L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

An Introduction to Holomorphic Dynamics III. Classification of Fatou Components

L. Rempe

Department of Mathematical Sciences, University of Liverpool

Liverpool, January 2008

L. Rempe

Classification of Fatou components (I)

- Periodic Components and Wandering Domain Classification of periodic Fatou components
- A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Classification of Fatou components (I)

- Periodic Components and Wandering Domain
- Classification of periodic Fatou components
- A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Outline

L. Rempe

Classification of Fatou components (I)

- Periodic Components and Wandering Domain Classification of periodic Fatou components
- A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Classification of Fatou components (I)

- Periodic Components and Wandering Domain
- Classification of periodic Fatou components
- A first classification

2 Some hyperbolic geometry

Classification of Fatou components (II)

Outline

L. Rempe

Classification of Fatou components (I)

- Periodic Components and Wandering Domain Classification of periodic Fatou components
- A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Classification of Fatou components (I)

- Periodic Components and Wandering Domain
- Classification of periodic Fatou components
- A first classification

2 Some hyperbolic geometry

Classification of Fatou components (II)

Outline

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Reminder

▲□▶▲□▶▲□▶▲□▶ □ のQ@

X is either the plane, the Riemann sphere, or the punctured plane.

 $f: X \rightarrow X$ is nonconstant and nonlinear.

F(f) Fatou set, J(f) Julia set

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Reminder

▲□▶▲□▶▲□▶▲□▶ □ のQ@

X is either the plane, the Riemann sphere, or the punctured plane.

 $f: X \to X$ is nonconstant and nonlinear.

F(f) Fatou set, J(f) Julia set

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

X is either the plane, the Riemann sphere, or the punctured plane.

- $f: X \rightarrow X$ is nonconstant and nonlinear.
- F(f) Fatou set, J(f) Julia set

Reminder

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Periodic and wandering components

Definition III.1.1 (Periodic and Wandering Fatou Components)

Let *U* be a connected component of the Fatou set.

If $f(U) \subset U$, then we say U is an invariant Fatou component.

If $f^n(U) \subset U$, then we say U is periodic.

③ If f^k(U) is contained in a periodic Fatou component V for some k ≥ 0, then we say that U is eventually periodic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Periodic and wandering components

Definition III.1.1 (Periodic and Wandering Fatou Components)

Let *U* be a connected component of the Fatou set.

• If $f(U) \subset U$, then we say U is an invariant Fatou component.

If $f^n(U) \subset U$, then we say U is periodic.

If f^k(U) is contained in a periodic Fatou component V for some k ≥ 0, then we say that U is eventually periodic.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Periodic and wandering components

Definition III.1.1 (Periodic and Wandering Fatou Components)

Let *U* be a connected component of the Fatou set.

• If $f(U) \subset U$, then we say U is an invariant Fatou component.

2 If $f^n(U) \subset U$, then we say U is periodic.

If f^k(U) is contained in a periodic Fatou component V for some k ≥ 0, then we say that U is eventually periodic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Periodic and wandering components

Definition III.1.1 (Periodic and Wandering Fatou Components)

Let *U* be a connected component of the Fatou set.

- If $f(U) \subset U$, then we say U is an invariant Fatou component.
- 2 If $f^n(U) \subset U$, then we say U is periodic.
- If *f^k*(*U*) is contained in a periodic Fatou component *V* for some *k* ≥ 0, then we say that *U* is eventually periodic.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Periodic and wandering components

Definition III.1.1 (Periodic and Wandering Fatou Components)

Let *U* be a connected component of the Fatou set.

- If $f(U) \subset U$, then we say U is an invariant Fatou component.
- 2 If $f^n(U) \subset U$, then we say U is periodic.
- If *f^k*(*U*) is contained in a periodic Fatou component *V* for some *k* ≥ 0, then we say that *U* is eventually periodic.
- Otherwise, *U* is called a wandering domain.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Wandering domains

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem III.1.2 (Sullivan's "No Wandering Domains" Theorem)

Rational functions have no wandering domains.

Entire functions may have wandering domains:

 $f(z)=z+\sin(2\pi z).$

Entire functions with finitely many singular values do not have wandering domains.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Wandering domains

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem III.1.2 (Sullivan's "No Wandering Domains" Theorem)

Rational functions have no wandering domains.

Entire functions may have wandering domains:

 $f(z)=z+\sin(2\pi z).$

Entire functions with finitely many singular values do not have wandering domains.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Wandering domains

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem III.1.2 (Sullivan's "No Wandering Domains" Theorem)

Rational functions have no wandering domains.

Entire functions may have wandering domains:

 $f(z)=z+\sin(2\pi z).$

Entire functions with finitely many singular values do not have wandering domains.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Attracting and parabolic domains

In the following, let U be an invariant Fatou component of f.

