Holomorphic Dynamics,

L. Rempe

Introduction

Discrete dynamica systems

An example

Definition o
Julia and
Fatou sets

Norma familie

An Introduction to Holomorphic Dynamics

I. Introduction; Normal Families

L. Rempe

Department of Mathematical Sciences, University of Liverpool

Liverpool, January 2008

Holomorphic Dynamics, Outline Lecture I L. Rempe Introduction Discrete dynamical systems An example

Holomorphic Dynamics, Lecture I L. Rempe

Outline

- Introduction
 - Discrete dynamical systems
 - An example

Definition of Julia and Fatou sets

Holomorphic Dynamics, Lecture I L. Rempe

Outline

- Introduction
 - Discrete dynamical systems
 - An example

- Definition of Julia and Fatou sets
- Normal families

An exampi

Definition of Julia and Fatou sets

families

Discrete dynamical systems

- X phase space;
- $f: X \rightarrow X$ function;
- $f^n = f \circ \cdots \circ f$ iterates of f;
- study behaviour of $f^n(x)$ as $n \to \infty$.

Definition

Julia and Fatou sets

familie

Discrete dynamical systems

- X phase space;
- $f: X \rightarrow X$ function;
- $f^n = f \circ \cdots \circ f$ iterates of f;
- study behaviour of $f^n(x)$ as $n \to \infty$.

- -- --

Julia and Fatou sets

Norma familie

Discrete dynamical systems

- X phase space;
- $f: X \rightarrow X$ function;
- $f^n = f \circ \cdots \circ f$ iterates of f;
- study behaviour of $f^n(x)$ as $n \to \infty$.

An exampi

Definition of Julia and Fatou sets

Norma

Discrete dynamical systems

- X phase space;
- $f: X \rightarrow X$ function;
- $f^n = f \circ \cdots \circ f$ iterates of f;
- study behaviour of $f^n(x)$ as $n \to \infty$.

Norma familie:

A remark

Remark

It may very well make sense to have f defined only on a subset of X.

For example, one can study the iteration of meromorphic functions $f: \mathbb{C} \to \hat{\mathbb{C}}$, or more general families of functions such as those considered by Adam Epstein and others.

Definition

Julia and Fatou sets

Norma familie:

A remark

Remark

It may very well make sense to have f defined only on a subset of X.

For example, one can study the iteration of meromorphic functions $f: \mathbb{C} \to \hat{\mathbb{C}}$, or more general families of functions such as those considered by Adam Epstein and others.

An examp

Definition of Julia and Fatou sets

familie

Holomorphic dynamics

- X is a Riemann surface (i.e., a connected one-dimensional complex manifold);
- $f: X \to X$ is a holomorphic function.

Interesting behavior only for

$$X \in {\{\hat{\mathbb{C}}, \mathbb{C}, \mathbb{C} \setminus \{0\}, \mathbb{C}/\mathbb{Z}^2\}}.$$

Norma families

Holomorphic dynamics

- X is a Riemann surface (i.e., a connected one-dimensional complex manifold);
- $f: X \to X$ is a holomorphic function.

Interesting behavior only for

$$X \in {\{\hat{\mathbb{C}}, \mathbb{C}, \mathbb{C} \setminus \{0\}, \mathbb{C}/\mathbb{Z}^2\}}.$$

Holomorphic dynamics

- X is a Riemann surface (i.e., a connected one-dimensional complex manifold);
- $f: X \to X$ is a holomorphic function.

Interesting behavior only for

$$X \in {\{\hat{\mathbb{C}}, \mathbb{C}, \mathbb{C} \setminus \{0\}, \mathbb{C}/\mathbb{Z}^2\}}.$$

Definition

Julia and Fatou sets

Norma familie:

Our setting

Standing Assumption I.1.1

X is either the complex plane \mathbb{C} , the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, or the punctured plane $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

 $f: X \to X$ is a nonconstant holomorphic function which is not a conformal automorphism of X.

