Surgery in Complex Dynamics.

Carsten Lunde Petersen

IMFUFA at NSM, Roskilde University

Introduction

Magic Lecture 1: Cut and Past surgery using interpolations.

Magic Lecture 2:

Quasi-conformal massage, -maps on drugs -.

Magic Lecture 3:

Quasi-conformal surgery using real conjugacies.

Magic Lecture 4:

Trans-quasi-conformal surgery.

Announcement

There are OPEN CODY Ph.d positions at RUC in Denmark

Recapitulation on q-c mappings.

Let U be an open subset of \mathbb{C} and let $W_{\text{loc}}^{1,p}$, $1 \leq p$ denote the Sobelev space of $L_{\text{loc}}^{1}(U)$ functions with distributional derivatives in $L_{\text{loc}}^{p}(U)$, i.e. the $L_{\text{loc}}^{1}(U)$ function $\phi: U \longrightarrow \mathbb{C}$ belongs to $W_{\text{loc}}^{1,p}$ if there are functions $f, g \in L_{\text{loc}}^{p}(U)$ such that for all test (smooth) functions h with compact support in U:

$$\int_{U} h \cdot f dz d\overline{z} = -\int_{U} h_{z} \cdot \phi dz d\overline{z},$$
$$\int_{U} h \cdot g dz d\overline{z} = -\int_{U} h_{\overline{z}} \cdot \phi dz d\overline{z}.$$

In this case we write $\phi_z = f$ and $\phi_{\overline{z}} = g$.

Recapitulation on q-c mappings II

An o-p homeomorphism $\phi: U \longrightarrow V$, $U, V \subset \mathbb{C}$ belonging to $W_{\text{loc}}^{1,1}(U)$ is differentiable almost everywhere and its Jacobian $\text{Jac}(\phi) = |\phi_z|^2 - |\phi_{\overline{z}}|^2$ belongs to $L_{\text{loc}}^1(U)$.

A Beltrami differential on $U \subset \mathbb{C}$ is a (-1,1)-form $\mu = \mu(z)\frac{d\overline{z}}{dz}$, where $\mu : U \longrightarrow \mathbb{C}$ belongs to $L^{\infty}_{loc}(U)$ and $|\mu(z)| < 1$ a.e. A Beltrami differential is naturally an ellipse field and is also called an almost complex structure previously denoted σ .

We say that μ is integrable if there exists a homeomorphism $\phi: U \longrightarrow V, U, V \subset \mathbb{C}$ belonging to $W^{1,1}_{\text{loc}}(U)$ solving the Beltrami equation:

$$\phi_{\overline{z}} = \mu \cdot \phi_z$$
 a.e.

Recapitulation on q-c mappings II

If $||\mu||_{\infty} = k < 1$, then ϕ is called quasi conformal and:

a) ϕ belongs to $W_{\text{loc}}^{1,p}(U)$ for some p > 2 and in particular for p = 2,

b) ϕ is unique up to post composition by a holomorphic map,

c) ϕ is absolutely continuous, i.e. for any measureable set $K \subset U$: area(K) = 0 implies area($\phi(K)$) = 0,

d) ϕ 's inverse ϕ^{-1} is quasi conformal with the same k.

Trans-q-c mappings

The bound $||\mu_1||_{\infty} = k$ is equivalent to the hyperbolic bound

$$d_{\mathbb{D}}(0,\mu(z)) = \log \frac{1+|\mu(z)|}{1-|\mu(z)|} \le \log \frac{1+k}{1-k} = \log K,$$

where
$$K = \frac{1+k}{1-k}$$
. Define $K_{\mu}(z) = \frac{1+|\mu(z)|}{1-|\mu(z)|}$.

It may seem as a harsh condition to ask that K_{μ} should be bounded in order for μ to be integrable.

And in fact it turns out that there is room for improvements, but not much.