Definition III.1.3 (Attracting and parabolic domains)

- If $f^n|_U$ converges locally uniformly to some superattracting fixed point, then U is called a Böttcher domain.
- If fⁿ|_U converges locally uniformly to some attracting fixed point, then U is called an attracting domain.
- If $f^n|_U$ converges locally uniformly to some fixed point $z_0 \in \partial U$ of f, then U is a parabolic domain.

Theorem III.1.4 (Parabolic points)

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Attracting and parabolic domains

In the following, let U be an invariant Fatou component of f.

Definition III.1.3 (Attracting and parabolic domains)

- If fⁿ|_U converges locally uniformly to some superattracting fixed point, then U is called a Böttcher domain.
 - If fⁿ|U converges locally uniformly to some attracting fixed point, then U is called an attracting domain.
- 3 If $f^n|_U$ converges locally uniformly to some fixed point $z_0 \in \partial U$ of f, then U is a parabolic domain.

Theorem III.1.4 (Parabolic points)

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Attracting and parabolic domains

In the following, let U be an invariant Fatou component of f.

Definition III.1.3 (Attracting and parabolic domains)

- If fⁿ|_U converges locally uniformly to some superattracting fixed point, then U is called a Böttcher domain.
- 2 If $f^n|_U$ converges locally uniformly to some attracting fixed point, then *U* is called an attracting domain.

③ If fⁿ|_U converges locally uniformly to some fixed point z₀ ∈ ∂U of f, then U is a parabolic domain.

Theorem III.1.4 (Parabolic points)

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Attracting and parabolic domains

In the following, let U be an invariant Fatou component of f.

Definition III.1.3 (Attracting and parabolic domains)

- If fⁿ|_U converges locally uniformly to some superattracting fixed point, then U is called a Böttcher domain.
- 2 If $f^n|_U$ converges locally uniformly to some attracting fixed point, then *U* is called an attracting domain.
- ③ If $f^n|_U$ converges locally uniformly to some fixed point $z_0 \in \partial U$ of *f*, then *U* is a parabolic domain.

Theorem III.1.4 (Parabolic points)

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Attracting and parabolic domains

In the following, let U be an invariant Fatou component of f.

Definition III.1.3 (Attracting and parabolic domains)

- If fⁿ|_U converges locally uniformly to some superattracting fixed point, then U is called a Böttcher domain.
- 2 If $f^n|_U$ converges locally uniformly to some attracting fixed point, then *U* is called an attracting domain.
- ③ If $f^n|_U$ converges locally uniformly to some fixed point $z_0 \in \partial U$ of *f*, then *U* is a parabolic domain.

Theorem III.1.4 (Parabolic points)

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Definition III.1.5 (Rotation domains)

If U is simply connected, and f|U is conjugate to an irrational rotation, then U is a Siegel disk.

Rotation domains

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

If U is doubly connected, and $f|_U$ is conjugate to an irrational rotation, then U is a Herman ring.

$$z \mapsto e^{2\pi i \theta} z(1-z)$$
 (suitable θ).

Remark

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

Some hyperbolic geometry

Classification of Fatou components (II)

Rotation domains

(ロ) (同) (三) (三) (三) (○) (○)

Definition III.1.5 (Rotation domains)

- If U is simply connected, and f|U is conjugate to an irrational rotation, then U is a Siegel disk.
- S If U is doubly connected, and $f|_U$ is conjugate to an irrational rotation, then U is a Herman ring.

 $z \mapsto e^{2\pi i \theta} z(1-z)$ (suitable θ).

Remark

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

Some hyperbolic geometry

Classification of Fatou components (II)

Rotation domains

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Definition III.1.5 (Rotation domains)

- If U is simply connected, and f|U is conjugate to an irrational rotation, then U is a Siegel disk.
- If U is doubly connected, and f|U is conjugate to an irrational rotation, then U is a Herman ring.

$$z \mapsto e^{2\pi i \theta} z(1-z)$$
 (suitable θ).

Remark

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

Some hyperbolic geometry

Classification of Fatou components (II)

Rotation domains

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Definition III.1.5 (Rotation domains)

- If U is simply connected, and f|U is conjugate to an irrational rotation, then U is a Siegel disk.
- If U is doubly connected, and f|U is conjugate to an irrational rotation, then U is a Herman ring.

$$z \mapsto e^{2\pi i \theta} z(1-z)$$
 (suitable θ).

Remark

L. Rempe

Classification of Fatou components (I) Periodic

Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Baker domains

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Definition III.1.6

6 If $f^n|_U$ converges locally uniformly to a point where f is not defined, then U is a Baker domain.

Remark

Rational functions have no Baker domains.