An example

Definition of Julia and Fatou sets

Norma families

Our setting

Standing Assumption I.1.1

X is either the complex plane \mathbb{C} , the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, or the punctured plane $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. $f: X \to X$ is a nonconstant holomorphic function which is not a conformal automorphism of X.

Normal families

Entire functions

Recall that a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ which is not a polynomial is called a transcendental entire function.

l.e.

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

where $a_k \neq 0$ for infinitely many k and the series converges for all $z \in \mathbb{C}$.

The case where $X = \mathbb{C}$ and f is a transcendental entire function is the one we will have in mind for most of the lectures.

Normal families

Entire functions

Recall that a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ which is not a polynomial is called a transcendental entire function. I.e.,

$$f(z) = \sum_{k=0}^{\infty} a_k z^k,$$

where $a_k \neq 0$ for infinitely many k and the series converges for all $z \in \mathbb{C}$.

The case where $X = \mathbb{C}$ and f is a transcendental entire function is the one we will have in mind for most of the lectures.

Normal families

Entire functions

Recall that a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ which is not a polynomial is called a transcendental entire function. I.e.,

$$f(z) = \sum_{k=0}^{\infty} a_k z^k,$$

where $a_k \neq 0$ for infinitely many k and the series converges for all $z \in \mathbb{C}$.

The case where $X = \mathbb{C}$ and f is a transcendental entire function is the one we will have in mind for most of the lectures.

Norma families

Julia and Fatou sets

- The Fatou set is the set where the dynamics is regular.
 This is an open set, and the possible types of behaviour are (fairly) well-understood.
- The Julia set is the set where the dynamics is "chaotic".
 The structure and dynamics of the Julia set can be very complicated.

Norma families

Julia and Fatou sets

- The Fatou set is the set where the dynamics is regular.
 This is an open set, and the possible types of behaviour are (fairly) well-understood.
- The Julia set is the set where the dynamics is "chaotic".
 The structure and dynamics of the Julia set can be very complicated.

Normal families

Julia and Fatou sets

- The Fatou set is the set where the dynamics is regular.
 This is an open set, and the possible types of behaviour are (fairly) well-understood.
- The Julia set is the set where the dynamics is "chaotic".
 The structure and dynamics of the Julia set can be very complicated.

Norma families

Julia and Fatou sets

- The Fatou set is the set where the dynamics is regular.
 This is an open set, and the possible types of behaviour are (fairly) well-understood.
- The Julia set is the set where the dynamics is "chaotic".
 The structure and dynamics of the Julia set can be very complicated.

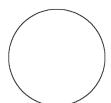
An example

Definition of Julia and Fatou sets

Norma families

The simplest possible case

$$f(z)=z^2.$$



Norma families

The quadratic family

$$f(z) = z^2 + c, \quad c \in \mathbb{C}.$$

Very complicated behaviour as *c* varies — gives rise to the Mandelbrot set.

An example

Definition of Julia and Fatou sets

Norma families

The quadratic family

$$f(z)=z^2+c, \quad c\in\mathbb{C}.$$

Very complicated behaviour as *c* varies — gives rise to the Mandelbrot set.

An example

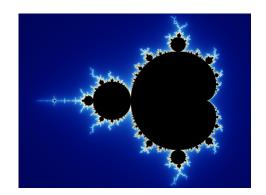
Definition of Julia and Fatou sets

Normal families

The quadratic family

$$f(z) = z^2 + c, \quad c \in \mathbb{C}.$$

Very complicated behaviour as *c* varies — gives rise to the Mandelbrot set.



Normal families

Equicontinuity

Recall that we want to define the Fatou set as the locus of stable behaviour.

This means that

small perturbations lead to small changes in long-term behaviour.

