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1.  Program sensitivity to non-randomness

The creation of a synthetic population using combinatorial optimisation is a stochastic process.  In particular, the following routines make calls on a random number generator (RNG): 

1) the initial selection of households 

2) the selection of a household to remove from the set

3) the selection of a replacement household

4) the decision about whether or not to retain a replacement that degrades the fit.

Analysis confirmed by practical experience shows that we require these numbers to be convincingly random when examined to six decimal places.  There are two main consequences of using an inadequate RNG: 

a) All households in the sample space do not have an equal chance of being selected for inclusion.  Indeed, some may be effectively excluded, if numbers within the range necessary to identify them are never generated.  Others may be selected with greater than or less than the expected frequency. 

b) The test of whether to take a retrograde step (in the hope of being able to improve the fit subsequently) will not work correctly.  If too many very small numbers are generated, the backwards steps will be excessively large and frequent; if not enough, there may never be any back-tracking. 

Operating systems and programming languages typically supply functions or subroutines that generate pseudo-random numbers from standard algorithms.  These built-in facilities vary in their degree of adequacy.  

We will confine our attention to generators that return a value from a continuous distribution over the interval [0,1).  For our purposes, the order in which the numbers are produced is not critical, but an even spread at some appropriate level of precision is.  Apparent continuity at high spectral resolution, in other words, is more important than sequential randomness.  

2.  Difficulties experienced

Problems were found when using a function labelled ‘rand’ on the central computers at the University of Liverpool.  Rand is a very common RNG, widely available on Unix-based machines in particular.  It is based on the classical approach to randomising, being a so-called linear congruential generator.  

These algorithms are quite simple and hence fast: an initial value (the seed) is multiplied by a constant y, and the product incremented by z; the result is then divided by x.  The remainder is used both to produce a number less than one and greater than or equal to zero (by taking the quotient with x), and to generate the next integer in the sequence.  To expresss this more concisely, the following calculations are performed iteratively: 

randn = intn/x

intn+1 = modx((intn * y) + z)

The values of x, y and z are critical to the adequacy of the resultant series.  In the case of rand (also known by other names, e.g. ANSIC; see Entacher [1998]), the parameters are set to (231, 1103515245, 12345).  Although known to be less satisfactory than various alternatives, rand continues to be used because of its speed and portability.  It took 8.86 seconds to generate 40 million numbers on the Silicon Graphics machine at the University of Liverpool, while the corresponding function from the NAG Fortran library needed 27.75 seconds.  The intrinsic RNG in Fortran 90 performed the task in 12.04 seconds.  

It was discovered that only four distinct values less than 0.0001 were being generated by rand: 0.000030517578125, numbers exactly twice and three times as large, and zero.  Because so many zeros appeared (approximately 30 per million), the program was accepting much larger degradations in fit than intended.  These anti-optimising diversions had a significant negative effect on the final results. 

The situation was in fact identical all along the spectrum; thus between 0.5 and 0.5001 there were the same four values (incremented by 0.5).  Considering the numbers generated between 0.0 and 0.999999 to six significant digits, therefore, it is evident that there would be at most 40,000 potential values rather than a million.  The precise number of distinct values is in fact 32,768, or 215.  

This finding meant that not all records from the SAR were open to selection by the program.  In a sample space containing 250,000 elements, almost 87% would never be specified using the rand function.  Changing the seed provided to the algorithm has no effect on which numbers appear, only on the starting point of the cycle. 

3.  Testing pseudo-random numbers

We have produced a simple program to test the adequacy of a random number generator for our purposes.  (The program listing is attached as Appendix 5; the code can be compiled in Fortran 77 or with minor modifications, e.g. to the line continuation character, in Fortran 90/95.)  It performs three separate tests on a large sample of such numbers.  First, the observed counts below 0.1, 0.01, … 0.00000001 are compared with the expected figures.  Secondly, the occurrences of the digits 0, 1 …9 are tabulated for each of the first eight decimal places.  Finally, the interval from which the numbers are drawn is divided into a quarter of a million slices.  The Pearson chi-square statistic is calculated to test goodness-of-fit with a continuous distribution; in addition, the number of segments (if any) with a zero count is reported. 

A comparison of a few sample reports will help to show the difference between good and bad results.  The first sheet was produced using the random number function G05DAF from the NAG Fortran library.  This function is also a linear conguential generator, though the modulus and multiplier are very high, 259 and 1313 respectively.  The test results are very close to what would be expected, with no more variation than can be accounted for by chance.  

Appendix 2 gives comparable output, where the program calls the Fortran 90/95 intrinsic subroutine Random_Number.  Again the results are completely satisfactory. 

The third attachment gives the output of the ‘rand’ function.  In Test 1, it is clear that the proportion of numbers below 0.0001 is somewhat too high (which implies that the numbers are not wholly adequate even within the first four decimal places).  At smaller orders of magnitude the results become grossly unsatisfactory.   Test 2 is less easy to read at a glance, though it is clear that by the eighth decimal place the distribution of digits is uneven, and careful examination reveals perturbations as early as the fourth decimal place.  On Test 3, the statistic is far into the critical region of the chi-square curve.  As previously noted, most of the segments are actually empty. 

Although (as shown above) linear congruential generators are easy to express mathematically, most cannot be translated directly into high-level code because the integer values may exceed the register capacity.  By carefully selecting values for (x,y,z), however, it is possible to devise a ‘quick and dirty’ RNG that takes no more than two lines of Fortran code.  (See Press [1992] pg. 274.)  In particular, Appendix 4 shows the results using parameters (244944, 1597, 51749).  Note that the results, while not as good as those for the NAG or intrinsic routines, are much superior to the output using ‘rand’.  

Once the variable ‘int’ was initialised with a seed value, the following lines served as the RNG:

           int=mod(int*1597+51749,244944)

           randm=float(int)/244944.0

The portability of this code, however, is compromised by differences in the precision of calculations on different platforms.  Comparisons between a Pentium II desktop running Salford FTN95 under Windows NT and a Silicon Graphics system running Fortran 77 under Solaris 2.6 showed that the values of the random number were not reliably the same even in the sixth decimal position.  In order to enhance the precision, the following modification was added to the lines above: 

           rand2=float(int(randm*1000.0))/1000.0

           rand3=(float(int)-(244944.0*rand2))/244944.0

           randm=rand2+rand3

This further step improved accuracy by several decimal places and made the results from the two machines completely comparable. 
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