Holomorphic Dynamics,
Lecture IV
L. Rempe

Singular values

Quadratic polynomials

An Introduction to Hölomorphic Dynamics

V. Singular values / The Mandelbrot set

Liverpool, January 2008
Department of Mathematical Sciences,
" University of Liverpool

Holomorphic Dynamics, Lecture IV
L. Rempe

Singular values

Quadratic polynomials

The
exponential family

(9) Singular values

Holomorphic Dynamics, Lecture IV
L. Rempe

Singular values

Quadratic polynomials

The
exponential family

(1) Singular values

(2) Quadratic polynomials
(3) The exponential famil)

Outline

Holomorphic Dynamics, Lecture IV
L. Rempe

Singular values

Quadratic polynomials

The

exponential family
(9) Singular values
(2) Quadratic polynomials
(3) The exponential family

Outline
,

Singular values

The set sing $\left(f^{-1}\right)$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if $v=f(c), f^{\prime}(c)=0$.
- a is an asymptotic value if

- $S(f):=\overline{\operatorname{sing}\left(f^{-1}\right)}$ is the set of singular values

Singular values

The set sing $\left(f^{-1}\right)$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if $v=f(c), f^{\prime}(c)=0$.
- a is an asymptotic value if

$$
\begin{aligned}
& \text { there is a curve } \gamma:(0,1] \rightarrow \mathbb{C} \text { such that } \\
& \lim _{t \rightarrow 0}|\gamma(t)|=\infty \text { and } \lim _{t \rightarrow 0} f(\gamma(t))=a
\end{aligned}
$$

- $S(f):=\overline{\operatorname{sing}\left(f^{-1}\right)}$ is the set of singular values

Singular values

The set $\operatorname{sing}\left(f^{-1}\right)$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if $v=f(c), f^{\prime}(c)=0$.
- a is an asymptotic value if

Singular values

The set sing $\left(f^{-1}\right)$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if $v=f(c), f^{\prime}(c)=0$.
- a is an asymptotic value if

$$
\begin{aligned}
& \text { there is a curve } \gamma:(0,1] \rightarrow \mathbb{C} \text { such that } \\
& \lim _{t \rightarrow 0}|\gamma(t)|=\infty \text { and } \lim _{t \rightarrow 0} f(\gamma(t))=\boldsymbol{a} \text {. }
\end{aligned}
$$

- $S(f):=\overline{\operatorname{sing}\left(f^{-1}\right)}$ is the set of singular values

Holomorphic
Dynamics,
Lecture IV
L. Rempe

Singular values

Quadratic
polynomials
The
exponential family

The postsingular set

All inverse branches of all iterates are defined outside the postsingular set.

Holomorphic
Dynamics,
Lecture IV
L. Rempe

Singular values

Quadratic polynomials

The
exponential family

The postsingular set

$$
\boldsymbol{T}(f):=\overline{\bigcup_{n \geq 0} f^{n}(S(f))} .
$$

All inverse branches of all iterates are defined outside the postsingular set.

Holomorphic
Dynamics,
Lecture IV
L. Rempe

Singular values and the Fatou set

- Attracting, superattracting, parabolic domains contain a singular value.
(In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

Singular values and the Fatou

 setSingular values family

- Attracting, superattracting, parabolic domains contain a singular value.
(In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

Singular values and the Fatou

 setSingular values

- Attracting, superattracting, parabolic domains contain a singular value.
(In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

Singular values and the Fatou

 set- Attracting, superattracting, parabolic domains contain a singular value.
(In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

Singular values and the Fatou

 set- Attracting, superattracting, parabolic domains contain a singular value.
(In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

Singular values and the Fatou

 set- Attracting, superattracting, parabolic domains contain a singular value.
(In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

Holomorphic Dynamics, Lecture IV L. Rempe

Singular values

The Fatou-Shishikura inequality

Theorem V.1.1 (Fatou-Shishikura inequality)

The number of nonrepelling cycles is bounded by the number of singular values.

