Surgery in Complex Dynamics.
 Carsten Lunde Petersen

IMFUFA at NSM, Roskilde University

Introduction

Magic Lecture 1:
Cut and Past surgery using interpolations.
Magic Lecture 2:
Quasi-conformal massage, -maps on drugs -.
Magic Lecture 3:
Quasi-conformal surgery using real conjugacies.
Magic Lecture 4:
Trans-quasi-conformal surgery.

Announcement

There are OPEN CODY Ph.d positions at RUC in Denmark

Recapitulation on q-c mappings.

Let U be an open subset of \mathbb{C} and let $W_{\text {loc }}^{1, p}, 1 \leq p$ denote the Sobelev space of $L_{\mathrm{loc}}^{1}(U)$ functions with distributional derivatives in $L_{\mathrm{loc}}^{p}(U)$, i.e. the $L_{\mathrm{loc}}^{1}(U)$ function $\phi: U \longrightarrow \mathbb{C}$ belongs to $W_{\mathrm{loc}}^{1, p}$ if there are functions $f, g \in L_{\mathrm{loc}}^{p}(U)$ such that for all test (smooth) functions h with compact support in U :

$$
\begin{aligned}
\int_{U} h \cdot f d z d \bar{z} & =-\int_{U} h_{z} \cdot \phi d z d \bar{z}, \\
\int_{U} h \cdot g d z d \bar{z} & =-\int_{U} h_{\bar{z}} \cdot \phi d z d \bar{z} .
\end{aligned}
$$

In this case we write $\phi_{z}=f$ and $\phi_{\bar{z}}=g$.

Recapitulation on q-c mappings II

An o-p homeomorphism $\phi: U \longrightarrow V, U, V \subset \mathbb{C}$ belonging to $W_{\text {loc }}^{1,1}(U)$ is differentiable almost everywhere and its Jacobian $\operatorname{Jac}(\phi)=\left|\phi_{z}\right|^{2}-\left|\phi_{\bar{z}}\right|^{2}$ belongs to $L_{\mathrm{loc}}^{1}(U)$.

A Beltrami differential on $U \subset \mathbb{C}$ is a $(-1,1)$-form $\mu=\mu(z) \frac{d \bar{z}}{d z}$, where $\mu: U \longrightarrow \mathbb{C}$ belongs to $L_{\text {loc }}^{\infty}(U)$ and $|\mu(z)|<1$ a.e. A Beltrami differential is naturally an ellipse field and is also called an almost complex structure previously denoted σ.

We say that μ is integrable if there exists a homeomorphism $\phi: U \longrightarrow V, U, V \subset \mathbb{C}$ belonging to $W_{\text {loc }}^{1,1}(U)$ solving the Beltrami equation:

$$
\phi_{\bar{z}}=\mu \cdot \phi_{z} \quad \text { a.e. }
$$

Recapitulation on q-c mappings II

If $\|\mu\|_{\infty}=k<1$, then ϕ is called quasi conformal and:
a) ϕ belongs to $W_{\text {loc }}^{1, p}(U)$ for some $p>2$ and in particular for $p=2$,
b) ϕ is unique up to post composition by a holomorphic map,
c) ϕ is absolutely continuous, i.e. for any measureable set $K \subset U: \operatorname{area}(\mathrm{K})=0$ implies area $(\phi(\mathrm{K}))=0$,
d) ϕ 's inverse ϕ^{-1} is quasi conformal with the same k.

Trans-q-c mappings

The bound $\left\|\mu_{1}\right\|_{\infty}=k$ is equivalent to the hyperbolic bound

$$
\mathrm{d}_{\mathbb{D}}(0, \mu(z))=\log \frac{1+|\mu(z)|}{1-|\mu(z)|} \leq \log \frac{1+k}{1-k}=\log K,
$$

where $K=\frac{1+k}{1-k}$. Define $K_{\mu}(z)=\frac{1+|\mu(z)|}{1-|\mu(z)|}$.
It may seem as a harsh condition to ask that K_{μ} should be bounded in order for μ to be integrable.
And in fact it turns out that there is room for improvements, but not much.
Guy David proved that there is a class of (hyperbolically) unbounded Beltrami differentials, which are uniquely integrable up to post composition by a holomorphic map.

