L. Rempe

Singular values

Quadratic polynomials

The exponentia family

-6

An Introduction to Holomorphic Dynamics V. Singular values / The Mandelbrot set

L. Rempe

Department of Mathematical Sciences, University of Liverpool

Liverpool, January 2008

L. Rempe

Singular values

Quadratic polynomials

The exponentia family Singular values

2 Cladratic polynomials

3 The exponential family

Outline

L. Rempe

Singular values

Quadratic polynomials

The exponentia family Singular values

Quadratic polynomials

3 The exponential family

Outline

L. Rempe

Singular values

Quadratic polynomials

The exponentia family Singular values

2 Quadratic polynomials

The exponential family

Outline

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values

The set $sing(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if v = f(c), f'(c) = 0.
- *a* is an asymptotic value if

there is a curve $\gamma : (0, 1] \to \mathbb{C}$ such that $\lim_{t\to 0} |\gamma(t)| = \infty$ and $\lim_{t\to 0} f(\gamma(t)) = a$.

• $S(f) := \overline{\operatorname{sing}(f^{-1})}$ is the set of singular values

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values

The set $sing(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if v = f(c), f'(c) = 0.
- a is an asymptotic value if

there is a curve $\gamma : (0, 1] \to \mathbb{C}$ such that $\lim_{t\to 0} |\gamma(t)| = \infty$ and $\lim_{t\to 0} f(\gamma(t)) = a$.

• $S(f) := \overline{\operatorname{sing}(f^{-1})}$ is the set of singular values

L. Rempe

Singular values

Quadratic polynomials

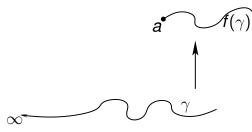
The exponentia family

Singular values

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The set $sing(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if v = f(c), f'(c) = 0.
- a is an asymptotic value if



L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The set $sing(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- v is a critical value if v = f(c), f'(c) = 0.
- a is an asymptotic value if

there is a curve $\gamma : (0, 1] \to \mathbb{C}$ such that $\lim_{t\to 0} |\gamma(t)| = \infty$ and $\lim_{t\to 0} f(\gamma(t)) = a$.

• $S(f) := \overline{\operatorname{sing}(f^{-1})}$ is the set of singular values

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

The postsingular set

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$\P(f):=\overline{\bigcup_{n\geq 0}f^n(\mathcal{S}(f))}.$$

All inverse branches of all iterates are defined outside the postsingular set.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

The postsingular set

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\P(f):=\overline{\bigcup_{n\geq 0}f^n(\mathcal{S}(f))}.$$

All inverse branches of all iterates are defined outside the postsingular set.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values and the Fatou set

- Attracting, superattracting, parabolic domains contain a singular value.
 - (In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values and the Fatou set

- Attracting, superattracting, parabolic domains contain a singular value.
 (In fact, a critical point or an asymptotic path.)
- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values and the Fatou set

• Attracting, superattracting, parabolic domains contain a singular value.

- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values and the Fatou set

• Attracting, superattracting, parabolic domains contain a singular value.

- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values and the Fatou set

• Attracting, superattracting, parabolic domains contain a singular value.

- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Singular values and the Fatou set

• Attracting, superattracting, parabolic domains contain a singular value.

- Boundaries of rotation domains are contained in the postsingular set.
- Limit functions in wandering domains are contained in the derived set of the postsingular set.
- Functions with finitely many singular values do not have wandering domains.
- Functions with finitely many singular values do not have Baker domains.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

The Fatou-Shishikura inequality

Theorem V.1.1 (Fatou-Shishikura inequality)

The number of nonrepelling cycles is bounded by the number of singular values.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L. Rempe

Singular values

Quadratic polynomials

The exponential family

Finite-type maps

Finite-type maps provide a natural generalization of rational functions, entire functions with finitely many singular values, meromorphic functions with finitely many singular values,

. . .

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Quadratic polynomials

$$z \mapsto \alpha z^2 + \beta z + \gamma, \quad \alpha \neq \mathbf{0}$$

• Only one singular value.

