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Introduction

Magic Lecture 1:
Cut and Past surgery using interpolations.

Magic Lecture 2:
Quasi-conformal massage, -maps on drugs -.

Magic Lecture 3:
Quasi-conformal surgery using real conjugacies.

Magic Lecture 4:
Trans-quasi-conformal surgery.
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Wringing and stretching

Wringing and stretching the complex structure
Let s ∈ H+ and define l̃s : C −→ C by

l̃s(z) =
1

2
(s + 1)z +

1

2
(s − 1)z = (s − 1)zx + z = szx + izy,

where z = zx + izy. Or written as an R-linear selfmap of R
2:

l̃s

(
zx

zy

)
=

(
sx 0

sy 1

)(
zx

zy

)
.

Evidently l̃s is an o-p q-c homeo with constant dilatation

µ̃s(z) = µ̃s =
s − 1

s + 1
.
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Wringing and Stretching II

Being an R-linear map l̃s(z) = szx + izy commutes with real
multiplication and conjugates translation by Λ ∈ C to
translation by l̃s(Λ):

C
z 7→rz
−−−→ C

els

y
yels

C
z 7→rz
−−−→ C.

C
z 7→z+Λ
−−−−−→ C

els

y
yels

C
z 7→z+els(Λ)
−−−−−−−→ C.

Furthermore l̃s(iy) = iy, and l̃s(x) = sx and thus

l̃s(iR) = iR, l̃s(R) = sR and l̃s(R + iy) = sR + iy.
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Wringing and Stretching III

For s ∈ H+ consider likewise the map ls : C −→ C given by

ls(z) = z · |z|s−1 =
z

|z|
|z|s

An easy computation shows that

C
els−−−→ C

ez

y
yez

C
∗ ls−−−→ C

∗.

.
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Wringing and Stretching IV

It immediately follows that ls:

a) is an o-p q-c homeo with a coherent dilatation given by

µs(z) =
z

z

s − 1

s + 1
=

log′(z)

log′ z
· µ̃s(log(z)).

b) fixes pointwise the unit circle and maps the radial line
exp(R + iy) to the logaritmic spiral exp(sR + iy),

c) commutes with z 7→ zd for d ∈ N and conjugates
multiplication by λ ∈ C

∗ to multiplication by ls(λ).

d) for any z the map s 7→ µs(z) is holomorphic (Möbius).
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Wringing and Stretching V

We define a Lie-group structure ? on H+ by requirering that
the map s 7→ ls is a contravariant group homomorphism,
that is

ls?s′ = ls′ ◦ ls.

An easy computation shows that this amounts to

s ? s′ = s′xsx + i(s′ysx + sy)

= sxs′ + isy

= ls′(s)

When stressing this group structure we shall write R for H+.
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Wringing and Stretching VI

The Lie-group (R, ?) is non-commutative, but it is generated
by the two one-dimensional commutative subgroups:

Stretch: (S, ?) = (R+, ?) and

Wring: (W , ?) = (1 + iR, ?).

These two subgroups act on R from left by multiplication
and by addition of the imaginary part repsectively:

s = sx ∈ S, s′ ∈ R ⇒ s ? s′ = ss′,

w = 1 + iwy ∈ W , s′ ∈ R ⇒ w ? s′ = s′ + iwy.
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Druging a map with an attracting orbit

Theorem 1 (Douady and Hubbard). For any hyperbolic component H
of the Mandelbrotset M the multiplier map λ : H −→ D for the
associated attracting periodic orbit is an isomorphism

Theorem 2 (Eremenko and Lyubich). For any hyperbolic component
H of the exponential family Eκ(z) = exp(z + κ) the multiplier map
λ : H −→ D

∗ for the associated attracting periodic orbit is a universal
covering map.
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Druging II

Common features:

In both cases we can define a group action by (R, ?) on the
subset of H consisting of parameters for which the
multiplier map is non-zero.

In the quadratic case let H∗ denote H deprived of its
center(s). Applying this action to a fixed parameter in H∗

defines a surjective and periodic map onto H∗. Passing to a
quotient space essentially yields the result.

In the exponential case applying this action to any
parameter yields an injective and surjective map and hence
the result.
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The action

Initially you may choose to think of f1 as either a quadratic
polynomial Qc or an exponetial map fκ.
Suppose fk

1 (z1) = z1 and (fk
1 )

′
(z1) = λ1 ∈ D

∗.
Let Λ1 denote the immediate basin of z1. We shall assume
the singular (0)/ critical (c1) value belongs to Λ1.
Let φ1 : Λ1 −→ C denote the linearizer say normalized by
φ1(0) = λ1 (exponential) / φ1(c1) = λ1 (quadratic).
For s ∈ R let σs denote the unique f∗

1 invariant almost
complex structure, which satisfies:

σs = (ls ◦φ1)
∗(σ0) on Λ1,

σs = σ0 on C \ ∪n≥0f
−n
1 (Λ1)
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The action II

Let hs : C −→ C be an integrating o-p q-c homeomorphism
for σs.

