Exceptiona values

The Bloc

The Bloch principle

Density of repelling

repelling cycles

Expansion property of the Julia set

An Introduction to Holomorphic Dynamics

II. Properties of Julia and Fatou sets

Department of Mathematical Sciences,
University of Liverpool

Liverpool, January 2008

Exceptiona values

The Bloc principle

The Bloch principle
The Zalcman lemma

Density repelling cycles

Expansion property of the Julia set

- Exceptional values
- 2 The Bloch principle
 - The Bloch principle
 - The Zalcman lemma
- Density of repelling cycles
- Expansion property of the Julia set

Exceptiona values

The Bloc principle

The Bloch principle
The Zalcman lemma

Density repelling cycles

Expansion property of th Julia set

- Exceptional values
- 2 The Bloch principle
 - The Bloch principle
 - The Zalcman lemma
- Density of repelling cycles
- Expansion property of the Julia set

Exceptiona values

The Block principle

The Bloch principle
The Zalcman lemma

Density repelling cycles

Expansion property of th Julia set

- Exceptional values
- 2 The Bloch principle
 - The Bloch principle
 - The Zalcman lemma
- 3 Density of repelling cycles
- Expansion property of the Julia set

Exceptiona values

The Bloc principle

The Bloch principle
The Zalcman lemma

repelling cycles

Expansion property of the Julia set

- Exceptional values
- 2 The Bloch principle
 - The Bloch principle
 - The Zalcman lemma
- 3 Density of repelling cycles
- 4 Expansion property of the Julia set

The Bloch principle The Zalcman lemn

Density of repelling cycles

Expansion property of the Julia set

Exceptional values

Definition II.1.1 (Exceptional value)

A value $z_0 \in \hat{\mathbb{C}}$ is called (Fatou) exceptional if the backward orbit

$$O^-(z_0) = \{w \in X : \exists n \geq 0, f^n(w) = z_0\}$$

is a finite set.

Example 1

•
$$f(z) = z^2$$
; $z_0 = 0$.

•
$$f(z) = \exp(z); z_0 = 0.$$

Lemma II.1.2 (Number of exceptional points)

f has at most two exceptional points in $\hat{\mathbb{C}}$.

Density of repelling cycles

Expansion property of the Julia set

Exceptional values

Definition II.1.1 (Exceptional value)

A value $z_0 \in \hat{\mathbb{C}}$ is called (Fatou) exceptional if the backward orbit

$$O^-(z_0) = \{w \in X : \exists n \geq 0, f^n(w) = z_0\}$$

is a finite set.

Example 1

•
$$f(z) = z^2$$
; $z_0 = 0$.

•
$$f(z) = \exp(z); z_0 = 0.$$

Lemma II.1.2 (Number of exceptional points)

f has at most two exceptional points in Ĉ.

Expansion property of the

Exceptional values

Definition II.1.1 (Exceptional value)

A value $z_0 \in \hat{\mathbb{C}}$ is called (Fatou) exceptional if the backward orbit

$$O^-(z_0) = \{w \in X : \exists n \geq 0, f^n(w) = z_0\}$$

is a finite set.

Example 1

- $f(z) = z^2$; $z_0 = 0$.
- $f(z) = \exp(z); z_0 = 0.$

Lemma II.1.2 (Number of exceptional points)

f has at most two exceptional points in $\hat{\mathbb{C}}$.

Exceptional values

The Block

The Bloch principle

The Zalcman lemr

Density of repelling cycles

Expansion property of the

Exceptional values

Remark

For rational functions of degree at least two, exceptional values are always in the Fatou set.

 A rational map with one exceptional value is conjugate to a polynomial

A rational map with two exceptional values is conjugate

The Bloch principle

Exceptional values

Remark

For rational functions of degree at least two, exceptional values are always in the Fatou set.

- A rational map with one exceptional value is conjugate to a polynomial.
- A rational map with two exceptional values is conjugate

The Bloch principl
The Zalcman lemr

Density of repelling cycles

Expansion property of the Julia set

Exceptional values

Remark

For rational functions of degree at least two, exceptional values are always in the Fatou set.

- A rational map with one exceptional value is conjugate to a polynomial.
- A rational map with two exceptional values is conjugate to $z \mapsto z^m$, $m \in \mathbb{Z} \setminus \{-1, 0, 1\}$.

