (0, 1).

There exists a logarithmic tract T of bounded slope and with bounded decorations, and
satisfying T ⊂ H, and a conformal isomorphism F : T → H with F (∞), such that the
following holds. Set

C := {z ∈ T : F n(z) ∈ T for all n ≥ 0}

and Ĉ := C ∪ {∞}. Also let z0 be the unique fixed point of F in C. Then there is a

homeomorphism Θ: Ĉ → lim←− f such that Θ(z0) = 0 ←[ 0 ←[ . . . and Θ(∞) = 1 ←[ 1 ←[
dots.
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k

Tk U7
k
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Figure 8. Construction of the tracts for Theorem 1.10.
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Let us fix a function f as in the statement for the rest of the section, and set Y := lim←− f .
The function F will be normalized such that F (2) = 2, and the idea is to construct the
tract in such a way that the graph of function [2,∞] → [2,∞];x 7→ ReF−1(x) has the
same shape as the graph of f (in a way that becomes more and more precise as x→∞).
That is, there is a function h : [0, 1]→ [2,∞] such that ReF−1(h(x))) is close to h(f(x))
for all x (in a way to be made precise). The assumption that f(x) < x for all x ∈ (0, 1)
allows us to define both the tract and the map h in stages, without ever running into
issues.

More precisely, let (ϑk)k≥0 in (0, 1) be a strictly increasing sequence such that

(1) f(x) < f(ϑk) for all x < ϑk and
(2) f(ϑk+2) = f(ϑk)

for all k ≥ 0. Clearly such a sequence exists. Indeed, if a ∈ (0, 1), then there is a
unique number ϑ(a) > a satisfying (1) and such that f(ϑ(a)) = a. We can choose e.g.
ϑ0 := ϑ(1/2) and ϑ1 := ϑ(a) for some a between 1/2 and ϑ0; the remainder of the
sequence is then uniquely determined via (2). Observe that ϑk → 1, since 1 is the only
positive fixed point of f 2.

The tract T will be constructed piece-by-piece, with the k-th piece representing the
behaviour of the map f on the interval Ik := [ϑk+1, ϑk+2]. More precisely,

T ⊂ {x+ iy : x > 1, |y| < π}

and

T =
⋃
j≥0

Uj ∪ Cj.

Here (Cj)j≥0 is a sequence of cross-cuts of T , with Cj−1 and Cj bounding the subdomain
Uj in T for j ≥ 1. Furthermore,

U0 = {x+ iy : 1 < x < R0, |y| < π/2},
Cj ⊂ {Rj + iy : |y| ≤ π}, and

Uj ⊂ {x+ iy : 1 < x < Rj, |y| < π · (1− 1/k + 1)} (j ≥ 1),

where (Rk) is a strictly (and rapidly) increasing sequence of numbers Rk > 2. The
conformal isomorphism F : T → H is chosen such that F (2) = 2 and F (∞) =∞.

Once more, we define partial tracts

Tk :=

(
k⋃
j=0

Uj ∪ Cj

)
∪ {x+ iy : x > Rk, |y| < π}

and associated functions Fk : Tk → H.
The inductive construction will determine:

(A) The numbers Rk, as well as the sets Uk and Ck.
(B) Order-preserving homeomorphisms hk : [ϑk−1, ϑk] → [Rk−1, Rk] for each k ≥ 0.

(Here, and in the following, ϑ−1 = 0 by convention.) The maps constructed, up
to hk, combine to form an order-preserving homeomorphism h0,...,k : [0, ϑk+1] →
[2, Rk+1].
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(C) A finite set Ωk ⊂ (ϑk−1, ϑk] for each k ≥ 0. We shall write this set in ordered
form as

Ωk = {ω0
k < · · · < ωmk

k }.
with ω0

k = ϑk−1 and ωmk
k = ϑk.

(D) A finite set Ξk ⊂ (ϑk−1, ϑk] with Ξk ⊃ Ωk. We write this set as

Ξk = {ξ0
k < ξ1

k < . . .Mξ∆k
k

and will also consider the union

Ξ0,...,k :=
k⋃
j=0

Ξj.

Our only additional requirements on the sets Ξk will be that

(11.1) |hk(ξjk)− hk(ξ
j+1
k )| ≤ 1

for all j, and that every complementary interval of Ωk contains at least three
additional points of Ξk.

(E) For k ≥ 2 and 1 ≤ j ≤ mk, a crosscut Cj
k−2 of Uk−2, with Cmk

k−2 = Ck−2.