Guy David proved that there is a class of (hyperbolically) unbounded Beltrami differentials, which are uniquely integrable up to post composition by a holomorphic map.

t-q-c mappings II

Let us say that a Beltrami differential $\mu : U \longrightarrow \mathbb{C}$ is a David-Beltrami differential if there exists constants $M > 0, \alpha > 0$ and $K_0 > 1$ such that

$$\forall K > K_0 : \operatorname{area}(\{z \in U | K_{\mu}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|} > K\}) \le Me^{-\alpha K}.$$

or equivalently (when U has finite area) there exists $\alpha' > 0$ such that

$$\int_{U} \mathrm{e}^{\alpha' K_{\mu}(z)} dz d\overline{z} < \infty.$$

David proved the following integration theorem for David-Beltrami differentials:

t-q-c mappings III

Theorem 1. (David) Any David-Beltrami differential $\mu : U \longrightarrow \mathbb{C}$, where $U \subset \mathbb{C}$ is a domain is integrable by some o-p homeomorphism $\phi : U \longrightarrow V$ in $W_{\text{loc}}^{1,1}$, $V \subset \mathbb{C}$. Such a map is called a David map or a trans quasi conformal map. And:

a) ϕ belongs to $W^{1,p}_{\text{loc}}(U)$ for every p < 2,

b) ϕ is unique up to post composition by a holomorphic map, i.e. if $\Phi: U \longrightarrow V'$ in $W_{\text{loc}}^{1,1}$ is another solution to the same Beltrami equation then there exists a holomorphic function $f: V \longrightarrow V'$ with $\Phi = f \circ \phi$.

c) ϕ is absolutely continuous,

d) ϕ^{-1} is in general not a David map.

t-q-c mappings IV

The notion of David maps naturally generalize to maps of $\overline{\mathbb{C}}$ to $\overline{\mathbb{C}}.$

Note howerver that on a Riemann surface we must insist that a Beltrami-form is a (-1,1) form $\mu(z)\frac{d\overline{z}}{dz}$ and the the Beltrami equation is an equation on forms:

$$\phi_{\overline{z}} \, d\overline{z} = \mu \, \frac{d\overline{z}}{dz} \, \phi_z \, dz$$

However as long as the support of μ is a compact subset of \mathbb{C} , with the canonical chart z, we need not worry about forms.

These were the tools from analysis, here are applications:

Applications

Theorem 2. (*P. & Zakeri*) There exists a full measure subset $\mathcal{E} \subset [0,1] \setminus \mathbb{Q}$ such that for all $\theta \in \mathcal{E}$ the quadratic polynomial $P_{\theta}(z) = e^{i2\pi\theta}z + z^2$ has a Siegel disk with Jordan boundary containing the critical point and with locally connected Julia set of zero area.

The main "new" ingredients relative to the q-c surgery on f_{θ} leading to F_{θ} in the previous lecture is that: We construct for $\theta \in \mathcal{E}$ a David (instead of a q-c) extension $H_{\theta} : \overline{\mathbb{D}} \longrightarrow \overline{\mathbb{D}}$ of the conjugacy h_{θ} . We prove that the F_{θ}^* invariant Beltrami form μ_{θ} is a David-Beltrami form. And we prove that the integrating David homeomorphism $\phi_{\theta} : (\overline{\mathbb{C}}, \mu_{\theta}) \longrightarrow (\overline{\mathbb{C}}, 0)$ conjugates F_{θ} to P_{θ} .

Applications

Theorem 3. (Haissinsky) There exists a David homeomorphism $\phi: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and a domain $U \subset \Lambda_0(1/2)$ with $Q_0(U) \subset U$ such that

where $Q_c(z) = z^2 + c$ and where $\phi_{\overline{z}} = 0$ on $\overline{\mathbb{C}} \setminus \Lambda_0(1/2)$.

Arithmetic Conditions

Definition 4. Recall that we may write any irrational number $\theta \in [0, 1]$ in a unique way as a continued fraction with positive integer coefficients (called partial fractions):

And recall that the number θ is said to be of bounded type if the sequence (a_n) is bounded.

Arithmetic Conditions II

The set of bounded type numbers has zero Lebesgue measure in [0, 1]. In fact:

Theorem 5. (Borel, Bernstein, Khinchin) Let $\psi : \mathbb{N} \longrightarrow]0, \infty]$ be any function.

a) if $\sum_{n=1}^{\infty} \frac{1}{\psi(n)} < \infty$ then for almost every $0 < \theta < 1$ there are only

finitely many n for which $a_n(\theta) > \psi(n)$.

b) if $\sum_{n=1}^{\infty} \frac{1}{\psi(n)} = \infty$ then for almost every $0 < \theta < 1$ there are infinitely many n for which $a_n(\theta) > \psi(n)$.

Arithmetic Conditions III

In the following I shall outline the proof of Theorem 2 above.