Finite-type maps

Finite-type maps provide a natural generalization of rational functions, entire functions with finitely many singular values, meromorphic functions with finitely many singular values,

Holomorphic
Dynamics,
Lecture IV
L. Rempe

Singular values

Quadratic polynomials

Quadratic polynomials

```
\[
z \mapsto \alpha z^{2}+\beta z+\gamma, \quad \alpha \neq 0
\]
- Only one singular value.
- Normalize near infinity, move critical point to zero:
- \(K_{c}:=K\left(f_{c}\right)=\left\{z \in \mathbb{C}: f^{n}(z) \nrightarrow \infty\right\}\)
```


Holomorphic Dynamics, Lecture IV
L. Rempe

Quadratic polynomials

$$
z \mapsto \alpha z^{2}+\beta z+\gamma, \quad \alpha \neq 0
$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

Holomorphic
Dynamics,
Lecture IV
L. Rempe

Quadratic polynomials

$$
z \mapsto \alpha z^{2}+\beta z+\gamma, \quad \alpha \neq 0
$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

$$
f_{c}: z \mapsto z^{2}+c .
$$

Holomorphic
Dynamics,
Lecture IV
L. Rempe

Quadratic polynomials

$$
z \mapsto \alpha z^{2}+\beta z+\gamma, \quad \alpha \neq 0
$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

$$
f_{c}: z \mapsto z^{2}+c .
$$

- $K_{c}:=K\left(f_{c}\right)=\left\{z \in \mathbb{C}: f^{n}(z) \nrightarrow \infty\right\}$

Holomorphic
Dynamics, Lecture IV
L. Rempe

Quadratic polynomials

$$
z \mapsto \alpha z^{2}+\beta z+\gamma, \quad \alpha \neq 0
$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

$$
f_{c}: z \mapsto z^{2}+c .
$$

- $K_{c}:=K\left(f_{c}\right)=\left\{z \in \mathbb{C}: f^{n}(z) \nrightarrow \infty\right\}$
- $J_{c}=\partial K_{c}$.

Holomorphic Dynamics, Lecture IV
L. Rempe

Singular values

Quadratic polynomials

Connectivity of $J\left(f_{c}\right)$

Theorem V.2. 1

(1) If $c \in K_{c}$, then the Böttcher map ϕ_{c} extends to a conformal isomorphism

$$
\phi_{c}: \mathbb{C} \backslash K_{c} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}} .
$$

In particular, K_{c} is connected.
(2) If $c \notin K_{c}$, then there is a unique maximal domain U such that ϕ_{c} extends to U and $\phi_{c}(U)$ is the outside of some closed disk.
U contains c, and ∂U is a "figure-eight curve" symmetric around 0 .

Holomorphic Dynamics, Lecture IV
L. Rempe

Singular values

Quadratic polynomials

Connectivity of $J\left(f_{c}\right)$

Theorem V.2. 1

(1) If $c \in K_{c}$, then the Böttcher map ϕ_{c} extends to a conformal isomorphism

$$
\phi_{c}: \mathbb{C} \backslash K_{c} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}} .
$$

In particular, K_{c} is connected.
(2) If $c \notin K_{c}$, then there is a unique maximal domain U such that ϕ_{c} extends to U and $\phi_{c}(U)$ is the outside of some closed disk.
U contains c, and ∂U is a "figure-eight curve" symmetric around 0 .

Holomorphic Dynamics, Lecture IV
L. Rempe

Connectivity of $J\left(f_{c}\right)$

Theorem V.2. 1

(1) If $c \in K_{c}$, then the Böttcher map ϕ_{c} extends to a conformal isomorphism

$$
\phi_{c}: \mathbb{C} \backslash K_{c} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}} .
$$

In particular, K_{c} is connected.
(2) If $c \notin K_{c}$, then there is a unique maximal domain U such that ϕ_{c} extends to U and $\phi_{c}(U)$ is the outside of some closed disk.
U contains c, and ∂U is a "figure-eight curve"
symmetric around 0 .

Holomorphic

Theorem V.2. 1

(1) If $c \in K_{c}$, then the Böttcher map ϕ_{c} extends to a conformal isomorphism

$$
\phi_{c}: \mathbb{C} \backslash K_{c} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}} .
$$

In particular, K_{c} is connected.
(2) If $c \notin K_{c}$, then there is a unique maximal domain U such that ϕ_{c} extends to U and $\phi_{c}(U)$ is the outside of some closed disk.
U contains c, and ∂U is a "figure-eight curve" symmetric around 0 .

Holomorphic Dynamics, Lecture IV L. Rempe

Singular values

Quadratic polynomials

The
exponential family

The Mandelbrot set

$$
\mathcal{M}:=\left\{c \in \mathbb{C}: f_{c}^{n}(c) \nrightarrow \infty\right\} .
$$

Lemma V.2.2

(1) \mathcal{M} is compact.
(2) In fact,

$$
\mathcal{M}=\left\{c \in \mathbb{C}:\left|f_{c}^{n}(c)\right| \leq 2 \text { for all } n \geq 0\right\} .
$$

(3) $\mathcal{M} \cap \mathbb{R}=[-2,1 / 4]$.
(4) $\mathbb{C} \backslash \mathcal{M}$ is connected. In particular, every component of $\operatorname{int}(\mathcal{M})$ is simply-connected.