We begin by choosing R0 > 2 sufficiently large (see below) and set R1 := 2R0. The
cross-cut C0 is defined to be the entire right-hand side of the rectangle U0.

We also define h0 : [0, ϑ0]→ [2, R0] and h1 : [ϑ0, ϑ1]→ [R0, R1] to be order-preserving
linear homeomorphisms. Also set Ωj := {ϑj−1, ϑj} for j = 0, 1, 2. (Note that this also
uniquely determines the crosscut C1

0 = C0.)
Finally, choose Ξ0 ⊃ Ω0 and Ξ1 ⊃ Ω1 so that (11.1) is satisfied.

To begin the inductive step of the construction, let k ≥ 1 be such that the domains
Uj have been constructed for j < k, and such that Rk, h = h0,...,k, as well as Ξ0,...,k and
Ωk+1 have been defined.

I1. We begin by defining the set Ωk+2. This set should be chosen with the following
properties.

I1.1 For all n ≥ 1, and all 0 ≤ j < mk+2−1, the image of the interval [ωj, ωj+1] under
the map fn has diameter at most 1/k.

I1.2 For all n ≥ 1, and all 0 ≤ j < mk+2−1, the image of the interval [ωj, ωj+1] under
f intersects at most two complementary intervals of Ξ0,...,k.

I2. We now construct the domain Uk. For each j ∈ {0, . . . ,mk+2}, let ξ
`j
kj

be a closest

point of Ξ0,...,k to f(ωjk+2). We define Uk similarly as in step I3 of the proof of Theorem

8.1, as a union of domains U j
k , for j = 0, . . . ,mk+2 − 1, each bounded by two cross-cuts

Cj
k and Cj+1

k such that the corresponding quadrilateral has modulus greater than k. The

domains should be chosen such that the real parts of U j
k are within distance 1 of the

interval [h(ξ
`j
kj

), h(ξ
`j+1

kj+1
)].

Observe that, since ξ`0k0 = f(ϑk+1) = ϑk−1, we can make the construction in such a

way that C0
k ⊂ Ck−1. Likewise, we can assure that all points of C

mk+2

k have real part
Rk. This completes the construction of Uk, and of Ck := C

mk+2

k .
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I3. We now define Rk+1 and the map hk+1 : [ϑk, ϑk+1] → [Rk, Rk+1]. To do so, for
every j ∈ {1, . . . ,mk+1}, define hk+1(ωjk+1) to be the minimal value of x with

F−1
k (x) ∈ Cj

k−1.

For j = mk+1, this also defines the value Rk+1. We then define hk+1 by linear interpo-
lation.

We remark that it follows from the assumption on the modulus of the domains U j
k−1

that

(11.2) distH(h(ωjk+1), h(ωj+1
k+1)→∞

as k →∞.
Finally, we choose Ξk+1 ⊃ Ωk+1 such that (11.1) is satisfied. This completes the

inductive construction.

11.2. Lemma (F is close to Fk). Suppose that the number R0 was chosen sufficiently
large. Then

|F−1
k (z)− F−1(z)| ≤ 1

for all z = x+ iy with 1 ≤ x ≤ Rk+1 and |y| ≤ π.

Proof. If R0 was chosen sufficiently large, then the modulus of each of the domains Uk
is very large (and, in fact, tend to infinity rapidly). The claim follows from hyperbolic
geometry. �

As mentioned, the key property of the construction is that the behaviour of F reflects
that of the function f . The following is a consequence of our construction.

11.3. Lemma (Connection between F and f). There is a constant K with the following
property. For all x ∈ [0, 1), we have

distH(F−1(h(x)), h(f(x))) ≤ K.

Proof of Theorem 11.1. Let T be the tract we have just constructed. Then T has
bounded slope, and we can clearly ensure in step I2 that the tract also has bounded
decorations, using Proposition 5.3. (Indeed, we only need need to make sure that every
point on the “upper” side of each U j

k can be connected to some point on the “lower”
side by a curve of bounded length, and vice versa.)

Set Y := lim←− f , and define maps Θk : Y → F−k(H) by Θk(1←[ 1←[ . . . ) =∞ and

Θk(x) := F−k(h(πk(x))) for x < 1.