We prove that Theorem 2 holds for \mathcal{E} the set of irrational numbers $\theta \in [0, 1]$ with

$$\log(a_n(\theta)) = \mathcal{O}(\sqrt{n}).$$

By the previous theorem this set is certainly of full measure. However it is a subset of the Diophantine numbers of exponent d for any d > 2.

Cubic Blaschke product Revisited

Recall the the previous lecture the cubic Blaschke product

$$f(z) = z^2 \frac{z+3}{1+3z}$$

which restricts to a real analytic circle homeomorphism with a critical fixed point at 1 and which further has super attracting fixed points at 0 and ∞ of local degree 2. Let $\theta \in [0,1] \setminus Q$ be given and let $\eta = \eta(\theta) \in]0,1[$ be such that the map

$$f_{\theta}(z) := \mathrm{e}^{i2\pi\eta} \cdot f(z)$$

has rotation number θ on the unit circle.

Blaschke Revisited II

Let $h = h_{\theta} : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ be the unique conjugacy of f_{θ} to R_{θ} with h(1) = 1.

Theorem 6. (*P.* & Zakeri, Yoccoz) For every $\theta \in \mathcal{E}$ there exists a David extension $H : \overline{\mathbb{D}} \longrightarrow \overline{\mathbb{D}}$ of h, with H(0) = 0 i.e. a homeomorphism in $W_{\text{loc}}^{1,1}(\mathbb{D})$ solving the Beltrami equation for some David-Beltrami differential μ on \mathbb{D} .

As before we define a new dynamical system $F_{\theta} = F_{\theta,H} : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$

$$F_{\theta}(z) = \begin{cases} f_{\theta}(z), & z \notin \mathbb{D}, \\ H^{-1} \circ R_{\theta} \circ H(z) & z \in \mathbb{D} \end{cases}$$

A David-Beltrami form in \mathbb{D}

Let $\mu = H^*(0)$, then $F^*(\mu)(z) = \mu(z)$ for $z \in \mathbb{D}$. We extend μ to an F^* invariant Beltrami differential μ on $\overline{\mathbb{C}}$ by defining

$$\mu(z) = \begin{cases} (f^n)^*(\mu) = \mu((f^n)(z)) \cdot \frac{\overline{(f^n)'(z)}}{(f^n)'(z)}, & z \in F^{-n}(\mathbb{D}) \\ 0, & z \notin \bigcup_{n \ge 0} F^{-n}(D) \end{cases}$$

where $f = f_{\theta}$. In the quasi conformal case we where then ready to apply Ahlfors-Bers because $K_{\mu}(z) = K_{\mu}(f(z))$ for all $z \notin \mathbb{D}$, so that boundedness in \mathbb{D} implies the same bound everywhere. However in order for μ to be a David-Beltrami differential we need that the areas of large dilatation decreases exponentially with the dilatation.

Area Distortion bounds

However f distorts areas unboundedly, so potentially we could have small areas blow up too much under backwards iteration!!

Let G detnote the set of all possible branches g of f^{-n} on \mathbb{D} such that $f^k \circ g(\mathbb{D}) \cap \mathbb{D} = \emptyset$ for $0 \le k < n$ and define a measure ν on \mathbb{D} by:

 $\forall E \subset \mathbb{D}$, measureable : $\nu(E) = \operatorname{area}(E) + \sum_{g \in G} \operatorname{area}(g(E)).$

Then

Area Distortion bounds II

Theorem 7. (*P*,*Zakeri*) The measure ν is dominated by a power of the Lebesgue measure on \mathbb{D} . That is there exists β , $0 < \beta < 1$ independent of θ and a constant $C = C(\theta)$ such that for every measureable set $E \subset \mathbb{D}$:

 $\nu(E) \le C(\operatorname{area}(E))^{\beta}.$

With this theorem at hand we see that μ is indeed a David-Beltrami form compactly supported on \mathbb{C} whenever its restriction to \mathbb{D} is a David-Beltrami form. Since we have

$$\forall K > K_0 : \operatorname{area}(\{z \in \mathbb{C} | K_{\mu}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|} > K\}) \le CM^{\nu} e^{-\alpha \nu K}$$

and $\mu = 0$ on a neighbourhood of ∞ .