 $z \mapsto z - 1 + \exp(z)$.

L. Rempe

Classification of Fatou components (I) Periodic

Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Baker domains

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition III.1.6

6 If $f^n|_U$ converges locally uniformly to a point where *f* is not defined, then *U* is a Baker domain.

Remark

Rational functions have no Baker domains.

 $z \mapsto z - 1 + \exp(z)$.

L. Rempe

Classification of Fatou components (I) Periodic

Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Baker domains

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition III.1.6

6 If $f^n|_U$ converges locally uniformly to a point where f is not defined, then U is a Baker domain.

Remark

Rational functions have no Baker domains.

 $z \mapsto z - 1 + \exp(z)$.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain

Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Classification of invariant Fatou components

Theorem III.1.7 (Classification Theorem)

Every *invariant Fatou component* of *f* falls into one of the previously discussed categories.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

A first version of the theorem

Theorem III.1.8 (Self-maps of hyperbolic domains)

Let $U \subset \mathbb{C}$ be open and connected, and assume U omits at least two points of \mathbb{C} .

et $g: U \rightarrow U$ be holomorphic. Then exactly one of the ollowing holds:

The iterates gⁿ converge locally uniformly to a (super)-attracting fixed point;

) dist ${}^{\#}(g^n(z),\partial U)
ightarrow$ 0 locally uniformly in U; or

g : U → U is a conformal isomorphism, and g^{n_k} → id for some sequence of iterates of g.

Remark

We usually think of g as the restriction of f to an invariant Fatou component U.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

A first version of the theorem

Theorem III.1.8 (Self-maps of hyperbolic domains)

Let $U \subset \mathbb{C}$ be open and connected, and assume U omits at least two points of \mathbb{C} .

Let $g: U \rightarrow U$ be holomorphic. Then exactly one of the following holds:

The iterates gⁿ converge locally uniformly to a (super)-attracting fixed point;

) dist $^{\#}(g^n(z),\partial U)
ightarrow$ 0 locally uniformly in U; or

g : U → U is a conformal isomorphism, and g^{n_k} → id for some sequence of iterates of g.

Remark

We usually think of g as the restriction of f to an invariant Fatou component U.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

A first version of the theorem

Theorem III.1.8 (Self-maps of hyperbolic domains)

Let $U \subset \mathbb{C}$ be open and connected, and assume U omits at least two points of \mathbb{C} .

Let $g: U \rightarrow U$ be holomorphic. Then exactly one of the following holds:

- The iterates gⁿ converge locally uniformly to a (super)-attracting fixed point;
- 2 dist[#]($g^n(z), \partial U$) \rightarrow 0 locally uniformly in U; or

g : U → U is a conformal isomorphism, and g^{n_k} → id for some sequence of iterates of g.

Remark

We usually think of g as the restriction of f to an invariant Fatou component U.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

A first version of the theorem

Theorem III.1.8 (Self-maps of hyperbolic domains)

Let $U \subset \mathbb{C}$ be open and connected, and assume U omits at least two points of \mathbb{C} .

Let $g: U \rightarrow U$ be holomorphic. Then exactly one of the following holds:

- The iterates gⁿ converge locally uniformly to a (super)-attracting fixed point;
- 2 dist[#]($g^n(z), \partial U$) \rightarrow 0 locally uniformly in U; or
- ③ g: U → U is a conformal isomorphism, and g^{n_k} → id for some sequence of iterates of g.

Remark

We usually think of g as the restriction of f to an invariant Fatou component U.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

A first version of the theorem

Theorem III.1.8 (Self-maps of hyperbolic domains)

Let $U \subset \mathbb{C}$ be open and connected, and assume U omits at least two points of \mathbb{C} .

Let $g: U \rightarrow U$ be holomorphic. Then exactly one of the following holds:

- The iterates gⁿ converge locally uniformly to a (super)-attracting fixed point;
- 2 dist[#]($g^n(z), \partial U$) \rightarrow 0 locally uniformly in U; or
- ③ g: U → U is a conformal isomorphism, and g^{n_k} → id for some sequence of iterates of g.

Remark

We usually think of g as the restriction of f to an invariant Fatou component U.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

A first version of the theorem

Theorem III.1.8 (Self-maps of hyperbolic domains)

Let $U \subset \mathbb{C}$ be open and connected, and assume U omits at least two points of \mathbb{C} .

Let $g: U \rightarrow U$ be holomorphic. Then exactly one of the following holds:

- The iterates gⁿ converge locally uniformly to a (super)-attracting fixed point;
- 2 dist[#]($g^n(z), \partial U$) \rightarrow 0 locally uniformly in U; or
- ③ g: U → U is a conformal isomorphism, and g^{n_k} → id for some sequence of iterates of g.