It follows from Lemma 11.2 and the expanding property of F that

distH(Θk+1(x),Θk(x)) ≤ K · Λ−k,
where Λ is the expansion factor of F . In particular, the maps Θk form a Cauchy
sequence, and converge uniformly to a continuous function Θ : Y → Ĉ (where C =
{∞} ∪

⋂
k≥0 F

−k(T )).
Let σ denote the shift map on Y . Then Θ ◦ σ = F ◦Θ by construction. In particular,

Θ maps 0 ←[ 0 ←[ . . . to the unique finite fixed point z0 of F . Since Ĉ is irreducible
between z0 and ∞ by Theorem 3.8, it follows that Θ is surjective.
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It remains to prove that Θ is injective. Indeed, let x0, x1 ∈ Y with Θ(x0) = Θ(x1).
Then h(πj(x

0)) and h(πj(x
1)) are within a bounded hyperbolic distance from each other,

for every j. By (11.2), this implies that πj(x
0) and πj(x

1) are contained in a union of two
adjacent complementary intervals of

⋃
Ωk. By choice of Ωk, this implies that x0 = x1,

as required. �

Proof of Theorem 1.11. The fact that every invariant Julia continuum of a function with
bounded-slope tracts is of the required form was already established in Theorem 5.6.
Conversely, by Theorem 2.4, we can realize the invariant Julia continuum from Theorem
11.1 by a disjoint-type entire function. �

12. A function where all Julia continua are pseudo-arcs

We have already shown that the pseudo-arc can arise as an invariant Julia continuum.
In this section, we shall prove Theorem 1.2, which states that there is a function for
which every Julia continuum is a pseudo-arc. This will follow from Theorem 11.1 and
the following fact.

12.1. Proposition (Pseudo-arcs). Suppose that F ∈ Bp
log is a disjoint-type function

having a unique tract up to translation by 2πi, and such that this tract T has bounded
slope and bounded decorations. Suppose that the invariant Julia continuum contained in
T is a pseudo-arc.

Then every Julia continuum of F is a pseudo-arc.

Proof. Let C be a constant such that

(12.1) diamH({z ∈ T : Re z = x}) ≤ C

for all x ≥ 0, where H is the range of F . This is possible because T has bounded slope.)
Since T has bounded decorations, we can also choose C sufficiently large to ensure that

(12.2) diamH(F−1({z + 2πis : z ∈ T and Re z ≤ 2π|s|})) ≤ C

for all s ∈ Z. Indeed, by the bounded-slope condition this set is within a bounded
hyperbolic distance of a vertical geodesic of T , and this geodesic has bounded hyperbolic
diameter by assumption. Let Λ > 1 be the hyperbolic expansion factor of F .

For s ∈ Z, set Ts := T + 2πis. Since F is 2πi-periodic by assumption, the map
Fs := F |Ts : Ts → H is given by Fs(z) = F (z − 2πis). As before, we shall identify an
external address Ts0Ts1 . . . with the sequence s = s0s1 . . . , for convenience. Let s be an

allowable address; we shall show that Ĉ := Ĵs(F ) is a pseudo-arc. Since Ĉ is arc-like by

Proposition 5.5, it is sufficient to show that Ĉ is hereditarily indecomposable.
Let K be a non-degenerate subcontinuum of Ĉ, and set

ϑ := C ·max

(
1

Λ− 1
, 1

)
.

By hyperbolic expansion of F , we can assume without loss of generality that diamH(K)
has hyperbolic diameter greater than C + ϑ. (Otherwise, we replace K by a suitable
forward iterate.) By expansion, fn(K) then has hyperbolic diameter greater than C+ϑ
for all n ≥ 0. (If ∞ ∈ K, then in the following we use the convention that F (∞) =∞,
and that Re∞ = +∞.)
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For every n, j ≥ 0, we inductively define a continuum Kj
n ⊂ F n(K) as follows. We

set K0
n := F n(K). If Kj

n+1 has been defined, choose a point ζjn+1 ∈ K
j
n+1 with maximal

real part, and let K̃j
n+1 be the connected component of

{z ∈ Kj
n+1 : Re z ≥ 2π|sn+1|}

that contains ζn+1 (provided that Re ζjn+1 ≥ 2π|sn+1|)). We then define

Kj+1
n := F−1

sn (K̃j
n+1).

Claim. Let n ≥ 0. Then the above construction defines a continuum Kj
n for every j, and

furthermore every point of fn(K) has hyperbolic distance at most ϑ from Kj
n.