Integrating μ

We may hence integrate μ and proceed as usual. We let $\phi: (\overline{\mathbb{C}}, \mu) \longrightarrow (\overline{\mathbb{C}}, 0)$ be an integrating homeomorphism for μ normalized by $\phi(\infty) = \infty$, $\phi(0) = 0$ and $\phi(1) = -\lambda_{\theta}/2$.

We define $P(z) = \phi \circ F \circ \phi^{-1}$ and we want to check that *P* is holomorphic.

We need to check that $\phi \circ F \in W^{1,1}_{\text{loc}}(\overline{\mathbb{C}} \setminus \{1\})$ so that both ϕ and $\phi \circ F$ solve the Beltrami equation for μ and thus $\phi \circ F = P \circ \phi$ with *P* holomorphic.

$\phi \circ F \in W^{1,1}_{\text{loc}}(\overline{\mathbb{C}} \setminus \{1\})$

On $\overline{\mathbb{C}} \setminus \overline{\mathbb{D}}$: F = f is holomorphic so that $\phi \circ F \in W^{1,1}_{\text{loc}}(\overline{\mathbb{C}} \setminus \overline{\mathbb{D}})$. On \mathbb{D} we have $F = H^{-1} \circ R_{\theta} \circ H$ and thus

$$\phi \circ F = \phi \circ H^{-1} \circ R_{\theta} \circ H.$$

But both ϕ and H integrate μ on \mathbb{D} so that $\phi \circ H^{-1}$ is holomorphic. Hence $\phi \circ F$ on \mathbb{D} equals the post composition of H with a conformal map. Hence also $\phi \circ F \in W^{1,1}_{\text{loc}}(\mathbb{D})$. Finally we just need to check that if ψ is a homeomorphism on some domain U, L is a line through U and $\psi \in W^{1,1}_{\text{loc}}(U \setminus L)$ then infact $\psi \in W^{1,1}_{\text{loc}}(U)$. This is a fun little exercise.

Proof completion

To complete the proof define $J_F = \partial \Lambda_0(\infty)$. Note that $\phi(J_F) = J_P$. The remainder of the theorem follows from

Theorem 8. (*P*) For every $\theta \in [0, 1] \setminus \mathbb{Q}$ the set J_F is locally connected and of zero area.

Let me conclude we a few problem suggestions:

Similar applications?

Is it true that:

Question 1. For almost all θ , any cubic polynomial $P_{\theta,a}(z) = \lambda_{\theta} z + a z^2 + z^3$ has a Siegel disk $\Delta_{\theta,a}$ whose boundary contains at least one and in particular cases both the finite critical points of $P_{\theta,a}$?

Question 2. For almost all $0 < \theta, \tau < 1$ with $\theta + \tau \neq 1$ the quadratic rational map

$$R_{\theta,\tau}(z) = z \frac{z + \lambda_{\theta}}{1 + \lambda_{\tau} z}$$

has Jordan Siegel disks with disjoint closure $\Delta_{\theta,\tau}^0$ and $\Delta_{\theta,\tau}^\infty$ around zero and ∞ respectively, and with each Jordan boundary containing a critical point?

Questions II

Question 3. Is there a wider condition than a) and b) below for which the same statement, holds, except with t-q-c instead of q-c? Suppose the Blaschke product *B* restricts to an o-p degree $d \ge 2$ covering $B : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ and that a) no critical point $c \in \mathbb{S}^1$ for *B* is recurrent to a critical point on \mathbb{S}^1 , b) every periodic point for *B* on \mathbb{S}^1 is repelling. Then there exists a rational map *R* and an o-p q-c homeomorphism $\phi : \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ such that

$$\phi \circ B = R \circ \phi : \overline{\mathbb{C}} \setminus \mathbb{D} \longrightarrow \overline{\mathbb{C}},$$

and $\Lambda = \phi(\mathbb{D})$ is a super attracting basin for R on which R is conformally conjugate to z^d .

Questions III

Is it true that

Question 4. For almost all irrational θ the parabolic quadratic polynomial $Q_{\frac{1}{4}}(z) = z^2 + \frac{1}{4}$ has a virtual-Siegel disk Δ with rotation number θ and Jordan boundary containing the critical point?

Is it true that

Question 5. For almost all irrational θ the map $\lambda_{\theta} \sin z$ has a Siegel disk Δ_{θ} with Jordan boundary containing the two nearest critical points $\pm \pi/2$, but none of the others?