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In the past few decades, computer-aided techniques (i.e., numerical simula-
tion) have complemented the research and development process (R&D) in
material sciences. This approach is usually paired to experimental testing.
Yet, both techniques have shown cost-efficiency disadvantages and are time
consuming. Optimization algorithms like the ones used in machine learning
have proven to be an alternative tool when dealing with lots of data and
finding a solution. While the use of machine learning is a well-established
technique in other research fields, its application in material science is rela-
tively new. Material informatics provide a new approach to analyse materials
such as porous metals by employing previous data sets. This article aims to
study reliability to predict permeability and Forchheimers coefficient of lost
carbonate sintering open-cell porous metal. The key features selected as pre-
dictors are porosity, pore size, and coordination number. A comparison among
multiple linear regression, polynomial regression, random forest regressor
and artificial neural network is revised.

INTRODUCTION

Studies of materials science and materials design
have been linked to previous experiences and trial-
error analysis since the beginning’. From these,
empirical correlations had been obtained between
processing conditions and desired performances®.
By doing so, the main purpose was to obtain and
enhance the material by modifying its known
properties. This typical material selection approach
is widely accepted to address product-level perfor-
mance requirements. Many industries are enriched
by new or improved multifunctional materials. Al-
though they might have good properties, this does
not necessarily mean that the materials have the
right balance of properties needed for specific engi-
neering applications'. For instance, in high-perfor-
mance alloys and composite materials, maximum
performance is often achieved within a specific
range of properties with a small window of vari-
ance".
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More recently, computational techniques have
been included in evaluating the performance met-
rics necessary to support materials design®, This
approach is known as numerical simulation (e.g.,
finite element models) and has been used during the
past few decades to analyse different material
properties. Yet, the principal issue in obtaining
relevant properties from a numerical model is the
correct selection of the main microstructure mea-
sures that have a higher influence on them. To solve
this predicament, the selection is generally made
based on experience®. Moreover, the time and ex-
pense required in any of these two approaches often
limit the development of new materials®. Addition-
ally, modern advances in experimental and compu-
tational sciences have generated vast amounts of
data’. Consequently, new fast and reliable ap-
proaches are needed for data analysis of materials.
One of the most promising and novel fields to deal
with large amounts of data is materials informatics.

Materials informatics can be used for material
analysis and developments®. This is due to the big
data” generated by experimentation and simula-



tions. Materials informatics offers unprecedented
opportunities for new materials discovery with im-
proved properties with the implementation of ma-
chine learning techniques®. Machine learning
algorithms use statistical models and optimization
algorithms to reveal patterns within data. Insights
can be obtained through predictions or classifica-
tions depending on the chosen algorithm. The ma-
chine learning process is shown in Fig. 1. The
advantage over traditional experimentation and
simulations is that computers ean often handle
much larger and higher dimensional data in a more
efficient manner'’,

Some applications of different algorithms imple-
mented on material informatics can be found in the
literature. For instance, Cecen et al.'’ analysed
polymeric fuelled cell microstructure properties.
Principal component analysis and a multiple linear
regression model were used to establish structure-
property correlations. Correlations for diffusivity,
tortuosity, and porosity exhibited higher accuracy
than traditional models found in the literature.
Tapia et al.'2 used a Gaussian model for porosity
prediction on a metal-based additive manufacturing
process. Porosity is a common defect that has been
reported to occur in selective laser melting. In their
study, the Gaussian model developed made use of
laser power and scanning speed as input parame-
ters to predict porosity. It was reported that low
porogity can be predicted using the Gaussian model.
Moreover, Khanzadeh et al.’ implemented a dif-
ferent machine learning approach for porosity pre-
diction on additive manufacturing pieces. In their
gtudy, direct laser deposition was considered as
manufacturing technique. Their study focused on
the classification of the melting pool thermal image
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streams for porosity obtention. Different classifica-
tion techniques were tested such as support vector
machines, principal component analysis, and K-
nearest neighbours. It is reported that K-nearest
neighbours (KNN) exhibited the best performance
in classification of ill-structured melt pools for
achieving low porosity in the final manufactured
parts. Pardakhti et al.!? studied the structural and
chemical features of metallic organic frameworks
(MOFs) and their correlation with methane
absorption. The revised machine learning tech-
niques were decision tree, Poisson regression, sup-
port vector machine (SVM), and random forest.
Given the large dataset they had available, their
training set only consisted of 8% of the total data.
This was equal to 130,398 records. The random
forest exhibited great accuracy for prediction (98%)
and a lesser computational time than current tech-
niques for absorption measurement.