Proof. We prove the claim by induction on j. The claim is trivial for j = 0.
Suppose that the claim is true for j (and all n). Since F n(K) has diameter greater

than ϑ+C, for all k, it follows from (12.2) that Kj
n contains a point at real part greater

than 2π|sn+1|.
Hence we see that K̃j+1

n+1 is indeed defined for all n. By the boundary bumping theorem

(Theorem 2.9), we see that either K̃j+1
n+1 = K̃j

n+1, in which case we are done by the

expansion property of F , or K̃j
n+1 contains a point at real part 2π|sn+1|.

Let z ∈ fn(K). If ReF (z) ≤ 2π|sn+1|, then distH(z,Kj+1
n ) ≤ C ≤ ϑ by (12.2).

Otherwise, the inductive hypothesis and (12.1) imply that

distH(F (z), K̃j
n+1) ≤ C + ϑ.

So

distH(z,Kj+1
n ) ≤ C + ϑ

Λ
≤ ϑ · (Λ− 1) + ϑ

Λ
= ϑ.

This completes the proof. 4
Note that the inductive construction ensures that Kj+1

n ⊂ Kj
n and F (Kj+1

n ) ⊂ Kj
n+1

for all n and j. We define

Kn :=
⋂
j≥0

Kj
n.

Then, for all n,

• Kn is a non-degenerate subcontinuum of fn(K);
• every point of fn(K) has distance at most ϑ from Kn;
• f(Kn) ⊂ Kn+1;
• ReF (z) ≥ 2π|sn+1| for all z ∈ Kn.

Let t be the fixed address t = 000 . . . . By assumption, the Julia continuum Ĵt(F ) is a

pseudo-arc. By Proposition 6.1, there is a continuum An ⊂ Ĵt(F ) that is homeomorphic
to Kn. It follows that Kn is hereditarily indecomposable.

Now let A and B be subcontinua of K such that A∪B = K, and assume that B 6= K.
To show that K is indecomposable, we must show that A = K. Since K does not
contain any subset that separates the plane, we see that fn(A) ∩ Kn and fn(B) ∩ Kn

are continua for all n.
By assumption, there is some point a ∈ A \ B. For sufficiently large n, we have

distH(fn(a), fn(B)) > ϑ. It follows that Kn 6⊂ fn(B). Since Kn is indecomposable, we
see that Kn ⊂ fn(A) for sufficiently large n.
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Let z ∈ K. We have distH(z, fn(A)) ≤ ϑ for all sufficiently large n, and hence
distH(z, A) ≤ ϑ/Λn. Hence z ∈ A, as required. �

Proof of Theorem 1.2. By a classical result of Henderson [Hen64], the pseudo-arc can
be written as an inverse limit of a single function f : [0, 1] → [0, 1] with f(x) < x for
all x ∈ (0, 1). By Theorem 11.1, there is a disjoint-type function F ∈ Bp

log, having only
one tract T , such that the invariant Julia continuum in T is a pseudo-arc. Furthermore,
this tract has bounded slope and bounded decorations, and hence the preceding theorem
implies that every Julia continuum is a pseudo-arc.

Finally, by Theorem 2.4, there is a disjoint-type function f ∈ B with the same prop-
erty. �

13. Realizing all arc-like continua by a single function

In this section, we complete the proof of Theorems 1.6 and 1.10, by showing that
all the arc-like continua in question can be realized by a single function. Recall from
Proposition 7.5 that there is a countable set F of functions f : [0, 1] with f(1) = 1 such
that every arc-like continuum with a terminal point can be written as an inverse limit
with bonding maps in F .

13.1. Theorem (A universal Julia set for arc-like continua). Let (Mk)k≥5 be any se-
quence with Mk ≥ 5. Then there exists a function F ∈ Bp

log, having a single tract T
up to translation by 2πiZ, such that F satisfies the conclusion of Theorem 8.1 for all
continua Y whose sequence (fk) of bonding maps is chosen from F .

Proof. Let (Sm)m≥1 be an enumeration of all finite sequences of maps in F . That is,
Sm = (fm,0, fm,1, . . . , fm,`m) with fm,j ∈ F , and every finite sequence S of maps in
F appears at exactly one position m(S). Furthermore, we may assume that no such
sequence S appears before any of its prefixes. That is, if we denote by σ(S) the sequence
obtained from S by forgetting the final entry, then m(σ(S)) < σ(S).