Definition I.2.1 (Equicontinuity)

Let *A* and *B* be metric spaces. A family \mathcal{F} of functions from *A* to *B* is equicontinuous in a point $x_0 \in A$ if

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall f \in \mathcal{F} \,\forall x \in A :$$

$$d(x, x_0) < \delta \implies d(f(x), f(x_0)) < \varepsilon$$

Normal families

Equicontinuity

Recall that we want to define the Fatou set as the locus of stable behaviour.

This means that

small perturbations lead to small changes in long-term behaviour.

Definition I.2.1 (Equicontinuity)

Let *A* and *B* be metric spaces. A family \mathcal{F} of functions from *A* to *B* is equicontinuous in a point $x_0 \in A$ if

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall f \in \mathcal{F} \,\forall x \in A:$$

$$d(x, x_0) < \delta \Rightarrow d(f(x), f(x_0)) < \varepsilon.$$

Normal families

Equicontinuity

Recall that we want to define the Fatou set as the locus of stable behaviour.

This means that

small perturbations lead to small changes in long-term behaviour.

Definition I.2.1 (Equicontinuity)

Let *A* and *B* be metric spaces. A family \mathcal{F} of functions from *A* to *B* is equicontinuous in a point $x_0 \in A$ if

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall f \in \mathcal{F} \,\forall x \in A:$$

$$d(x, x_0) < \delta \implies d(f(x), f(x_0)) < \varepsilon.$$

Normal families

Fatou and Julia sets

Let *X* and $f: X \rightarrow X$ be as in our standing assumption.

Definition I.2.2 (Fatou set)

A point $z \in X$ belongs to the Fatou set F(f) if there is a neighborhood U of z such that the family

$$\{f^n:n\in\mathbb{N}\}$$

is equicontinuous in every point of U (with respect to the *spherical* metric).

Definition I.2.3 (Julia set)

The Julia set of f is the complement of the Fatou set

$$J(f) := X \setminus F(f)$$

Normal families

Fatou and Julia sets

Let *X* and $f: X \rightarrow X$ be as in our standing assumption.

Definition I.2.2 (Fatou set)

A point $z \in X$ belongs to the Fatou set F(f) if there is a neighborhood U of z such that the family

$$\{f^n:n\in\mathbb{N}\}$$

is equicontinuous in every point of *U* (with respect to the *spherical* metric).

Definition I.2.3 (Julia set)

The Julia set of *f* is the complement of the Fatou set:

$$J(f) := X \setminus F(f)$$
.

Normal families

Locally uniform convergence

Let f_n be a family of holomorphic (or meromorphic) functions defined on some open set U.

Recall that we say that (f_n) converges locally uniformly to a function f if the sequence converges uniformly on every compact subset of U.

(For example, the sequence $f_n(z) = z/n$ converges locally uniformly to f(z) = 0 on \mathbb{C} .)

Julia and Fatou sets

Normal families

Locally uniform convergence

Let f_n be a family of holomorphic (or meromorphic) functions defined on some open set U.

Recall that we say that (f_n) converges locally uniformly to a function f if the sequence converges uniformly on every compact subset of U.

(For example, the sequence $f_n(z) = z/n$ converges locally uniformly to f(z) = 0 on \mathbb{C} .)

Normal families

Locally uniform convergence

Let f_n be a family of holomorphic (or meromorphic) functions defined on some open set U.

Recall that we say that (f_n) converges locally uniformly to a function f if the sequence converges uniformly on every compact subset of U.

(For example, the sequence $f_n(z) = z/n$ converges locally uniformly to f(z) = 0 on \mathbb{C} .)

L. Rempe

Introduction
Discrete dynamical systems

Definition of Julia and Fatou sets

Normal families

Results from Complex Analysis

Theorem I.3.1 (Schwarz Lemma)

Let $f: \mathbb{D} \to \mathbb{D}$ be a holomorphic function with f(0) = 0 (where \mathbb{D} is the unit disk). Then

$$|f'(0)| \leq 1$$
 and $|f(z)| \leq |z|$ for all $z \in \mathbb{D}$,

with equality if and only if f is a rotation.