Artificial neural networks (ANNs) are another
viable machine learning technique. They have been
widely used for supervised learning predictions.
Moreover, Skinner and Broughton'® described their
wide applications for material sciences since early
in this century. Dudsik and Strek'®, for instance,
implemented ANNs when studying the strength
properties of open-cell aluminium porous metal
during compression. In their study, different ANN
architectures were analysed in approximated
gtress-strain relations. To assess ANNs ’'perfor-
mance, different statistical metrics were used. The
results showed that their approach provides an
approximation of the mean absolute relative error
(MARE) between 7 and 10%. Similarly, Altarazi
et al.'” tested an ANN to evaluate polyvinylchloride
(PVC) composite properties. In their analysis, dif-
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Fig. 1. Machine learning process.
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ferent combinations of activation functions, network
layers, and amounts of perceptrons per layer were
used. The Levenberg-Marquardt back-propagation
and radial basis training algorithms/activation
functions were found to be the most appropriate for
tensile strength, ductility, and density of extruded
PVC composite predictions. In their study, the
model accounts for weight percentages of virgin
PVC, recycled PVC, CaCO3 filler, CaCO3 particle
ductility, and density of extruded PVC.

METHODOLOGY

One of the key aspects of materials informatics is
that it lowers the costs of R&D as it does not have to
use many experimental tests and reduces the com-
putational usage. In addition, the implementation
time is faster than in the traditional way of doing
research®. Therefore, the main purpose of this arti-
cle is to demonstrate that data science tools are
ideally suited to tackling the fluid flow problem of a
porous copper geometry. The experimental results
used in the current study can be found in Z. Xijao
and Y. Zhao'® and J. M. Baloyo and Y. Zhao'?. The
numerical analysis can be found in Edgar Avalos-
Gauna®’. The current analysis expands on the re-
sults obtained by numerical analg'sis and published
by E. Avalos Gauna and Y. Zhao?!. For the current
work, the experimental and numerical results were
coupled for machine learning purposes. To start
with the machine-learning model, the following
elements were implemented:

(1) Data Preparation

The first step is to generate a dataset that comprises
the features (independent variables) and the targets
or descriptors (dependant variables)**. This could
come from experimental data results, numerical
simulation, or, in this case, both entries (810
numerical results and 46 experimental tests). The
reason for using two different sources of information
is that the numerical records employed can repre-
gsent the fluid flow behaviour observed during the
experimental tests as stated in®".The input vari-
ables and the target outcomes must be cleaned be-
fore any machine learning algorithm is
implemented. The eleaning process includes looking
for and dealing with missing data, eliminating non-
relevant features, and an exploratory data analysis
in most of the cases when using secondary data.
This process was performed in both datasets. For
the experimental data, average values were used
where range values were available. The final data-
set has 856 records for permeability and 826 for
Forchheimers coefficient. Once all data are col-
lected, there are two common approaches to bring
different features onto the same scale: normaliza-
tion and standardization. Normalization refers to
rescaling all quantitative features to a range of (0,
1). Standardization on the other hand refers to
rescaling all quantitative features to have a mean of

0 and a standard deviation of 122, The procedure of
normalization is expressed in Eq. 1:

Xnorm = X~ Fmin (1)

Xmax — Xmin

where x; represents a data value of the quantitative
feature vector to be normalized. xp;, and x,.; are
the minimum and maximum values of this vector.
This process ecan be done by the MinMaxScaler
method from the python library sklearn, class pre-
processing. For the standardization procedure, it
can be achieved by implementing Eq. 2°*:

Xi — Py

Xetd = (2)

Gy
where u, and o, are the mean value and standard
deviation of the quantitative feature vector to be
standardized. This process can be done by the scale
method, which can also be found in sklearn.pre-
processing.

(2) Descriptor Selector

The next step is to define which material properties
have to be selected as the key features that describe
the performance of the material on a given aspect®.
Descriptor or target selection consists of finding the
most influential features by implementing different
data extraction techniques and dimensionality
reduction methods such as principal component
analysis®. Depending on the number of elements in
the material, the dimensionality of the input may
differ, Hence, it is not possible to apply the same
model to materials with different number of ele-

ments. Thus, an exploratory data analysis was
performed to find correlations amongst all parame-
ters available on the dataset. These correlations
were ploted on a correlation matrix (Fig. 2). Positive
relationships are marked in red and negative rela-
tionships are marked in blue. Stronger relatioships
are marked with darker colors and weak relation-
ships are marked with faded colors. In the current
analysis, the predictor variables to be employed are:
potassium carbonate diameter (K,COgz) (microme-
tres), porosity (f), copper particle diameter (mi-
crometres), and coordination number.