Remark

We usually think of g as the restriction of f to an invariant Fatou component U.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou

components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

The Riemann mapping theorem for Riemann surfaces

Theorem III.2.1 (Riemann mapping theorem)

Up to conformal isomorphism, every simply connected Riemann surface is either the sphere $\hat{\mathbb{C}}$, the plane \mathbb{C} , or the unit disk \mathbb{D} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

L. Rempe

Uniformization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Corollary III.2.2 (Uniformization)

Let U be a Riemann surface. Then there exists a holomorphic covering map

$$\pi: \mathbf{X} \rightarrow \mathbf{U},$$

where $X \in \{\hat{\mathbb{C}}, \mathbb{C}, \mathbb{D}\}$.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Uniformization of plane domains

Corollary III.2.3 (Plane domains)

Let $U \subset \hat{\mathbb{C}}$ omit at least three points. Then there is a holomorphic covering map $\pi : \mathbb{D} \to U$.

A deck transformation ϕ is a Möbius transformation of the disk such that

 $\pi \circ \phi = \pi.$

The group Γ of deck transformations is discrete and fixed-point free, and

 $U \equiv \mathbb{D}/\Gamma.$

・ロト・日本・日本・日本・日本

L. Rempe

Classification of Fatou components (I) Periodic Components and

Wandering Domain Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Uniformization of plane domains

Corollary III.2.3 (Plane domains)

Let $U \subset \hat{\mathbb{C}}$ omit at least three points. Then there is a holomorphic covering map $\pi : \mathbb{D} \to U$. A deck transformation ϕ is a Möbius transformation of the disk such that

 $\pi \circ \phi = \pi.$

The group Γ of deck transformations is discrete and fixed-point free, and

 $U \equiv \mathbb{D}/\Gamma$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L. Rempe

Classification of Fatou components (I) Periodic Components and Wandering Domain

periodic Fatou components A first classificatio

Some hyperbolic geometry

Classification of Fatou components (II)

Let U and $\pi:\mathbb{D}\to U$ as before, and let

 $f: U \rightarrow U$

be holomorphic.

A lift $F : \mathbb{D} \to \mathbb{D}$ of f is a function satisfying

 $\pi \circ \boldsymbol{F} = \boldsymbol{f} \circ \pi.$

If *F* and \tilde{F} are such lifts, then there are deck transformations ϕ and ψ such that

 $\tilde{F} \circ \phi = F = \psi \circ \tilde{F}.$

Lifts

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

L. Rempe

Classification of Fatou components (I) Periodic Components and Wandering Domain Classification of periodic Fatou

components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Let U and $\pi : \mathbb{D} \to U$ as before, and let $f: U \to U$

 $I : \mathbf{U} \rightarrow \mathbf{U}$

be holomorphic.

A lift $F : \mathbb{D} \to \mathbb{D}$ of *f* is a function satisfying

 $\pi \circ \boldsymbol{F} = \boldsymbol{f} \circ \pi.$

If *F* and \tilde{F} are such lifts, then there are deck transformations ϕ and ψ such that

 $\tilde{F} \circ \phi = F = \psi \circ \tilde{F}.$

Lifts

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● の々で

L. Rempe

Classification of Fatou components (I) Periodic Components and Wandering Domain Classification of periodic Fatou components

A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Let U and $\pi : \mathbb{D} \to U$ as before, and let $f: U \to U$

be holomorphic.

A lift $F : \mathbb{D} \to \mathbb{D}$ of *f* is a function satisfying

 $\pi \circ F = f \circ \pi.$

If *F* and \tilde{F} are such lifts, then there are deck transformations ϕ and ψ such that

$$\tilde{F} \circ \phi = F = \psi \circ \tilde{F}.$$

Lifts

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou components

Some hyperbolic geometry

Classification of Fatou components (II)

Rotation domains

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

To finish the proof of the classification theorem, it remains to show:

Theorem III.3.1 (Rotation domains)

Suppose that $f: U \rightarrow U$ is such that some sequence f^{n_k} of iterates converges to the identity on U.

Then either U is simply or doubly connected, and f is conjugate to an irrational rotation, or $f^k|_U = id$ for some k.

L. Rempe

Classification of Fatou components (I)

Periodic Components and Wandering Domain Classification of periodic Fatou components A first classification

Some hyperbolic geometry

Classification of Fatou components (II)

Rotation domains

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

To finish the proof of the classification theorem, it remains to show:

Theorem III.3.1 (Rotation domains)

Suppose that $f: U \to U$ is such that some sequence f^{n_k} of iterates converges to the identity on U. Then either U is simply or doubly connected, and f is conjugate to an irrational rotation, or $f^k|_U = id$ for some k.