The Bloch principle

Density of backward orbits

We can now reformulate a property of the Julia set which we mentioned already in the previous lecture:

$$J(f)\subset \overline{O^-(z_0)}$$

$$J(f)=\overline{O^-(z_0)}.$$

The Bloch principle
The Zalcman lemma

Density of repelling cycles

Expansion property of th Julia set

Density of backward orbits

We can now reformulate a property of the Julia set which we mentioned already in the previous lecture:

Lemma II.1.3 (Backward orbits)

If z_0 is not a Fatou exceptional value, then

$$J(f)\subset \overline{O^-(z_0)}.$$

If furthermore $z_0 \in J(f)$, then

$$J(f)=\overline{O^-(z_0)}$$

The Bloch principle

Density or repelling cycles

Expansion property of the Julia set

Density of backward orbits

We can now reformulate a property of the Julia set which we mentioned already in the previous lecture:

Lemma II.1.3 (Backward orbits)

If z_0 is not a Fatou exceptional value, then

$$J(f)\subset \overline{O^-(z_0)}.$$

If furthermore $z_0 \in J(f)$, then

$$J(f)=\overline{O^{-}(z_0)}.$$

The Block

The Bloch principle

The Zalcman lemm

Density of repelling cycles

Expansion property of the Julia set

Liouville's Theorem

Recall that Liouville's Theorem states that a bounded entire function must be constant.

Compare this with the Removable Singularities Theorem, which says that an isolated singularity of a bounded holomorphic function is removable.

Also recall that any family of bounded entire functions, with a uniform bound, is normal.

The Block

The Bloch principle

Density of repelling cycles

Expansion property of the

Liouville's Theorem

Recall that Liouville's Theorem states that a bounded entire function must be constant.

Compare this with the Removable Singularities Theorem, which says that an isolated singularity of a bounded holomorphic function is removable.

Also recall that any family of bounded entire functions, with a uniform bound, is normal.

The Bloch principle

Density of repelling cycles

Expansion property of the Julia set

Liouville's Theorem

Recall that Liouville's Theorem states that a bounded entire function must be constant.

Compare this with the Removable Singularities Theorem, which says that an isolated singularity of a bounded holomorphic function is removable.

Also recall that any family of bounded entire functions, with a uniform bound, is normal.

Exceptiona values

The Bloch

The Bloch principle

Density of

repelling cycles

Expansion property of the Julia set

Theorems of Montel and Picard

Theorem II.2.1 (Picard)

Suppose f is meromorphic on a domain U, except at an isolated singularity $z_0 \in U$.

If f omits three values in the Riemann sphere (e.g., f never takes the values 0, 1 and ∞), then z_0 is a removable singularity.

Theorem II.2.2 (Picard

Any meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}}$ which omits three values is constant.

Theorem II.2.3 (Montel)

A family of meromorphic functions which all omit the same three values is normal. The Bloch principle

Density of repelling cycles

Expansion property of the Julia set

Theorems of Montel and Picard

Theorem II.2.1 (Picard)

Suppose f is meromorphic on a domain U, except at an isolated singularity $z_0 \in U$.

If f omits three values in the Riemann sphere (e.g., f never takes the values 0, 1 and ∞), then z_0 is a removable singularity.

Theorem II.2.2 (Picard)

Any meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}}$ which omits three values is constant.

Theorem II.2.3 (Montel)

A family of meromorphic functions which all omit the same three values is normal.

Exception: values

The Bloch principle

The Bloch principle
The Zalcman lemm

Density of repelling cycles

Expansion property of the Julia set

Theorems of Montel and Picard

Theorem II.2.1 (Picard)

Suppose f is meromorphic on a domain U, except at an isolated singularity $z_0 \in U$.

If f omits three values in the Riemann sphere (e.g., f never takes the values 0, 1 and ∞), then z_0 is a removable singularity.

Theorem II.2.2 (Picard)

Any meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}}$ which omits three values is constant.

Theorem II.2.3 (Montel)

A family of meromorphic functions which all omit the same three values is normal. The Bloc principle

The Bloch principle

Density of repelling cycles

Expansion property of the Julia set

The Bloch Principle

A property which implies that an entire (or meromorphic) function on the plane is constant should imply that a family of entire (or meromorphic) functions with this property is normal.

Of course, this heuristic principle isn't true as stated: for a trivial example, consider the property *f omits some collection of three points*.

(There are more interesting examples as well.)

The Bloc principle

The Bloch principle

Density of repelling cycles

Expansion property of the Julia set

The Bloch Principle

A property which implies that an entire (or meromorphic) function on the plane is constant should imply that a family of entire (or meromorphic) functions with this property is normal.