t-q-c mappings II

Let us say that a Beltrami differential $\mu: U \longrightarrow \mathbb{C}$ is a David-Beltrami differential if there exists constants $M>0, \alpha>0$ and $K_{0}>1$ such that

$$
\forall K>K_{0}: \operatorname{area}\left(\left\{\mathrm{z} \in \mathrm{U} \left\lvert\, \mathrm{K}_{\mu}(\mathrm{z})=\frac{1+|\mu(\mathrm{z})|}{1-|\mu(\mathrm{z})|}>\mathrm{K}\right.\right\}\right) \leq \mathrm{Me}^{-\alpha \mathrm{K}}
$$

or equivalently (when U has finite area) there exists $\alpha^{\prime}>0$ such that

$$
\int_{U} \mathrm{e}^{\alpha^{\prime} K_{\mu}(z)} d z d \bar{z}<\infty .
$$

David proved the following integration theorem for David-Beltrami differentials:

t-q-c mappings III

Theorem 1. (David) Any David-Beltrami differential $\mu: U \longrightarrow \mathbb{C}$, where $U \subset \mathbb{C}$ is a domain is integrable by some o-p homeomorphism $\phi: U \longrightarrow V$ in $W_{\text {loc }}^{1,1}, V \subset \mathbb{C}$. Such a map is called a David map or a trans quasi conformal map. And:
a) ϕ belongs to $W_{\text {loc }}^{1, p}(U)$ for every $p<2$,
b) ϕ is unique up to post composition by a holomorphic map, i.e. if $\Phi: U \longrightarrow V^{\prime}$ in $W_{\mathrm{loc}}^{1,1}$ is another solution to the same Beltrami equation then there exists a holomorphic function $f: V \longrightarrow V^{\prime}$ with $\Phi=f \circ \phi$.
c) ϕ is absolutely continuous,
d) ϕ^{-1} is in general not a David map.

t-q-c mappings IV

The notion of David maps naturally generalize to maps of $\overline{\mathbb{C}}$ to $\overline{\mathbb{C}}$.
Note howerver that on a Riemann surface we must insist that a Beltrami-form is a $(-1,1)$ form $\mu(z) \frac{d \bar{z}}{d z}$ and the the Beltrami equation is an equation on forms:

$$
\phi_{\bar{z}} d \bar{z}=\mu \frac{d \bar{z}}{d z} \phi_{z} d z
$$

However as long as the support of μ is a compact subset of \mathbb{C}, with the canonical chart z, we need not worry about forms.

These were the tools from analysis, here are applications:

Applications

Theorem 2. (P. \& Zakeri) There exists a full measure subset
$\mathcal{E} \subset[0,1] \backslash \mathbb{Q}$ such that for all $\theta \in \mathcal{E}$ the quadratic polynomial $P_{\theta}(z)=\mathrm{e}^{i 2 \pi \theta} z+z^{2}$ has a Siegel disk with Jordan boundary containing the critical point and with locally connected Julia set of zero area.

The main "new" ingredients relative to the q-c surgery on f_{θ} leading to F_{θ} in the previous lecture is that: We construct for $\theta \in \mathcal{E}$ a David (instead of a q-c) extension $H_{\theta}: \overline{\mathbb{D}} \longrightarrow \overline{\mathbb{D}}$ of the conjugacy h_{θ}. We prove that the F_{θ}^{*} invariant Beltrami form μ_{θ} is a David-Beltrami form. And we prove that the integrating David homeomorphism $\phi_{\theta}:\left(\overline{\mathbb{C}}, \mu_{\theta}\right) \longrightarrow(\overline{\mathbb{C}}, 0)$ conjugates F_{θ} to P_{θ}.

Applications

Theorem 3. (Haissinsky) There exists a David homeomorphism $\phi: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ and a domain $U \subset \Lambda_{0}(1 / 2)$ with $Q_{0}(U) \subset U$ such that

$$
\begin{array}{ccc}
\overline{\mathbb{C}} \backslash U & \xrightarrow{Q_{0}} \overline{\mathbb{C}} \\
\phi \downarrow & & \downarrow \phi \\
\overline{\mathbb{C}} \backslash \phi(U) \xrightarrow{Q_{1 / 4}} & \overline{\mathbb{C}} .
\end{array}
$$

where $Q_{c}(z)=z^{2}+c$ and where $\phi_{\bar{z}}=0$ on $\overline{\mathbb{C}} \backslash \Lambda_{0}(1 / 2)$.

Arithmetic Conditions

Definition 4. Recall that we may write any irrational number $\theta \in[0,1]$ in a unique way as a continued fraction with positive integer coefficients (called partial fractions):

$$
\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

And recall that the number θ is said to be of bounded type if the sequence $\left(a_{n}\right)$ is bounded.

Arithmetic Conditions II

The set of bounded type numbers has zero Lebesgue measure in $[0,1]$. In fact:
Theorem 5. (Borel, Bernstein, Khinchin) Let $\psi: \mathbb{N} \longrightarrow] 0, \infty]$ be any function.
a) if $\sum_{n=1}^{\infty} \frac{1}{\psi(n)}<\infty$ then for almost every $0<\theta<1$ there are only
finitely many n for which $a_{n}(\theta)>\psi(n)$.
b) if $\sum_{n=1}^{\infty} \frac{1}{\psi(n)}=\infty$ then for almost every $0<\theta<1$ there are infinitely many n for which $a_{n}(\theta)>\psi(n)$.