(3) Model Selection and Evaluation

Extracting and validating the model, one must bear
in mind that it must fit the data set and the type of
data each feature has, without over- or under-fit-
ting. Various regression methods are implemented.
A thorough knowledge of the physics representing
the problem is critical in selecting the most accurate
machine learning technique®®. Therefore, it is vital
to understand the key features of a porous metal.
Porous metals are a novel type of material with
hollow spaces deliberately included into the mate-
rial during its manufacturing process®’. These hol-
low spaces or pores provide a unique set of
properties to the material®®.
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Fig. 2. Correlation matrix amongst the structural parameters: (1)
K2CO; diameter, (2) porosity, (3) Cu diameter, (4) coordination
number, (5) permeability and (6) Forchheimer's coefficient..

For active cooling applications, the porous metal
is expected to have an open-cell structure. The
cooling system is composed of the porous metal
medium and the fluid is used as a coolant flowing
through the material. The literature indicates that
the pressure drop across the samgnle is strongly af-
fected by the pore structure®®, °. For the porous
structure, many studies have wﬂ}zsed the flow
problem within a porous media®. Fluid flow
through porous metals can be cons1dered turbulent
if the Revnolds number increases to a critical va-

lue®?. Thus, a nonlinear relationship is used to cal-
culate the pressure drop due to the porous media.
This relationship is known as Forchheimers equa-
tion™:
AP o )

AL = g Y (3)
where AP is the pressure drop between the inlet and
outlet of the porous media, AL is the length of the
porous media, u is the viscosity of the fluid, v is the
Darcian velocity of the fluid (i.e., flow rate divided
by the cross-sectional area), p is the density of the
fluid (water in this case), K is the permeability of
the porous media, and C is Forchheimers coefficient
or form drag coefficient. K and C have often been
the focus of investigations on porous media.

For the machine learning model selection, multi-
ple linear regression, polynomial regression, ran-
dom forest, and an ANN were tested to establish
relationships between the input variables and the
target outcomes. To do so, 80% of the data were set
as the training subset and the remaining 209% was
used as the testing subset. This process was
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achieved using the model_selection.train_test_split
method from the scikit learn library. Once all data
had been split, each model was trained using the
first split of the data set. Each model was trained
considering different algorithm parameters to
achieve a better correlation coefficient. All models
with their best chosen parameters were evaluated
using ten-fold cross validation during the training
part of the analysis.

(4) Model Implementation

As stated before, the most relevant features are
obtained and then are used to make predictions of
the target properties. This can be done by executing
the trained model using new data (testing subset).
During this phase, insights can be drawn from the
predictions. This will derive from the development
of specific types of materials or even tailored mate-
rials. For materials informatics, the literature des-
ignates five descriptor categories: constitutional,
topological, physmochenucal structural, and quan-
tum-chemical®”, For this article, only the topological
properties were used. Lastly, a_ﬂ:er the model has
been implemented, it is crucial to evaluate its per-
formance. This can be done by using statlstlcal
metrics such as Pearsons coefficient (R%) or root
mean square error (RMSE).

MACHINE LEARNING MODELS

For the current study, four different supervised
machine learning techniques were employed. Mul-
tiple linear regression, polynomial regression, ran-
dom forest regressor and ANN were tested to
predict permeability and Forchheimers coefficient.
As multiple linear regression is a particular case of
the polynomial regression, only the later three will
be explained.

(1) Polynomial Regression

This method has the advantage of being simple to
understand, fast and straightforward to implement;
given its mmplicity, it is not adequate for complex
problems®®. The dependent variable (i.ey) is as-
sumed to be obtainable by evaluating a linear
function of the exp]anatory vanab]es (i.e. x). The
linear regression is represented as®*

y=x"fits (4)

where x” is the transpose vector of all explanatory
variables, § is a vector of weights, which we must
estimate, and ¢ is a vector with normally distributed
zero mean, which represents random effects.
Equation 4 is useful when the relationship between
the predictors and target values is somehow linear.
However, depending on the number (m) of elements
on x”, there are 2" — 1 models to test. Therefore,
only those variables that contribute the most to
predicting the target variable are considered.
Nonetheless, when the observed trend does not
adjust well with this approach, it is possible to add
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another term to the equation to account for the non-
linear behaviour:

y = x} Bo+x fite (5)

where xf and f; are still vectors, and x{jf; is the
selected feature to display the nonlinear behaviour.
In all cases of polynomial regression, the main
ohjective is to find the parameters that minimise the
loss function using Eq. (4):

% (% i{.}’(xa:) —yf)2) =0 (8)

For the current study, 15 different combinations
of the four numerical descriptors were tested, going
from simple linear to combinations of two, three and
all four descriptors. Results are shown in the fol-
lowing section.

