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Discrete dynamical systems

General setting:

X phase space;
f : X → X function;
f n = f ◦ · · · ◦ f iterates of f ;
study behaviour of f n(x) as n →∞.
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A remark

Remark
It may very well make sense to have f defined only on a
subset of X .
For example, one can study the iteration of meromorphic
functions f : C → Ĉ, or more general families of functions
such as those considered by Adam Epstein and others.
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Holomorphic dynamics

X is a Riemann surface (i.e., a connected
one-dimensional complex manifold);
f : X → X is a holomorphic function.

Interesting behavior only for

X ∈ {Ĉ, C, C \ {0}, C/Z2}.
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Our setting

Standing Assumption I.1.1
X is either the complex plane C, the Riemann sphere
Ĉ = C ∪ {∞}, or the punctured plane C∗ = C \ {0}.
f : X → X is a nonconstant holomorphic function which is
not a conformal automorphism of X .
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Entire functions

Recall that a holomorphic function f : C → C which is not a
polynomial is called a transcendental entire function.
I.e.,

f (z) =
∞∑

k=0

akzk ,

where ak 6= 0 for infinitely many k and the series converges
for all z ∈ C.
The case where X = C and f is a transcendental entire
function is the one we will have in mind for most of the
lectures.
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Julia and Fatou sets

The phase space X can be partitioned into two
fundamentally different sets:

The Fatou set is the set where the dynamics is regular.
This is an open set, and the possible types of behaviour
are (fairly) well-understood.
The Julia set is the set where the dynamics is “chaotic”.
The structure and dynamics of the Julia set can be very
complicated.
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The simplest possible case

f (z) = z2.
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The quadratic family

f (z) = z2 + c, c ∈ C.

Very complicated behaviour as c varies — gives rise to the
Mandelbrot set.
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Equicontinuity

Recall that we want to define the Fatou set as the locus of
stable behaviour.
This means that

small perturbations lead to small changes in long-term
behaviour.

Definition I.2.1 (Equicontinuity)
Let A and B be metric spaces. A family F of functions from
A to B is equicontinuous in a point x0 ∈ A if

∀ε > 0∃δ > 0∀f ∈ F ∀x ∈ A :

d(x , x0) < δ ⇒ d(f (x), f (x0)) < ε.
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Fatou and Julia sets
Let X and f : X → X be as in our standing assumption.

Definition I.2.2 (Fatou set)
A point z ∈ X belongs to the Fatou set F (f ) if there is a
neighborhood U of z such that the family

{f n : n ∈ N}

is equicontinuous in every point of U (with respect to the
spherical metric).

Definition I.2.3 (Julia set)
The Julia set of f is the complement of the Fatou set:

J(f ) := X \ F (f ).
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Locally uniform convergence

Let fn be a family of holomorphic (or meromorphic) functions
defined on some open set U.
Recall that we say that (fn) converges locally uniformly to a
function f if the sequence converges uniformly on every
compact subset of U.
(For example, the sequence fn(z) = z/n converges locally
uniformly to f (z) = 0 on C.)
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Results from Complex Analysis
Theorem I.3.1 (Schwarz Lemma)
Let f : D → D be a holomorphic function with f (0) = 0
(where D is the unit disk). Then

|f ′(0)| ≤ 1 and |f (z)| ≤ |z| for all z ∈ D,

with equality if and only if f is a rotation.

Theorem I.3.2 (Weierstraß theorem)
If fn → f locally uniformly, where fn and f are holomorphic
functions defined on some open set U ⊂ C, then f ′n → f ′

locally uniformly.

Theorem I.3.3 (Hurwitz theorem)
If fn → f locally uniformly, as above, and fn(z) 6= 0 for all z,
then either f 6= 0 for all z, or f is constant.
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Normality

A family F of holomorphic or meromorphic functions on U is
normal (on U) if every sequence of functions in F contains
a locally uniformly convergent subsequence.
We say that F is normal in a point z if z has an open
neighborhood on which F is normal.
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Arzelá-Ascoli Theorem

Theorem I.3.4 (Arzelà-Ascoli)
F is normal if and only if it is equicontinuous in every point
of U.

(In particular, normality is a local property: F is normal if
and only if it is normal in every point of U.)
Hence the Fatou set of a function f : X → X is the set of
normality of the family of iterates.
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Marty’s theorem

The spherical derivative of a meromorphic function f in z is

f #(z) :=
2|f ′(z)|

1 + |f (z)|2
.

Theorem I.3.5 (Marty)
The family F of meromorphic functions is normal if and only
if the spherical derivatives in F are locally bounded.

(I.e., every z0 ∈ U has a neighborhood N such that f #(z) is
uniformly bounded in N, with the bound independent of
f ∈ F .)
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Two theorems of Montel

Theorem I.3.6 (Montel)
A uniformly bounded family of holomorphic functions is
normal.

Theorem I.3.7 (Montel)

Let a, b, c ∈ Ĉ. Let F be a family of meromorphic functions
on some open set U which omits the the three values a, b, c.
(I.e., f (z) /∈ {a, b, c} for all f ∈ F and all z.)
Then F is normal.
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Basic properties

Lemma I.3.8 (Basic properties of Julia and Fatou sets)
F (f ) is open; J(f ) is closed (in X).
F (f ) and J(f ) are completely invariant; i.e.

z ∈ F (f ) ⇐⇒ f (z) ∈ F (f ).

Julia and Fatou sets are preserved under iteration.
(That is, F (f n) = F (f ), J(f n) = J(f ).)
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Properties of the Julia set

Theorem I.3.9 (Julia set infinite)
The Julia set J(f ) contains infinitely many points.

(Proof for entire functions: see course by Rippon and
Stallard. Proof for rational functions: easy; see e.g. book by
Milnor.)
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Theorem I.3.9 (Julia set infinite)
The Julia set J(f ) contains infinitely many points.

(Proof for entire functions: see course by Rippon and
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Consequences

Corollary I.3.10 (Backward orbits are dense)

For all points z0 ∈ Ĉ with at most three exceptions, the
closure of the backward orbit

O−(z0) := {w ∈ X : f n(w) = z0 for some n ≥ 0}

contains the Julia set J(f ).

Corollary I.3.11 (Characterization of J(f ))
J(f ) is the smallest closed and backward invariant set
containing at least three points.

Corollary I.3.12 (Julia sets with interior)
If J(f ) 6= X, then J(f ) has no interior.
(I.e., J(f ) contains no nonempty open set.)
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More consequences

Corollary I.3.13 (Julia set is perfect)
J(f ) has no isolated points. In particular, J(f ) is unbounded.

Corollary I.3.14 (Dense orbits)
There exist (uncountably many) points z ∈ J(f ) such that
the orbit

O+(z) := {f n(z) : n ≥ 0}

is dense in J(f ).
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Definition I.3.15 (Periodic points)
A point z ∈ X with f n(z) = z is called periodic.

(The smallest such n is the period of z.)
Such a periodic point is called

attracting if 0 < |(f n)′(z)| < 1;
superattracting if |(f n)′(z)| = 0;
repelling if |(f n)′(z)| > 1;
indifferent (or “neutral”) if |(f n)′(z)| = 1.

Theorem I.3.16 (Density of repelling cycles)
Repelling periodic points are dense in the Julia set.
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