Arithmetic Conditions III

In the following I shall outline the proof of Theorem 2 above.
We prove that Theorem 2 holds for \mathcal{E} the set of irrational numbers $\theta \in[0,1]$ with

$$
\log \left(a_{n}(\theta)\right)=\mathcal{O}(\sqrt{n}) .
$$

By the previous theorem this set is certainly of full measure. However it is a subset of the Diophantine numbers of exponent d for any $d>2$.

Cubic Blaschke product Revisited

Recall the the previous lecture the cubic Blaschke product

$$
f(z)=z^{2} \frac{z+3}{1+3 z}
$$

which restricts to a real analytic circle homeomorphism with a critical fixed point at 1 and which further has super attracting fixed points at 0 and ∞ of local degree 2 . Let $\theta \in[0,1] \backslash Q$ be given and let $\eta=\eta(\theta) \in] 0,1[$ be such that the map

$$
f_{\theta}(z):=\mathrm{e}^{i 2 \pi \eta} \cdot f(z)
$$

has rotation number θ on the unit circle.

Blaschke Revisited II

Let $h=h_{\theta}: \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}$ be the unique conjugacy of f_{θ} to R_{θ} with $h(1)=1$.
Theorem 6. (P. \& Zakeri, Yoccoz) For every $\theta \in \mathcal{E}$ there exists a David extension $H: \overline{\mathbb{D}} \longrightarrow \overline{\mathbb{D}}$ of h, with $H(0)=0$ i.e. a homeomorphism in $W_{\text {loc }}^{1,1}(\mathbb{D})$ solving the Beltrami equation for some David-Beltrami differential μ on \mathbb{D}.
As before we define a new dynamical system
$F_{\theta}=F_{\theta, H}: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$

$$
F_{\theta}(z)= \begin{cases}f_{\theta}(z), & z \notin \mathbb{D}, \\ H^{-1} \circ R_{\theta} \circ H(z) & z \in \mathbb{D}\end{cases}
$$

A David-Beltrami form in \mathbb{D}

Let $\mu=H^{*}(0)$, then $F^{*}(\mu)(z)=\mu(z)$ for $z \in \mathbb{D}$. We extend μ to an F^{*} invariant Beltrami differential μ on $\overline{\mathbb{C}}$ by defining
$\mu(z)=\left\{\begin{array}{l}\left(f^{n}\right)^{*}(\mu)=\mu\left(\left(f^{n}\right)(z)\right) \cdot \frac{\overline{\left(f^{n}\right)^{\prime}(z)}}{\left(f^{n}\right)^{\prime}(z)}, \\ 0,\end{array}\right.$
$z \in F^{-n}(\mathbb{D})$
$z \notin \cup_{n \geq 0} F^{-n}(D)$
where $f=f_{\theta}$. In the quasi conformal case we where then ready to apply Ahlfors-Bers because $K_{\mu}(z)=K_{\mu}(f(z))$ for all $z \notin \mathbb{D}$, so that boundedness in \mathbb{D} implies the same bound everywhere. However in order for μ to be a David-Beltrami differential we need that the areas of large dilatation decreases exponentially with the dilatation.

Area Distortion bounds

However f distorts areas unboundedly, so potentially we could have small areas blow up too much under backwards iteration!!

Let G detnote the set of all possible branches g of f^{-n} on \mathbb{D} such that $f^{k} \circ g(\mathbb{D}) \cap \mathbb{D}=\emptyset$ for $0 \leq k<n$ and define a measure ν on \mathbb{D} by:
$\forall E \subset \mathbb{D}$, measureable : $\quad \nu(E)=\operatorname{area}(\mathrm{E})+\sum_{\mathrm{g} \in \mathrm{G}} \operatorname{area}(\mathrm{g}(\mathrm{E}))$.
Then

Area Distortion bounds II

Theorem 7. (P,Zakeri) The measure ν is dominated by a power of the Lebesgue measure on \mathbb{D}. That is there exists $\beta, 0<\beta<1$ independent of θ and a constant $C=C(\theta)$ such that for every measureable set $E \subset \mathbb{D}$:

$$
\nu(E) \leq C(\operatorname{area}(\mathrm{E}))^{\beta}
$$

With this theorem at hand we see that μ is indeed a David-Beltrami form compactly supported on \mathbb{C} whenever its restriction to \mathbb{D} is a David-Beltrami form. Since we have
$\forall K>K_{0}: \operatorname{area}\left(\left\{\mathrm{z} \in \mathbb{C} \left\lvert\, \mathrm{K}_{\mu}(\mathrm{z})=\frac{1+|\mu(\mathrm{z})|}{1-|\mu(\mathrm{z})|}>\mathrm{K}\right.\right\}\right) \leq \mathrm{CM}^{\nu} \mathrm{e}^{-\alpha \nu \mathrm{K}}$
and $\mu=0$ on a neighbourhood of ∞.