(2) Random Forest (RF)

A widely used and effective technique in machine
learning involves the use of learning models known
as ensembles. An ensemble takes multiple individ-
ual learning models and combines them to produce
an aggregate model that is more powerful than any
of its individual learning models alone®. Random
forest is a supervised machine learning ensemble
that encompasses several decision trees for predie-
tion or classification problems’. A decision tree
represents a procedure where data are analysed
based on their attributes'®. It is a supervised
learning algorithm that is mostly used for classifi-
cation problems. It works for both discrete and
continuous dependent variables. It involves a
selection process that can be described as a se-
quence of binary selections®. By fitting several
decision trees, a random forest uses various sub-
samples of the dataset and uses averaging to im-
prove the predictive accuracy and control overfitting
of the final prediction. The number of trees on any
random forest model usually is around tens or
hundreds of trees depending on data complexity.
For the current analysis different numbers of trees
were used, ranging from 50 to 2000. Additionally, a
ten-fold test was performed.

(3) Artificial Neural Network (ANN)

ANNSs are a novelty approach widely employed in
recent years in applications such as pattern recog-
nition and material science®®, ANNs are inspired by
how the nervous system, neural networks and
neurons are composed. In reality, biological neurons
are interconnected in a network structure, with
each neuron having an electrical signal as input and
later transmitting a response to a neighbouring
neuron when a certain activation threshold is sur-
passed?®’. In ANNs, neurons are called perceptrons,
and the back propagation method is often used to
train the networks weights and biases for each

perceptron with the sigmoid function as the most
common activation function used®®;

Bu) =

l4e™

where 1 represents a linear function within a per-
ceptron. An ANN is formed by layers of several
numbers of perceptrons. Each perceptron on one
layer is interconnected with the perceptrons from
the next layer. These processing units are made up
of one layer of inputs, a group of hidden layers, and
one output layer. The final goal of the ANN is to
learn about the information presented to produce
one output report®®. Thus, during the construction
of network architecture, an optimal combination of
these parameters is sought. With the inclusion of
more perceptrons, more layers, or different activa-
tion functions, it is possible to increase the models
accuracy; however, it might incur data overfitting.
Therefore, the model should be complex enough to
have good predictions and yet somehow simple en-
ough to avoid overfitting.

For this process, an extensive grid search was
carried out. Different combinations of the activation
function (identity, ReLU, sigmeoid), type of solver
(Ibfgs, sgd, adam), maximum number of iterations
(2000, 2500), hidden layers (1 to 3), and neurons per
layer (1 to 20) were tested. In total, 6174 different
networks were analysed using a ten-fold analysis.
The final ANN architecture used for the current
study comprised five layers as shown in Fig. 3. The
first layer is the input layer for all predictor vari-
ables (four features). Then, the following three lay-
ers are hidden layers for data processing with their
corresponding activation function. The last layer
corresponds to the output layer for the target pre-
diction.

(7)

RESULTS AND DISCUSSION

A numerical dataset was employed to train dif-
ferent machine learning models to predict perme-
ability and Forchheimers coefficient. The actual
behaviour of both variables is shown in Fig. 4. The
dataset was transformed in a way that can be pro-
cessed by all machine learning techniques proposed
in the current study. All records were analysed
using normalized and standardized values. How-
ever, only standardized results are shown as the
difference in accuracy between normalized and
standardized values was negligible. Then, the da-
taset was divided into 80% for training and 20% for
testing. Later, ten-fold cross validation was used on
each technique considering the best chosen param-
eters to avoid overfitting,

Finally, the trained algorithms were compared
against the testing set to measure accuracy. The
target features for the current analysis are perme-
ability and Forchheimers coefficient. Therefore,
they were computed in two separate analyses.
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Fig. 3. Artificial Neural Network architecture used for the current study..
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The multiple linear regression and polynomial
regression analyses were performed using combi-
nations of all four predictor variables. For that, an
algorithm was created to generate different linear
models that were tested to measure the correlation
coefficient. The algorithm considered all possible
combinations with the predictor variables. Each
predictor variable and target outcome were labelled
accordingly as shown in Eq. (8).