Of course, this heuristic principle isn't true as stated: for a trivial example, consider the property *f omits some collection of three points*.

(There are more interesting examples as well.)

The Block principle

The Bloch principle

Density repelling cycles

Expansion property of the Julia set

The Bloch Principle

A property which implies that an entire (or meromorphic) function on the plane is constant should imply that a family of entire (or meromorphic) functions with this property is normal.

Of course, this heuristic principle isn't true as stated: for a trivial example, consider the property *f omits some collection of three points*.

(There are more interesting examples as well.)

Expansion property of the Julia set

Zalcman's rescaling lemma

Larry Zalcman formulated a rescaling lemma which makes Bloch's heuristic principle explicit.

Theorem II.2.4 (Zalcman's Lemma)

The family f of meromorphic functions is not normal near a point z_0 if and only if:

There exists a sequence (f_n) in \mathcal{F} , a sequence $z_n \to z_0$, and a sequence of rescaling factors ρ_n with $\rho_n \to 0$ such that the functions

$$z\mapsto f_n(z_n+\rho_nz)$$

converge locally uniformly to a nonconstant meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}}$.

(Furthermore, f can be chosen with $f^{\#} \leq 1$ for all $z \in \mathbb{C}$.)

Density or repelling cycles

Expansion property of the Julia set

Zalcman's rescaling lemma

Larry Zalcman formulated a rescaling lemma which makes Bloch's heuristic principle explicit.

Theorem II.2.4 (Zalcman's Lemma)

The family f of meromorphic functions is not normal near a point z_0 if and only if:

There exists a sequence (f_n) in \mathcal{F} , a sequence $z_n \to z_0$, and a sequence of rescaling factors ρ_n with $\rho_n \to 0$ such that the functions

$$z \mapsto f_n(z_n + \rho_n z)$$

converge locally uniformly to a nonconstant meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}}$.

(Furthermore, f can be chosen with $f^{\#} \leq 1$ for all $z \in \mathbb{C}$.)

The Bloch principle
The Zalcman lemma

Density or repelling cycles

Expansion property of th Julia set

Zalcman's rescaling lemma

Larry Zalcman formulated a rescaling lemma which makes Bloch's heuristic principle explicit.

Theorem II.2.4 (Zalcman's Lemma)

The family f of meromorphic functions is not normal near a point z_0 if and only if:

There exists a sequence (f_n) in \mathcal{F} , a sequence $z_n \to z_0$, and a sequence of rescaling factors ρ_n with $\rho_n \to 0$ such that the functions

$$z \mapsto f_n(z_n + \rho_n z)$$

converge locally uniformly to a nonconstant meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}}$.

(Furthermore, f can be chosen with $f^{\#} \leq 1$ for all $z \in \mathbb{C}$.)

The Bloch principle
The Zalcman lemma

Density or repelling cycles

Expansion property of the Julia set

Zalcman's rescaling lemma

Zalcman's lemma has revolutionized the study of normal families.

It can not only be used to prove the equivalence of results for normal families and global analytic functions, but often also to prove such results themselves.

For example: simple proofs of Montel's theorem, Picard's theorem, Koebe's theorem, some theorems by Nevanlinna and Ahlfors.

The Block principle

The Bloch principle
The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Zalcman's rescaling lemma

Zalcman's lemma has revolutionized the study of normal families.

It can not only be used to prove the equivalence of results for normal families and global analytic functions, but often also to prove such results themselves.

For example: simple proofs of Montel's theorem, Picard's theorem, Koebe's theorem, some theorems by Nevanlinna and Ahlfors,

Exceptiona values

The Bloch principle

The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Zalcman's rescaling lemma

Zalcman's lemma has revolutionized the study of normal families.

It can not only be used to prove the equivalence of results for normal families and global analytic functions, but often also to prove such results themselves.

For example: simple proofs of Montel's theorem, Picard's theorem, Koebe's theorem, some theorems by Nevanlinna and Ahlfors,

Density of repelling

Expansion property of the Julia set

Idea of the proof

- If \mathcal{F} is not normal near z_0 , then there is a sequence of points z_n and functions $f_n \in \mathcal{F}$ such that the spherical derivative tends to ∞ (by Marty's theorem).
- This gives us a sequence of rescalings of f_n with spherical derivative, say, bounded by 1.
- Again, we can apply Marty's theorem to see that this sequence is normal, and hence extract a convergent subsequence.