We can now carry out exactly the same construction as in the proof of Theorem 8.1,
but at the k-th stage of the construction, we insert a tract that mimics the behaviour of
the map fm,`m . For each sequence S of length `, we shall keep track of different numbers
N(S) and s(S). If S is an infinite sequence in F , then the external address that gives
rise to the corresponding Julia continuum will be

0N(S1)s(S1)0N(S2)s(S2)0N(S3)s(S3) . . . ,

where S` denotes the prefix of S of length `. Since the construction involves a consid-
erable amount of bookkeeping, but does not require new ideas otherwise, we shall omit
the details. �

Proof of Theorem 1.6. The first part of the theorem was established in Theorems 3.5,
3.7 and 5.5. The second part of the theorem follows from Theorem 13.1, again combined
with Theorem 2.4 to realize the example by a disjoint-type entire function. �

In exactly the same manner, we can prove the analogous result for bounded-address
Julia continua, and hence establish Theorem 1.10.
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14. Making examples with a finite number of tracts and singular values

We now turn to Theorem 1.15. So far, we have shown that each of the examples in
question can be constructed in the class B, with the desired number of tracts (one or
two). With the exception of Theorem 1.2, in which we require control over all Julia
continua, Theorem 2.4 also shows that they can be constructed in the class S, but with
a potentially infinite number of tracts.

In order to show that we can also realize our examples in the class S, without having
to add addional tracts, we need to use a more precise version of Bishop’s resultfrom
[Bis13]. Let G be an infinite locally bounded tree in the plane. Following Bishop, we
say that G has bounded geometry if the following hold.

• The edges of G are C2, with uniform bounds.
• The angles between adjacent edges are bounded uniformly away from zero.
• Adjacent edges have uniformly comparable lengths.
• For non-adjacent edges e and f , we have diam(e) ≤ C ·dist(e, f) for some constant
C depending only on G.

Bishop’s theorem [Bis13, Theorem 1.1] is as follows:

14.1. Theorem (Construction of entire functions with two singular values). Suppose
that G has bounded geometry. Suppose furthermore that τ : C \ G → H is holomorphic
with the following properties.

(a) For every component Ωj of C \ G, τ : C \ H is a conformal isomorphism whose
inverse σj extends continuously to the closure of H with σj(∞) =∞.

(b) For every (open) edge e ∈ G, and each j, every component of σ−1
j (e) ⊂ ∂H has

length at least π.

Then there is an entire function f ∈ S and a K-quasiconformal map ϕ such that
f ◦ ϕ = cosh ◦τ on the complement of the set

G(r0) :=
⋃
e∈G

{z ∈ C : dist(z, e) < r diam(e)}.

(Here r0 is a universal constant, and the union is over all edges of G.)
The only critical points of f are ±1 and f has no asymptotic values. If d ≥ 4 is such

that G has no vertices of valence greater than d, then f has no critical points of degree
greater than d.

In order to use this result to obtain the desired examples, there are two steps that we
need to take.

• Firstly, we must check that the logarithmic tracts T of our examples can be
constructed in such a way that C \ exp(T ) is a bounded geometry tree. In
particular, we should make sure that T fills out the entire plane, which will mean
that we make the individual tracts fill out a complete horizontal strip.
• Once this is achieved, let f0 be the function from Theorem 14.1, and set f :=
λf , where λ is chosen sufficiently small to ensure that f is of disjoint type.
The functions f and g := cosh ◦τ are no longer necessarily “quasiconformally
equivalent” near infinity in the sense of [Rem09], and hence we cannot conclude
that they are quasiconformally equivalent near their Julia sets. However, if the set
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U1 U2

p

Ũ1 Ũ2

πi

−πi

0

Figure 9. A modification of the tract T from Figure 4, which allows
the function from Theorem 1.6 to be constructed in the class S, without
additional tracts.

T (r0) is disjoint from the orbit of the Julia continuum Ĉ of g under consideration,
then the arguments from [Rem09] still apply to show that there is a corresponding

Julia continuum of f homeomorphic to Ĉ.
(We remark that the set T (r0) can in fact be replaced by a smaller set VI (com-

pare [Bis13, Lemma 1.2]), and this set will essentially be automatically disjoint
of the bounded-address continua that we construct in Theorems 1.10 and 1.11.
However, some care is still required in the case of Theorem 1.6.)

We shall now discuss in some detail how to ensure these properties in the case of The-
orem 8.1.

14.2. Proposition. Let the assumptions of Theorem 8.1 be satisfied, with the additional
requirement that Mk ≥ P for all k, where P > 3 is a universal constant.