• Normalize near infinity, move critical point to zero:

$$f_c: z \mapsto z^2 + c.$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

•
$$K_c := K(f_c) = \{z \in \mathbb{C} : f^n(z) \not\to \infty\}$$

• $J_c = \partial K_c$.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Quadratic polynomials

$$z \mapsto \alpha z^2 + \beta z + \gamma, \quad \alpha \neq \mathbf{0}$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

$$f_c: z \mapsto z^2 + c.$$

•
$$K_c := K(f_c) = \{z \in \mathbb{C} : f^n(z) \not\to \infty\}$$

• $J_c = \partial K_c$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Quadratic polynomials

$$z \mapsto \alpha z^2 + \beta z + \gamma, \quad \alpha \neq \mathbf{0}$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

$$f_c: z \mapsto z^2 + c.$$

•
$$K_c := K(f_c) = \{z \in \mathbb{C} : f^n(z) \not\to \infty\}$$

• $J_c = \partial K_c$.

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ●の≪で

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Quadratic polynomials

$$z \mapsto \alpha z^2 + \beta z + \gamma, \quad \alpha \neq \mathbf{0}$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

$$f_c: z \mapsto z^2 + c.$$

•
$$K_c := K(f_c) = \{z \in \mathbb{C} : f^n(z) \not\to \infty\}$$

• $J_c = \partial K_c$.

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Quadratic polynomials

$$z \mapsto \alpha z^2 + \beta z + \gamma, \quad \alpha \neq \mathbf{0}$$

- Only one singular value.
- Normalize near infinity, move critical point to zero:

$$f_c: z \mapsto z^2 + c.$$

•
$$K_c := K(f_c) = \{z \in \mathbb{C} : f^n(z) \not\to \infty\}$$

• $J_c = \partial K_c$.

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Connectivity of $J(f_c)$

Theorem V.2.1

If c ∈ K_c, then the Böttcher map φ_c extends to a conformal isomorphism

$\phi_{\mathbf{c}}: \mathbb{C} \setminus \mathbf{K}_{\mathbf{c}} \to \mathbb{C} \setminus \overline{\mathbb{D}}.$

In particular, K_c is connected.

2 If c ∉ K_c, then there is a unique maximal domain U such that φ_c extends to U and φ_c(U) is the outside of some closed disk. U contains c, and ∂U is a "figure-eight curve" symmetric around 0.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Connectivity of $J(f_c)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem V.2.1

If c ∈ K_c, then the Böttcher map φ_c extends to a conformal isomorphism

$\phi_{\mathbf{c}}: \mathbb{C} \setminus \mathbf{K}_{\mathbf{c}} \to \mathbb{C} \setminus \overline{\mathbb{D}}.$

In particular, K_c is connected.

If c ∉ K_c, then there is a unique maximal domain U such that φ_c extends to U and φ_c(U) is the outside of some closed disk.
 U contains c, and ∂U is a "figure-eight curve" symmetric around 0.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Connectivity of $J(f_c)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem V.2.1

● If $c \in K_c$, then the Böttcher map ϕ_c extends to a conformal isomorphism

 $\phi_{\mathbf{c}}: \mathbb{C} \setminus \mathbf{K}_{\mathbf{c}} \to \mathbb{C} \setminus \overline{\mathbb{D}}.$

In particular, K_c is connected.

If c ∉ K_c, then there is a unique maximal domain U such that φ_c extends to U and φ_c(U) is the outside of some closed disk.

U contains c, and ∂U is a "figure-eight curve" symmetric around 0.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

Connectivity of $J(f_c)$

Theorem V.2.1

If c ∈ K_c, then the Böttcher map φ_c extends to a conformal isomorphism

 $\phi_{\mathbf{c}}: \mathbb{C} \setminus \mathbf{K}_{\mathbf{c}} \to \mathbb{C} \setminus \overline{\mathbb{D}}.$

In particular, K_c is connected.

If c ∉ K_c, then there is a unique maximal domain U such that φ_c extends to U and φ_c(U) is the outside of some closed disk.
 U contains c, and ∂U is a "figure-eight curve" symmetric around 0.

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

The Mandelbrot set

$$\mathcal{M} := \{ \boldsymbol{c} \in \mathbb{C} : f_{\boldsymbol{c}}^{\boldsymbol{n}}(\boldsymbol{c}) \not\rightarrow \infty \}.$$

Lemma V.2.2

M is compact.