Holomorphic Dynamics,
Lecture IV
L. Rempe

Singular values

Quadratic polynomials

The Mandelbrot set

$$
\mathcal{M}:=\left\{c \in \mathbb{C}: f_{c}^{n}(c) \nrightarrow \infty\right\}
$$

Lemma V.2.2

(1) \mathcal{M} is compact.
(2) In fact,

$$
\mathcal{M}=\left\{c \in \mathbb{C}:\left|f_{c}^{n}(c)\right| \leq 2 \text { for all } n \geq 0\right\}
$$

4) $\mathbb{C} \backslash \mathcal{M}$ is connected. In particular, every component of $\operatorname{int}(\mathcal{M})$ is simply-connected.

Holomorphic Dynamics,
Lecture IV
L. Rempe

Singular values

Quadratic polynomials

The Mandelbrot set

$$
\mathcal{M}:=\left\{c \in \mathbb{C}: f_{c}^{n}(c) \nrightarrow \infty\right\}
$$

Lemma V.2.2

(1) \mathcal{M} is compact.
(2) In fact,

$$
\mathcal{M}=\left\{c \in \mathbb{C}:\left|f_{c}^{n}(c)\right| \leq 2 \text { for all } n \geq 0\right\} .
$$

(3) $\mathcal{M} \cap \mathbb{R}=[-2,1 / 4]$.
(4) $\mathbb{C} \backslash \mathcal{M}$ is connected. In particular, every component of $\operatorname{int}(\mathcal{M})$ is simply-connected.

Holomorphic Dynamics, Lecture IV
L. Rempe

The Mandelbrot set

$$
\mathcal{M}:=\left\{c \in \mathbb{C}: f_{c}^{n}(c) \nrightarrow \infty\right\}
$$

Lemma V.2.2

(1) \mathcal{M} is compact.
(2) In fact,

$$
\mathcal{M}=\left\{c \in \mathbb{C}:\left|f_{c}^{n}(c)\right| \leq 2 \text { for all } n \geq 0\right\}
$$

(3) $\mathcal{M} \cap \mathbb{R}=[-2,1 / 4]$.
(4) $\mathbb{C} \backslash \mathcal{M}$ is connected. In particular, every component of $\operatorname{int}(\mathcal{M})$ is simply-connected.

Holomorphic Dynamics, Lecture IV
L. Rempe

Singular

 valuesQuadratic polynomials

The
 exponential

 family
Connectivity

Theorem V.2.3 (Douady-Hubbard)

The map

$$
\Phi: \mathbb{C} \backslash \mathcal{M} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}}, \quad c \mapsto \phi_{c}(c)
$$

is a conformal isomorphism.
In particular, \mathcal{M} is connected.

Holomorphic Dynamics, Lecture IV
L. Rempe

Singular

 values
Connectivity

Theorem V.2.3 (Douady-Hubbard)

The map

$$
\Phi: \mathbb{C} \backslash \mathcal{M} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}}, \quad c \mapsto \phi_{c}(c)
$$

is a conformal isomorphism. In particular, \mathcal{M} is connected.

```
Holomorphic
    Dynamics,
    Lecture IV
    L. Rempe
Singular
values
Quadratic
polynomials
The
exponential
family
```

- External rays, puzzles, ...
- Renormalization, tuning.
- Density of hyperbolicity, local connectivity.

```
Holomorphic
    Dynamics,
    Lecture IV
    L. Rempe
Singular
values
Quadratic
polynomials
The
exponential
family
- External rays, puzzles, ...
- Renormalization, tuning.
- Density of hyperbolicity, local connectivity.
```

```
Holomorphic

\section*{Outlook}
```

L. Rempe

- External rays, puzzles, ...
- Renormalization, tuning.
- Density of hyperbolicity, local connectivity.

```

Holomorphic
Dynamics,
Lecture IV
L. Rempe

Singular values

Quadratic
polynomials

\section*{The}
exponential family

\section*{The exponential family}
\[
z \mapsto \exp (z)+\kappa
\]


Holomorphic
Dynamics,
Lecture IV
L. Rempe

\section*{Singular} values

Quadratic
polynomials
The exponential family

\section*{Dynamic rays}


Holomorphic
Dynamics，
Lecture IV

\section*{Parameter rays} values

Quadratic
polynomials
The
exponential family
```