Theorem I.3.2 (Weierstraß theorem)

If $f_n \to f$ locally uniformly, where f_n and f are holomorphic functions defined on some open set $U \subset \mathbb{C}$, then $f'_n \to f'$ locally uniformly.

Theorem I.3.3 (Hurwitz theorem)

If $f_n \to f$ locally uniformly, as above, and $f_n(z) \neq 0$ for all z, then either $f \neq 0$ for all z, or f is constant.

L. Rempe

Introduction
Discrete dynamical systems

Definition o Julia and Fatou sets

Normal families

Results from Complex Analysis

Theorem I.3.1 (Schwarz Lemma)

Let $f: \mathbb{D} \to \mathbb{D}$ be a holomorphic function with f(0) = 0 (where \mathbb{D} is the unit disk). Then

$$|f'(0)| \leq 1$$
 and $|f(z)| \leq |z|$ for all $z \in \mathbb{D}$,

with equality if and only if f is a rotation.

Theorem I.3.2 (Weierstraß theorem)

If $f_n \to f$ locally uniformly, where f_n and f are holomorphic functions defined on some open set $U \subset \mathbb{C}$, then $f'_n \to f'$ locally uniformly.

Theorem I.3.3 (Hurwitz theorem)

If $f_n \to f$ locally uniformly, as above, and $f_n(z) \neq 0$ for all z, then either $f \neq 0$ for all z, or f is constant.

L. Rempe

Introduction
Discrete dynamical systems

Definition o Julia and Fatou sets

Normal families

Results from Complex Analysis

Theorem I.3.1 (Schwarz Lemma)

Let $f: \mathbb{D} \to \mathbb{D}$ be a holomorphic function with f(0) = 0 (where \mathbb{D} is the unit disk). Then

$$|f'(0)| \le 1$$
 and $|f(z)| \le |z|$ for all $z \in \mathbb{D}$,

with equality if and only if f is a rotation.

Theorem I.3.2 (Weierstraß theorem)

If $f_n \to f$ locally uniformly, where f_n and f are holomorphic functions defined on some open set $U \subset \mathbb{C}$, then $f'_n \to f'$ locally uniformly.

Theorem I.3.3 (Hurwitz theorem)

If $f_n \to f$ locally uniformly, as above, and $f_n(z) \neq 0$ for all z, then either $f \neq 0$ for all z, or f is constant.

◆ロト ◆問 ◆ (目) ◆ (目) ◆ (日) ◆ (

Normal families

Normality

A family \mathcal{F} of holomorphic or meromorphic functions on U is normal (on U) if every sequence of functions in \mathcal{F} contains a locally uniformly convergent subsequence.

We say that \mathcal{F} is normal in a point z if z has an open neighborhood on which \mathcal{F} is normal.

Normal families

Normality

A family \mathcal{F} of holomorphic or meromorphic functions on U is normal (on U) if every sequence of functions in \mathcal{F} contains a locally uniformly convergent subsequence.

We say that \mathcal{F} is normal in a point z if z has an open neighborhood on which \mathcal{F} is normal.

Normal families

Arzelá-Ascoli Theorem

Theorem I.3.4 (Arzelà-Ascoli)

 \mathcal{F} is normal if and only if it is equicontinuous in every point of U.

(In particular, normality is a local property: \mathcal{F} is normal if and only if it is normal in every point of U.)

Hence the Fatou set of a function $f: X \to X$ is the set of normality of the family of iterates.

Normal families

Arzelá-Ascoli Theorem

Theorem I.3.4 (Arzelà-Ascoli)

 \mathcal{F} is normal if and only if it is equicontinuous in every point of U.

(In particular, normality is a local property: \mathcal{F} is normal if and only if it is normal in every point of U.)

Hence the Fatou set of a function $f: X \to X$ is the set of normality of the family of iterates.