As normalization conditions we take hs(∞) = ∞ and
hs(0) = 0 in both cases, however:

If f1(z) = exp(z + κ1) we demand hs(i2π) = i2π.

If f1(z) = z2 + c1 we demand hs(z)/z → 1 as z → ∞. In the
later case we find easily that

fs(z) := hs ◦ f1 ◦ h−1
s = z2 + cs, where cs = hs(c1).
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The action III

In the first exponential case we need first to realize that σs

satisfies σs(z + i2π) = σs(z), in order to conclude that
hs(z + i2π) = hs(z) + i2π. Then it follows easily that

fs(z) := hs ◦ f1 ◦ h−1
s = hs(e

κ1) · ez.

Taking κs = log(hs(e
κ1)) to be the unique continuous and

thus holomorphic choice of logarithm sending 1 to κ1, we
have

fs(z) = exp(z + κs).
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The action IV

We have holomorphic mappings into parameter spaces
s 7→ κs, cs : H+ → C such that

fk
s (zs) = zs := hs(z1), and (fk

s )
′
(zs) = λs = ls(λ).

Where either

fs(z) = exp(z + κs) or fs(z) = z2 + cs.

These mappings into parameterspaces are in fact group
actions on H∗:

∀s, s′ ∈ R : κs?s′ = (κs)s′ , and cs?s′ = (cs)s′ .
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Exploiting the group action

Notice first that by the group action if some map g1 = fs for
some s ∈ R, then gs−1 = f1 and the two group action image
sets are equal:

{fs|s ∈ R} = {gs|s ∈ R}.

Moreover this set is a neighbourhood of f1 (and of g1).
Since H∗ is connected it follows that

H∗ = {fs|s ∈ R}

Secondly by the group action and the above it suffices to
consider the case λ1 = e−1 so that

λs = ls(λ1) = e−s.
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Exploiting the group action II

Thirdly by the group action property if fs′ = fs for some
s 6= s′ ∈ R then fs′?s−1 = f1 and hence
s1 = s′ ? s−1 = 1 + n2πi for some n ∈ Z

∗ as
e−1 = λ1 = λs0

= e−s0 .

Moreover fs = fs1?s for all s ∈ R. Suppose s1 = 1 + n2πi

satisfies fs = fs1?s for all s ∈ R. Then sk = sk?
1 = 1 + kn2πi

also satisfies fs = fsk?s for all s ∈ R.

Thus we can suppose s1 = 1 + n2πi with n ∈ N minimal.
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Exploiting the group action II

Then the surjective, holomorphic and n2πi periodic map
s 7→ fs from H+ to H∗ descends to a biholomorphic map
F = w 7→ f̂w : Dstar → H∗ given by f̂w = f−n log w and the
multiplier map λ on H∗ is the n-fold covering (F−1)n of D

∗.

In the case of quadratic polynomials one can prove that the
above holds with n = 1 so that the multiplier map is an
isomorphism and extends to a biholomorphic map of H
onto D.

In the case of the exponential family, which we shall pursue
here we need to prove that there is no n such that fs1

= f1

with s1 = 1 + n2πi:
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Proof of Eremenko-Lyubich Th.

Suppose to the contrary that for some n ∈ N

fs1
= f1 with s1 = 1 + n2πi.

Then by the above there is a biholomorphic map
K : D

∗ −→ H such that EK(w) = exp(z + K(w)) = f−n log w

has a k-periodic orbit of mulitplier wn.

That is H is a punctured disk with puncture κ0 ∈ C. Let us
first notice that for any κ > 0, the singular value 0 of Eκ

iterates to ∞ so that R+ ∩ H = ∅. Thus κ0 6= ∞.
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Proof of Eremenko-Lyubich Th. II

Let z0(κ), . . . zk−1(κ) denote the attracting k-periodic orbit of
Eκ, κ ∈ H. As κ approaches κ0 the multiplier of this orbit
converge to 0 by the above.

Hence some point say z0(κ) converges to 0 and
<(zk−1(κ)) → −∞. However by continuity

zk−1(κ) = Ek−1
κ (z0(κ)) → Ek−1

κ0
(0) ∈ C, as κ → κ0.

Thus s 7→ fs is injective in the exponential case.

That is s 7→ κ(s) : H+ → H is biholomorphic and the
multiplier map λ(κ) = e−s(κ) is a universal covering.
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