The Zalcman lemma

repelling cycles

Expansion property of the Julia set

Idea of the proof

- If \mathcal{F} is not normal near z_0 , then there is a sequence of points z_n and functions $f_n \in \mathcal{F}$ such that the spherical derivative tends to ∞ (by Marty's theorem).
- This gives us a sequence of rescalings of f_n with spherical derivative, say, bounded by 1.
- Again, we can apply Marty's theorem to see that this sequence is normal, and hence extract a convergent subsequence.

The Bloch principle
The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Idea of the proof

- If \mathcal{F} is not normal near z_0 , then there is a sequence of points z_n and functions $f_n \in \mathcal{F}$ such that the spherical derivative tends to ∞ (by Marty's theorem).
- This gives us a sequence of rescalings of f_n with spherical derivative, say, bounded by 1.
- Again, we can apply Marty's theorem to see that this sequence is normal, and hence extract a convergent subsequence.

The Bloch princip

The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

- Let \mathcal{F} be a family of functions on U, all of which omit the values $\{0, 1, \infty\}$.
- If F is not normal, we can find a sequence of rescalings converging to a nonconstant entire function f.
- 3 The limit f must also omit $\{0, 1, \infty\}$ by Hurwitz's theorem.
- 4 This contradicts Picard's theorem

The Bloch principle
The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

- Let \mathcal{F} be a family of functions on U, all of which omit the values $\{0, 1, \infty\}$.
- 2 If \mathcal{F} is not normal, we can find a sequence of rescalings converging to a nonconstant entire function f.
- 3 The limit f must also omit $\{0, 1, \infty\}$ by Hurwitz's theorem.
- This contradicts Picard's theorem

The Bloc principle

The Bloch principle
The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

- Let \mathcal{F} be a family of functions on U, all of which omit the values $\{0, 1, \infty\}$.
- ② If \mathcal{F} is not normal, we can find a sequence of rescalings converging to a nonconstant entire function f.
- **3** The limit f must also omit $\{0, 1, \infty\}$ by Hurwitz's theorem.
- This contradicts Picard's theorem

Density of

repelling cycles

Expansion property of the Julia set

- Let \mathcal{F} be a family of functions on U, all of which omit the values $\{0, 1, \infty\}$.
- 2 If \mathcal{F} is not normal, we can find a sequence of rescalings converging to a nonconstant entire function f.
- **3** The limit f must also omit $\{0, 1, \infty\}$ by Hurwitz's theorem.
- This contradicts Picard's theorem.

The Bloch principle
The Zalcman lemma

Density o repelling cycles

Expansion property of the Julia set

Zalcman's rescaling lemma

Larry Zalcman formulated a rescaling lemma which makes Bloch's heuristic principle explicit.

Theorem II.2.4 (Zalcman's Lemma)

The family f of meromorphic functions is not normal near a point z_0 if and only if:

There exists a sequence (f_n) in \mathcal{F} , a sequence $z_n \to z_0$, and a sequence of rescaling factors ρ_n with $\rho_n \to 0$ such that the functions

$$z \mapsto f_n(z_n + \rho_n z)$$

converge locally uniformly to a nonconstant meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}}$.

(Furthermore, f can be chosen with $f^{\#} \leq 1$ for all $z \in \mathbb{C}$.)

L. Rempe

Exception

The Bloc

The Bloch principle

The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Some other instances of Bloch's principle

- Nevanlinna's deficiency relation.
- The Ahlfors five islands theorem.
-

L. Rempe

Exceptiona

The Bloc

The Bloch principle

The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Some other instances of Bloch's principle

- Nevanlinna's deficiency relation.
- The Ahlfors five islands theorem.

The Bloc

The Bloch principle

The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Some other instances of Bloch's principle

- Nevanlinna's deficiency relation.
- The Ahlfors five islands theorem.
- ...

The Bloch principle
The Zalcman lemm

Density of repelling cycles

Expansion property of the Julia set

- $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.
- A periodic point is attracting if $|(f^n)'(z)| < 1$. (Attracting points are in the Fatou set.)
- A periodic point is repelling if $|(f^n)'(z)| > 1$. (Repelling points are in the Julia set.)

The Zalcman lemn

Density of repelling cycles

Expansion property of the Julia set

- $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.
- A periodic point is attracting if |(fⁿ)'(z)| < 1.
 (Attracting points are in the Fatou set.)
- A periodic point is repelling if $|(f^n)'(z)| > 1$. (Repelling points are in the Julia set.)