Normal families

Arzelá-Ascoli Theorem

Theorem I.3.4 (Arzelà-Ascoli)

 \mathcal{F} is normal if and only if it is equicontinuous in every point of U.

(In particular, normality is a local property: \mathcal{F} is normal if and only if it is normal in every point of U.)

Hence the Fatou set of a function $f: X \to X$ is the set of normality of the family of iterates.

Marty's theorem

The spherical derivative of a meromorphic function f in z is

$$f^{\#}(z) := \frac{2|f'(z)|}{1+|f(z)|^2}.$$

Theorem I.3.5 (Marty)

The family \mathcal{F} of meromorphic functions is normal if and only if the spherical derivatives in \mathcal{F} are locally bounded.

(I.e., every $z_0 \in U$ has a neighborhood N such that $f^{\#}(z)$ is uniformly bounded in N, with the bound independent of $f \in \mathcal{F}$.)

Normal families

Marty's theorem

The spherical derivative of a meromorphic function f in z is

$$f^{\#}(z) := \frac{2|f'(z)|}{1+|f(z)|^2}.$$

Theorem I.3.5 (Marty)

The family \mathcal{F} of meromorphic functions is normal if and only if the spherical derivatives in \mathcal{F} are locally bounded.

(I.e., every $z_0 \in U$ has a neighborhood N such that $f^{\#}(z)$ is uniformly bounded in N, with the bound independent of $f \in \mathcal{F}$.)

Normal families

Marty's theorem

The spherical derivative of a meromorphic function f in z is

$$f^{\#}(z) := \frac{2|f'(z)|}{1+|f(z)|^2}.$$

Theorem I.3.5 (Marty)

The family \mathcal{F} of meromorphic functions is normal if and only if the spherical derivatives in \mathcal{F} are locally bounded.

(I.e., every $z_0 \in U$ has a neighborhood N such that $f^{\#}(z)$ is uniformly bounded in N, with the bound independent of $f \in \mathcal{F}$.)

Normal families

Two theorems of Montel

Theorem I.3.6 (Montel)

A uniformly bounded family of holomorphic functions is normal.

Theorem I.3.7 (Montel)

Let $a, b, c \in \hat{\mathbb{C}}$. Let \mathcal{F} be a family of meromorphic functions on some open set U which omits the three values a, b, c. (l.e., $f(z) \notin \{a, b, c\}$ for all $f \in \mathcal{F}$ and all z.) Then \mathcal{F} is normal.

Normal families

Two theorems of Montel

Theorem I.3.6 (Montel)

A uniformly bounded family of holomorphic functions is normal.

Theorem I.3.7 (Montel)

Let $a, b, c \in \hat{\mathbb{C}}$. Let \mathcal{F} be a family of meromorphic functions on some open set U which omits the three values a, b, c.

(I.e., $f(z) \notin \{a, b, c\}$ for all $f \in \mathcal{F}$ and all z.) Then \mathcal{F} is normal.

Normal families

Two theorems of Montel

Theorem I.3.6 (Montel)

A uniformly bounded family of holomorphic functions is normal.

Theorem I.3.7 (Montel)

Let $a, b, c \in \hat{\mathbb{C}}$. Let \mathcal{F} be a family of meromorphic functions on some open set U which omits the three values a, b, c. (l.e., $f(z) \notin \{a, b, c\}$ for all $f \in \mathcal{F}$ and all z.)

Then \mathcal{F} is normal.

Normal families

Two theorems of Montel

Theorem I.3.6 (Montel)

A uniformly bounded family of holomorphic functions is normal.

Theorem I.3.7 (Montel)

Let $a, b, c \in \hat{\mathbb{C}}$. Let \mathcal{F} be a family of meromorphic functions on some open set U which omits the the three values a, b, c. (l.e., $f(z) \notin \{a, b, c\}$ for all $f \in \mathcal{F}$ and all z.) Then \mathcal{F} is normal.