Then there is a simply-connected domain T̃ ⊂ {a + ib : |b| ≤ π} and a conformal
isomorphism F̃ : T̃ → H with the following properties.

(a) The domain T := F̃−1({z ∈ H : Re z > 1}) and the map F : T → H;F (z) =
F̃ (z)− 1 satisfy the conclusion of Theorem 8.1.

(b) G := C \ exp(T ) is a bounded-geometry tree T , and the function τ defined by
τ(exp(z)) := F̃ (z) satisfies the hypotheses of Theorem 14.1.

(c) The hyperbolic distance (in T ) between the orbit of the constructed Julia contin-
uum and the set exp−1(G(r0)) is bounded from below.

Proof. We slightly modify the construction of the tract T from the proof of Theorem 8.1
as shown in Figure 9, where the function F̃ is chosen such that F̃ (p) = p. Here p is a
sufficiently large universal constant, and P = p + 3. This ensures that C \ exp(T ) is a
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tree. Also, clearly we can make the construction in such a way that edges only meet at
angles of π/2.

It remains to ensure that we can subdivide the edges of the tree in such a way that
adjacent edges have comparable length. We can use edges of a fixed length along the
horizontal edges of the central strip, and edges whose length decreases geometrically
along the “iris” that closes off the gap up to a small opening at real part Rk. When
constructing the domain Uk, we may choose the domains U j

k as rectangles, each with a
width that is bounded from below (or indeed tends to infinity with k), and with a height
that is bounded from below for the final domain Umk

k , and decreases geometrically as j

changes from mk to 0. Hence the length of edges used in ∂U j
k decrease geometrically of

j, and are only ever adjacent to edges that are comparable in size. If the initial size of
edges is chosen sufficiently small, then we can easily ensure (c).

Finally, having chosen p sufficiently large, it is enough to let ξk be sufficiently small in
step I4 to ensure that the image of an edge under τ has length at least π, as required. �

The construction for Theorem 10.1 is similar. Here we should choose a partition of
the boundary of the strip S into edges first, such that these edges have length at least π
when mapped forward under the conformal map S, and choose R−k is chosen sufficiently
large so that the boundary of the domain Uk can be subdivided in such a way to ensure
bounded geometry; this is clearly possible because the set Ωk, and hence the number of
rectangles in Uk, is known before the value R−k is chosen. We should also make sure that
the domain Uk fills out the piece of the strip between real parts R−k and R+

k (unlike in
Figure 7), and, after Uk is chosen, reduce the size of the cross-cut C−k in order to ensure
τ -length π for each of the edges.

Finally, the construction of Theorem 11.1 is a little more delicate, because the domain
Uk, for large k, can potentially reach very far back to the left. More precisely, for fixed
k, there may be some large values of k̃ such that the interval [ϑk̃−1, ϑk̃] contains points
whose image is below ϑk. If the set Ωk̃ (which is not known at the time that Rk is
chosen) is very large, then potentially there may be many pieces intersecting the line
{Re z = Rk}, and hence it may be difficult to control the size of the corresponding edges
of the tree here.

To resolve this problem, we observe that we may assume that the function f is piece-
wise linear on the interval [0, 1) (with countably many points of nonlinearity, which
accumulate only at 1), and everywhere locally non-constant. This means that we can
choose the domain Uk to consist (essentially) of finitely many rectangles, one for each
interval of monotonicity of f in the interval [ϑk+1, ϑk+2]. This means that the shape of
the tract depends only on the function f ; only the way that the tract is stretched along
the real axis depends on the initial construction. This observation allows us to carry
out the desired construction (once more, once the piece Uk is chosen, we should shrink
the opening size of the cross-cut Uk−1 so that edges have τ -length at least π. This also
allows us to ensure that the sequence (Rk) grows sufficiently rapidly. We shall leave the
details to the reader.
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[CM87] J. J. Charatonik and T. Maćkowiak, Continua with a dense set of end points, Rocky Moun-
tain J. Math. 17 (1987), no. 2, 385–391.

[DG87] Robert L. Devaney and Lisa R. Goldberg, Uniformization of attracting basins for exponential
maps, Duke Math. J. 55 (1987), no. 2, 253–266.

[DK84] Robert L. Devaney and Micha l Krych, Dynamics of exp(z), Ergodic Theory Dynam. Systems
4 (1984), no. 1, 35–52.

[DT86] Robert L. Devaney and Folkert Tangerman, Dynamics of entire functions near the essential
singularity, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 489–503.
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