In fact,

 $\mathcal{M} = \{ \boldsymbol{c} \in \mathbb{C} : |f_{\boldsymbol{c}}^{\boldsymbol{n}}(\boldsymbol{c})| \leq 2 \text{ for all } \boldsymbol{n} \geq 0 \}.$

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

The Mandelbrot set

$$\mathcal{M} := \{ \boldsymbol{c} \in \mathbb{C} : f_{\boldsymbol{c}}^{\boldsymbol{n}}(\boldsymbol{c}) \not\rightarrow \infty \}.$$

Lemma V.2.2

M is compact.

In fact,

 $\mathcal{M} = \{ \textbf{\textit{c}} \in \mathbb{C} : |f_{\textbf{\textit{c}}}^{\textit{n}}(\textbf{\textit{c}})| \leq 2 \text{ for all } n \geq 0 \}.$

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

The Mandelbrot set

$$\mathcal{M} := \{ \boldsymbol{c} \in \mathbb{C} : f_{\boldsymbol{c}}^{\boldsymbol{n}}(\boldsymbol{c}) \not\rightarrow \infty \}.$$

Lemma V.2.2

M is compact.

In fact,

 $\mathcal{M} = \{ \textbf{\textit{c}} \in \mathbb{C} : |f_{\textbf{\textit{c}}}^{\textbf{\textit{n}}}(\textbf{\textit{c}})| \leq 2 \text{ for all } \textbf{\textit{n}} \geq 0 \}.$

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

The Mandelbrot set

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\mathcal{M} := \{ \boldsymbol{c} \in \mathbb{C} : f_{\boldsymbol{c}}^{\boldsymbol{n}}(\boldsymbol{c}) \not\rightarrow \infty \}.$$

Lemma V.2.2

M is compact.

In fact,

 $\mathcal{M} = \{ \boldsymbol{c} \in \mathbb{C} : |f_{\boldsymbol{c}}^{\boldsymbol{n}}(\boldsymbol{c})| \leq 2 \text{ for all } \boldsymbol{n} \geq 0 \}.$

L. Rempe

Singular values

Quadratic polynomials

The exponential family

Connectivity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem V.2.3 (Douady-Hubbard)

The map

$$\Phi: \mathbb{C} \setminus \mathcal{M} \to \mathbb{C} \setminus \overline{\mathbb{D}}, \quad \boldsymbol{c} \mapsto \phi_{\boldsymbol{c}}(\boldsymbol{c})$$

is a conformal isomorphism.

In particular, *M* is connected.

L. Rempe

Singular values

Quadratic polynomials

The exponential family

Connectivity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem V.2.3 (Douady-Hubbard)

The map

$$\Phi: \mathbb{C} \setminus \mathcal{M} o \mathbb{C} \setminus \overline{\mathbb{D}}, \quad \boldsymbol{c} \mapsto \phi_{\boldsymbol{c}}(\boldsymbol{c})$$

is a conformal isomorphism. In particular, \mathcal{M} is connected.

Outlook

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Holomorphic Dynamics, Lecture IV

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

• External rays, puzzles, ...

- Renormalization, tuning.
- Density of hyperbolicity, local connectivity.

Outlook

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Holomorphic Dynamics, Lecture IV

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

- External rays, puzzles, ...
- Renormalization, tuning.
- Density of hyperbolicity, local connectivity.

Outlook

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Holomorphic Dynamics, Lecture IV

L. Rempe

Singular values

Quadratic polynomials

The exponentia family

- External rays, puzzles, ...
- Renormalization, tuning.
- Density of hyperbolicity, local connectivity.

L. Rempe

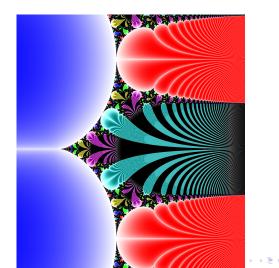
Singular values

Quadratic polynomials

The exponential family

The exponential family

$$z \mapsto \exp(z) + \kappa$$



Dynamic rays

・ロト ・聞ト ・ヨト ・ヨト

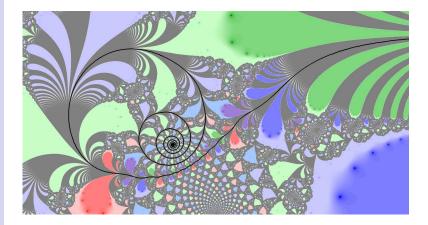
Holomorphic Dynamics, Lecture IV

L. Rempe

Singular values

Quadratic polynomials

The exponential family



Parameter rays

L. Rempe

Singular values

Quadratic polynomials

The exponential family