Normal families

Basic properties

Lemma I.3.8 (Basic properties of Julia and Fatou sets)

- F(f) is open; J(f) is closed (in X).
- F(f) and J(f) are completely invariant; i.e.

$$z \in F(f) \iff f(z) \in F(f).$$

Julia and Fatou sets are preserved under iteration.

(That is, $F(f^n) = F(f)$, $J(f^n) = J(f)$.)

Normal families

Basic properties

Lemma I.3.8 (Basic properties of Julia and Fatou sets)

- F(f) is open; J(f) is closed (in X).
- F(f) and J(f) are completely invariant; i.e.

$$z \in F(f) \iff f(z) \in F(f).$$

• Julia and Fatou sets are preserved under iteration. (That is, $F(f^n) = F(f)$, $J(f^n) = J(f)$.)

Normal families

Basic properties

Lemma I.3.8 (Basic properties of Julia and Fatou sets)

- F(f) is open; J(f) is closed (in X).
- F(f) and J(f) are completely invariant; i.e.

$$z \in F(f) \iff f(z) \in F(f).$$

• Julia and Fatou sets are preserved under iteration.

(That is,
$$F(f^n) = F(f), J(f^n) = J(f).$$
)

Normal families

Basic properties

Lemma I.3.8 (Basic properties of Julia and Fatou sets)

- F(f) is open; J(f) is closed (in X).
- F(f) and J(f) are completely invariant; i.e.

$$z \in F(f) \iff f(z) \in F(f)$$
.

• Julia and Fatou sets are preserved under iteration. (That is, $F(f^n) = F(f)$, $J(f^n) = J(f)$.)

L. Rempe

Introduction

Discrete dynamical

systems
An example

Definition of Julia and Fatou sets

Normal families

Properties of the Julia set

Theorem I.3.9 (Julia set infinite)

The Julia set J(f) contains infinitely many points.

(Proof for entire functions: see course by Rippon and Stallard. Proof for rational functions: easy; see e.g. book by Milnor.)

L. Rempe

Introduction
Discrete dynamical systems

Definition of Julia and Fatou sets

Normal families

Properties of the Julia set

Theorem I.3.9 (Julia set infinite)

The Julia set J(f) contains infinitely many points.

(Proof for entire functions: see course by Rippon and Stallard. Proof for rational functions: easy; see e.g. book by Milnor.)

Normal families

Consequences

Corollary I.3.10 (Backward orbits are dense)

For all points $z_0 \in \hat{\mathbb{C}}$ with at most three exceptions, the closure of the backward orbit

$$O^-(z_0) := \{ w \in X : f^n(w) = z_0 \text{ for some } n \ge 0 \}$$

contains the Julia set J(f).

Corollary I.3.11 (Characterization of J(f))

J(f) is the smallest closed and backward invariant set containing at least three points.

Corollary I.3.12 (Julia sets with interior)

If $J(f) \neq X$, then J(f) has no interior. (I.e., J(f) contains no nonempty open set.) Normal families

Consequences

Corollary I.3.10 (Backward orbits are dense)

For all points $z_0 \in \hat{\mathbb{C}}$ with at most three exceptions, the closure of the backward orbit

$$O^-(z_0) := \{ w \in X : f^n(w) = z_0 \text{ for some } n \ge 0 \}$$

contains the Julia set J(f).

Corollary I.3.11 (Characterization of J(f))

J(f) is the smallest closed and backward invariant set containing at least three points.

Corollary I.3.12 (Julia sets with interior)

If $J(f) \neq X$, then J(f) has no interior. (I.e., J(f) contains no nonempty open set.)

Normal families

Consequences

Corollary I.3.10 (Backward orbits are dense)

For all points $z_0 \in \hat{\mathbb{C}}$ with at most three exceptions, the closure of the backward orbit

$$O^-(z_0) := \{ w \in X : f^n(w) = z_0 \text{ for some } n \ge 0 \}$$

contains the Julia set J(f).