xp : Pore size
X — Xy Porosity
xy : Copper size
x3 : Coordination number
¥ — { ¥o : Permeability
1 : Forchheimers coeff

(8)

From all possible combinations, only the top three
combination results are shown in Table I. The re-
sults showed that the multiple linear regression
considering all four predictors obtained the highest
correlation coefficients. For the permeability
regression, the highest correlation achieved was
0.761 and for the Forchheimers coefficient was
0.625. These results agree well with the nonlinear
behaviour of both variables as shown in Fig. 4 and
Eq. (3). For the polynomial algorithm, different
grees were employed to improve accuracy. One
important aspect to keep in mind is to check for
overfitting®®. For the current study, the starting

Table I. Pearson coefficients for multiple linear
regression combinations

Y Combinations of X R?

Yo Xg, X¥1,Xg, X3 0.761
Yo Xp,X1,X3 0.756
Yo X, X2, X3 0.723
Y1 XoXy, ¥a, X3 0.625
»1 Xp,X1.%X2 0.572
y1 X1,X92,.X3 0.547

point was a degree 2 polynomial. It was observed
that overfitting started to occur at a polynomial of
degree 4 for both target values. Thus, it was decided
to stop at a degree 3 polynomial.

The next step was to implement other models that
could account for the nonlinearities. One of the
chosen models was random forest. The only
parameter that was modified to assess a better
prediction accuracy was the number of estimators.
By increasing the number of estimators (from 50 up
to 2000), the correlation coefficient and the differ-
ences between folds stabilize as shown in Fig. 5. Yet,
the final number of estimators was set to 175 as this
provides good prediction accuracy (99.1%) and the
difference between the ten folds was the smallest
(1.61%).

For the ANN, several combinations of parameters
were tested. The results for the top 10 combinations
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Table II. ANN architecture results during the grid search process

Rank Activation Hidden_layer_sizes Max_iter Mean_test_score Std_test_score Hidden_layer_index

1 Logistic (7,12, 12) 2000 0.995879 0.00425 130
2 Logistic (16,) 2000 0.995643 0.0034 245
3 Logistic (7,9 2500 0.995469 0.00359 119
4 Logistic (16, 3, 12) 2000 0.995389 0.00399 256
5 Logistic (10, 15, 9) 2500 0.995368 0.00364 185
6 Logistic (7, 15, 18) 2500 0.995315 0.00384 139
7 Logistic (186, 2000 0.995309 0.00363 245
8 ReLU (13,9,9) 2500 0.995305 0.00401 220
9 ReLU (16, 6, 12) 2000 0.995283 0.0045 263
10 Logistic (186,) 2500 0.995268 0.00356 245
() i ® |

paraT noeuterat

-

Fig. 5. Random forest (a) mean score prediction and (b) standard deviation of the ten-fold test vs. number of estimators..

from 6174 possible architecture combinations are
shown in Table II. No further search was carried out
as these achieved results are already over the 99%
correlation score. The final selection for the ANN
was ranked number 8. It was observed that ReLU
activation function converged faster than the sig-
moid. Additionally, the difference in correlation
coefficient score compared to the other architectures
was minimal.

A comparison of all four models with their se-
lected parameters during the ten-fold training
phase is shown in Fig. 6. The results showed
variations during permeability calculations

amongst all models. The largest variation was
observed for the multiple linear regression
whereas the minimum variation was obtained
with the random forest regressor. Polynomial
regression and ANN showed some outliers that
could be related to the imbalance between
numerical data and experimental data. Some data
balancing techniques could be implemented to
improve these results. For the Forchheimer coef-
ficient, the training phase showed more consis-
tency for all methods except for multiple linear
regression. Later, all four methods were analysed
using the testing subset.
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Fig. 8. Q-Q plot for Forchheimers coefficient and predicted values using different machine learning techniques: (a) multiple linear regression, (b)
polynomial regression, (c) random forest regressor, (d) artificial neural network..