The Bloch principle
The Zalcman lemm

Density of repelling cycles

Expansion property of the Julia set

- $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.
- A periodic point is attracting if $|(f^n)'(z)| < 1$. (Attracting points are in the Fatou set.)
- A periodic point is repelling if $|(f^n)'(z)| > 1$. (Repelling points are in the Julia set.)

The Bloc

The Bloch principle

Density of repelling cycles

expansion property of the Julia set

- $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.
- A periodic point is attracting if $|(f^n)'(z)| < 1$. (Attracting points are in the Fatou set.)
- A periodic point is repelling if $|(f^n)'(z)| > 1$. (Repelling points are in the Julia set.)

The Bloch principle

Density of repelling cycles

Expansion property of the Julia set

- $z \in \mathbb{C}$ is periodic if $f^n(z) = z$.
- A periodic point is attracting if $|(f^n)'(z)| < 1$. (Attracting points are in the Fatou set.)
- A periodic point is repelling if $|(f^n)'(z)| > 1$. (Repelling points are in the Julia set.)

The Bloch principle
The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Theorem II.3.1 (Density of repelling cycles)

Let $f: X \to X$ be nonlinear and nonconstant, as before, where $X \in \{\mathbb{C}, \hat{\mathbb{C}}, \mathbb{C}^*\}$.

Then repelling periodic points are dense in J(f).

For rational functions, the usual proof uses the finiteness of nonrepelling cycles.

Baker's original proof for entire functions uses the five islands theorem.

The Bloc

The Bloch principle

Density of repelling cycles

Expansion property of the Julia set

Theorem II.3.1 (Density of repelling cycles)

Let $f: X \to X$ be nonlinear and nonconstant, as before, where $X \in \{\mathbb{C}, \hat{\mathbb{C}}, \mathbb{C}^*\}$.

Then repelling periodic points are dense in J(f).

For rational functions, the usual proof uses the finiteness of nonrepelling cycles.

Baker's original proof for entire functions uses the five islands theorem.

The Bloch principle
The Zalcman lemma

Density of repelling cycles

Expansion property of the Julia set

Theorem II.3.1 (Density of repelling cycles)

Let $f: X \to X$ be nonlinear and nonconstant, as before, where $X \in \{\mathbb{C}, \hat{\mathbb{C}}, \mathbb{C}^*\}$.

Then repelling periodic points are dense in J(f).

For rational functions, the usual proof uses the finiteness of nonrepelling cycles.

Baker's original proof for entire functions uses the five islands theorem.

Density of

repelling cycles

Expansion property of the Julia set

Theorem II.3.1 (Density of repelling cycles)

Let $f: X \to X$ be nonlinear and nonconstant, as before, where $X \in \{\mathbb{C}, \hat{\mathbb{C}}, \mathbb{C}^*\}$.

Then repelling periodic points are dense in J(f).

For rational functions, the usual proof uses the finiteness of nonrepelling cycles.

Baker's original proof for entire functions uses the five islands theorem.

Density or repelling cycles

Expansion property of the Julia set

Expansion property of the Julia set

As a consequence of the density of repelling periodic points, we can strengthen a number of properties of the Julia set.

Theorem II.4.1 (Expansion property)

Let $K \subset X$ be a compact set which does not contain any exceptional points.

If U is an open set with $U \cap J(f) \neq \emptyset$, then there is $n \geq 0$ with

$$K \subset f^n(U)$$
.

principle
The Bloch principle

The Bloch principle The Zalcman lemm

Density of repelling cycles

Expansion property of the Julia set

Expansion property of the Julia set

As a consequence of the density of repelling periodic points, we can strengthen a number of properties of the Julia set.

Theorem II.4.1 (Expansion property)

Let $K \subset X$ be a compact set which does not contain any exceptional points.

If U is an open set with $U \cap J(f) \neq \emptyset$, then there is $n \geq 0$ with $K \subset f^n(U)$.

The Zalcman lem

repelling cycles

Expansion property of the Julia set

Expansion property of the Julia set

As a consequence of the density of repelling periodic points, we can strengthen a number of properties of the Julia set.

Theorem II.4.1 (Expansion property)

Let $K \subset X$ be a compact set which does not contain any exceptional points.

If U is an open set with $U \cap J(f) \neq \emptyset$, then there is $n \geq 0$ with

$$K \subset f^n(U)$$
.

The Bloch principle

Density of repelling cycles

Expansion property of the Julia set

Existence of convergent subsequence

Lemma II.4.2

Let $z \in J(f)$. Then z has no neighborhood in which the sequence (f^n) has any uniformly convergent subsequence.