Corollary I.3.11 (Characterization of J(f))

J(f) is the smallest closed and backward invariant set containing at least three points.

Corollary I.3.12 (Julia sets with interior)

If $J(f) \neq X$, then J(f) has no interior.

(I.e., J(f) contains no nonempty open set.)

Normal families

Consequences

Corollary I.3.10 (Backward orbits are dense)

For all points $z_0 \in \hat{\mathbb{C}}$ with at most three exceptions, the closure of the backward orbit

$$O^-(z_0) := \{ w \in X : f^n(w) = z_0 \text{ for some } n \ge 0 \}$$

contains the Julia set J(f).

Corollary I.3.11 (Characterization of J(f))

J(f) is the smallest closed and backward invariant set containing at least three points.

Corollary I.3.12 (Julia sets with interior)

If $J(f) \neq X$, then J(f) has no interior. (I.e., J(f) contains no nonempty open set.)

Normal families

More consequences

Corollary I.3.13 (Julia set is perfect)

J(f) has no isolated points. In particular, J(f) is unbounded.

Corollary I.3.14 (Dense orbits)

There exist (uncountably many) points $z \in J(f)$ such that the orbit

$$O^+(z) := \{ f^n(z) : n \ge 0 \}$$

is dense in J(f).

Normal families

More consequences

Corollary I.3.13 (Julia set is perfect)

J(f) has no isolated points. In particular, J(f) is unbounded.

Corollary I.3.14 (Dense orbits)

There exist (uncountably many) points $z \in J(f)$ such that the orbit

$$O^+(z) := \{ f^n(z) : n \ge 0 \}$$

is dense in J(f).

Normal families

Density of repelling periodic points

Definition I.3.15 (Periodic points)

A point $z \in X$ with $f^n(z) = z$ is called periodic.

(The smallest such n is the period of z.)

Such a periodic point is called

- attracting if $0 < |(f^n)'(z)| < 1$;
- superattracting if $|(f^n)'(z)| = 0$;
- repelling if $|(f^n)'(z)| > 1$;
- indifferent (or "neutral") if $|(f^n)'(z)| = 1$.

Theorem I.3.16 (Density of repelling cycles)

Normal families

Density of repelling periodic points

Definition I.3.15 (Periodic points)

A point $z \in X$ with $f^n(z) = z$ is called periodic. (The smallest such n is the period of z.)

Such a periodic point is called

- attracting if $0 < |(f^n)'(z)| < 1$;
- superattracting if $|(f^n)'(z)| = 0$;
- repelling if $|(f^n)'(z)| > 1$;
- indifferent (or "neutral") if $|(f^n)'(z)| = 1$.

Theorem I.3.16 (Density of repelling cycles)

Normal families

Density of repelling periodic points

Definition I.3.15 (Periodic points)

A point $z \in X$ with $f^n(z) = z$ is called periodic.

(The smallest such n is the period of z.)

Such a periodic point is called

- attracting if $0 < |(f^n)'(z)| < 1$;
- superattracting if $|(f^n)'(z)| = 0$;
- repelling if $|(f^n)'(z)| > 1$;
- indifferent (or "neutral") if $|(f^n)'(z)| = 1$.

Theorem I.3.16 (Density of repelling cycles)

Normal families

Density of repelling periodic points

Definition I.3.15 (Periodic points)

A point $z \in X$ with $f^n(z) = z$ is called periodic.

(The smallest such n is the period of z.)

Such a periodic point is called

- attracting if $0 < |(f^n)'(z)| < 1$;
- superattracting if $|(f^n)'(z)| = 0$;
- repelling if $|(f^n)'(z)| > 1$;
- indifferent (or "neutral") if $|(f^n)'(z)| = 1$.

Theorem I.3.16 (Density of repelling cycles)