Q-Q plots were designed to show how well each
model performed when trying to predict K and C
during the testing phase. The X-axis corresponds to
the real values and the Y-axis is the predicted value
of each model. Figure 7a shows a multiple linear
regression of degree 1 between the structural
parameters and permeability. The Q-Q plot shows
some correlation between the predictors and target
outcome. Yet, the linear model only successfully
predicted 76% of the expected values for perme-
ability during the testing phase. Additionally, the
observed mean squared error (MSE) was 0.417. By
increasing the polynomial degree it was possible to
achieve better average accuracy (93%) and an al-
most ten times lower MSE. However, during the
training phase, the ten-fold test for polynomial
regression exhibited a wide range between the less
optimum and the top result of the analysis going
from 78.7% to 99.3% respectively. The next step that
followed was the analysis of the data with a random
forest regressor, i.e. Fig. 7c. The random forest
algorithm was set to use 175 decision trees with a
minimum split of 2. The average testing accuracy
obtained for this model was 98.3% with an MSE
0.026. The mean score and standard deviation dur-
ing training for the ten-fold analysis for the random
forest regressor were 98.263% and 1.548% respec-
tively, meaning that all tests obtained a similar
accuracy. Finally, the predictor variables were used

on an ANN. Different activation functions were
tested but, in the end, regular linear was used on
each of the three hidden layers. The results for that
analysis are given in Fig. 7d. This technique aver-
aged the best testing accuracy to predict perme-
ability amongst the other four techniques (98.9%).
Finally, the MSE was slightly lower than the ran-
dom forest regressor. Moreover, during the ten-fold
training phase, ANNs exhibited an accuracy close to
96.91% and, overall, the standard deviation was
5.47%. Thus, random forest and ANN were suit-
able for permeability predictions. Yet, random forest
tends to overfit the data (this might explain the
congistency during training) while neural networks
keep learning when new data become available.
For the Forchheimers coefficient prediction, sim-
ilar results were observed. During the testing phase
the multiple linear regression model only predicted
60% correctly. Fig. 8a shows how dispersed these
results are. The MSE was also quite large, i.e.
13.462, meaning that the difference in prediction for
some points was huge. Thig behaviour was congis-
tent with what was observed during the ten-fold
training phase (61.5% for the mean score with a
standard deviation of 10.95%). After implementing
the other machine learning techniques, an
improvement in both metrics (accuracy and MSE)
was observwed. All three cases showed accuracy of
99%, but the random forest regressor had the best



prediction accuracy (99.5%). For the MSE, the ANN
(Fig. 8d) had more difference in errors with the
predicted values compared to random forest and
polynomial regression. However, the ten-fold train-
ing phase showed differences amongst machine
learning techniques. For instance, the ANN mini-
mum accuracy rate was 95.25%. This led to a stan-
dard deviation for the ten-fold training phase for
ANN of 1,46%. This could imply that the ANN is not
learning properly from the dataset and some
parameter tuning might need to be used. Only the
random forest and polynomial regression models
had similar results throughout their corresponding
ten-fold training phase: 99.3% and 0.47% averaged
accuracy and standard deviation for the polynomial
regression and 99.52% and 0.14% averaged accu-
racy and standard deviation for the random forest
regressor., Overall, the results showed a big
improvement from the multiple linear regression
with all three algorithms for both target variables
(K and C). Moreover, it was possible to correlate the
gtructural parameters of the porous metal to target
values that in the literature are often obtained
mainly through experimental means.

CONCLUSION

This article presented a way to calculate the
permeability and Forchheimer coefficient from data
generated experimentally and numerically. The
model implemented a correlation matrix to establish
the main features to use for analysis, which were
pore size, porosity, metal particle size and coordi-
nation number. With the implementation of multi-
ple linear regression, it was possible to obtain the
best correlation factor for the target properties by
using a combination of four predictor features. The
multiple linear regression was later used to assess
the effectiveness of the machine learning ap-
proaches, With this combination of features, three
different machine learning techniques were tested
to improve the accuracy of prediction. The results
showed that polynomial regression provided a big
improvement over the multiple linear regression.
Moreover, it accounted for most of the nonlinearities
in the data. Additionally, the results suggest that
the addition of a third-degree term improves the
calculation of permeability and Forchheimers coef-
ficient. For the other two machine learning tech-
niques, random forest regressor performed best for
both analyses. Although ANN had better results in
some areas, it showed a lack of consistency in the
ten-fold training phase. Further parameter tuning
is suggested to compensate for the differences. In
summary, this article successfully presented a novel
approach for porous metal material property calcu-
lation. Random forest regressor (99.5%) and poly-
nomial regression (99.2%) were the best adequate
algorithms for Forchheimers coefficient whereas
ANN (98.9%) had better results for predicting per-
meability.
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