Integrating μ

We may hence integrate μ and proceed as usual. We let $\phi:(\overline{\mathbb{C}}, \mu) \longrightarrow(\overline{\mathbb{C}}, 0)$ be an integrating homeomorphism for μ normalized by $\phi(\infty)=\infty, \phi(0)=0$ and $\phi(1)=-\lambda_{\theta} / 2$.

We define $P(z)=\phi \circ F \circ \phi^{-1}$ and we want to check that P is holomorphic.
We need to check that $\phi \circ F \in W_{\text {loc }}^{1,1}(\overline{\mathbb{C}} \backslash\{1\})$ so that both ϕ and $\phi \circ F$ solve the Beltrami equation for μ and thus $\phi \circ F=P \circ \phi$ with P holomorphic.

$\phi \circ F \in W_{\mathrm{loc}}^{1,1}(\overline{\mathbb{C}} \backslash\{1\})$

On $\overline{\mathbb{C}} \backslash \overline{\mathbb{D}}: F=f$ is holomorphic so that $\phi \circ F \in W_{\operatorname{loc}}^{1,1}(\overline{\mathbb{C}} \backslash \overline{\mathbb{D}})$. On \mathbb{D} we have $F=H^{-1} \circ R_{\theta} \circ H$ and thus

$$
\phi \circ F=\phi \circ H^{-1} \circ R_{\theta} \circ H .
$$

But both ϕ and H integrate μ on \mathbb{D} so that $\phi \circ H^{-1}$ is holomorphic. Hence $\phi \circ F$ on \mathbb{D} equals the post composition of H with a conformal map. Hence also $\phi \circ F \in W_{\text {loc }}^{1,1}(\mathbb{D})$. Finally we just need to check that if ψ is a homeomorphism on some domain U, L is a line through U and $\psi \in W_{\mathrm{loc}}^{1,1}(U \backslash L)$ then infact $\psi \in W_{\mathrm{loc}}^{1,1}(U)$. This is a fun little exercise.

Proof completion

To complete the proof define $J_{F}=\partial \Lambda_{0}(\infty)$.
Note that $\phi\left(J_{F}\right)=J_{P}$.
The remainder of the theorem follows from
Theorem 8. (P) For every $\theta \in[0,1] \backslash \mathbb{Q}$ the set J_{F} is locally connected and of zero area.

Let me conclude we a few problem suggestions:

Similar applications?

Is it true that:

Question 1. For almost all θ, any cubic polynomial
$P_{\theta, a}(z)=\lambda_{\theta} z+a z^{2}+z^{3}$ has a Siegel disk $\Delta_{\theta, a}$ whose boundary contains at least one and in particular cases both the finite critical points of $P_{\theta, a}$?

Question 2. For almost all $0<\theta, \tau<1$ with $\theta+\tau \neq 1$ the quadratic rational map

$$
R_{\theta, \tau}(z)=z \frac{z+\lambda_{\theta}}{1+\lambda_{\tau} z}
$$

has Jordan Siegel disks with disjoint closure $\Delta_{\theta, \tau}^{0}$ and $\Delta_{\theta, \tau}^{\infty}$ around zero and ∞ respectively, and with each Jordan boundary containing a critical point?

Questions II

Question 3. Is there a wider condition than a) and b) below for which the same statement, holds, except with $t-q-c$ instead of $q-c$?
Suppose the Blaschke product B restricts to an o-p degree $d \geq 2$ covering $B: \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}$ and that
a) no critical point $c \in \mathbb{S}^{1}$ for B is recurrent to a critical point on \mathbb{S}^{1},
b) every periodic point for B on \mathbb{S}^{1} is repelling.

Then there exists a rational map R and an o-p q-c homeomorphism $\phi: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ such that

$$
\phi \circ B=R \circ \phi: \overline{\mathbb{C}} \backslash \mathbb{D} \longrightarrow \overline{\mathbb{C}}
$$

and $\Lambda=\phi(\mathbb{D})$ is a super attracting basin for R on which R is conformally conjugate to z^{d}.

Questions III

Is it true that

Question 4. For almost all irrational θ the parabolic quadratic polynomial $Q_{\frac{1}{4}}(z)=z^{2}+\frac{1}{4}$ has a virtual-Siegel disk Δ with rotation number θ and Jordan boundary containing the critical point?

Is it true that
Question 5. For almost all irrational θ the map $\lambda_{\theta} \sin z$ has a Siegel disk Δ_{θ} with Jordan boundary containing the two nearest critical points $\pm \pi / 2$, but none of the others?

