An overview of local dynamics in several complex variables

Liverpool, January 15, 2008

Marco Abate University of Pisa, Italy <u>http://www.dm.unipi.it/~abate</u>

Oynamics about a fixed point

Dynamics about a fixed point
Stable set (iterates do not escape)

Dynamics about a fixed point
Stable set (iterates do not escape)
Conjugacy helps

One complex variable

 $f(z) = \lambda z + a_r z^r + \cdots,$ $f(0) = 0, f'(0) = \lambda$

One complex variable

 $f(z) = \lambda z + a_r z^r + \cdots,$ $f(0) = 0, f'(0) = \lambda$

 λ : multiplier

One complex variable $f(z) = \lambda z + a_r z^r + \cdots,$ $f(0)=0, f'(0)=\lambda$ λ : multiplier

 \odot Hyperbolic: $|\lambda| \neq 0,1$

One complex variable $f(z) = \lambda z + a_r z^r + \cdots,$ $f(0)=0, f'(0)=\lambda$ λ : multiplier δ Hyperbolic: $|\lambda| \neq 0,1$

Superattracting: λ=0

One complex variable $f(z) = \lambda z + a_r z^r + \cdots,$ $f(0)=0, f'(0)=\lambda$ λ : multiplier \odot Hyperbolic: $|\lambda| \neq 0,1$ • Superattracting: $\lambda = 0$ \circ Parabolic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \in \mathbb{Q}$

One complex variable $f(z) = \lambda z + a_r z^r + \cdots,$ $f(0)=0, f'(0)=\lambda$ λ: multiplier \odot Hyperbolic: $|\lambda| \neq 0,1$ • Superattracting: $\lambda = 0$ \circ Parabolic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta\in\mathbb{Q}$ \circ Elliptic: $|\lambda| = 1, \lambda = e^{2\pi i \theta}, \theta \notin \mathbb{Q}$

One complex variable Hyperbolic: $|\lambda| \neq 0,1$

One complex variable Hyperbolic: $|\lambda| \neq 0,1$

Königs (1884): $f(z) = \lambda z + a_r z^r + \cdots$ is locally holomorphically conjugated to $g(z) = \lambda z$ (it is holomorphically linearizable).

One complex variable Hyperbolic: $|\lambda| \neq 0,1$

Königs (1884): $f(z) = \lambda z + a_r z^r + \cdots$ is locally holomorphically conjugated to $g(z) = \lambda z$ (it is holomorphically linearizable).

 $0 < |\lambda| < 1$: attracting; $|\lambda| > 1$: repelling

One complex variable Superattracting: $\lambda = 0$

One complex variable Superattracting: $\lambda = 0$

Böttcher (1904): $f(z) = a_r z^r + \cdots$ is locally holomorphically conjugated to $g(z) = z^r$

One complex variable Parabolic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \in \mathbb{Q}$

One complex variable Parabolic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \in \mathbb{Q}$

Leau-Fatou flower theorem (1897, 1919): $f(z) = z + a_r z^r + \cdots$ dynamical flower with r-1 petals

One complex variable Parabolic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \in \mathbb{Q}$ Leau-Fatou flower theorem (1897, 1919): $f(z) = z + a_r z^r + \cdots$ dynamical flower with r-1 petals Camacho (1978): f is locally topologically conjugated to $g(z) = z + z^r$ and formally conjugated to $h(z) = z + z^r + c z^{2r-1}$

One complex variable Parabolic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \in \mathbb{Q}$ Leau-Fatou flower theorem (1897, 1919): $f(z) = z + a_r z^r + \cdots$ dynamical flower with r-1 petals Camacho (1978): f is locally topologically conjugated to $g(z) = z + z^r$ and formally conjugated to $h(z) = z + z^r + c z^{2r-1}$

Écalle, Voronin (1981): (very complicated) holomorphic classification

One complex variable Elliptic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \notin \mathbb{Q}$

One complex variable Elliptic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \notin \mathbb{Q}$

Siegel-Bryuno (1942, 1965): if $\lambda \in B$ (full-measure subset of S^1) then all $f(z) = \lambda z + a_r z^r + \cdots$ are holomorphically linearizable. One complex variable Elliptic: $|\lambda|=1, \lambda=e^{2\pi i\theta}, \theta \notin \mathbb{Q}$

Siegel-Bryuno (1942, 1965): if $\lambda \in B$ (full-measure subset of S^1) then all $f(z) = \lambda z + a_r z^r + \cdots$ are holomorphically linearizable.

Cremer-Yoccoz (1927, 1988): if $\lambda \notin B$ (dense uncountable subset of S^1) then $f(z) = \lambda z + z^2$ is not holomorphically linearizable.

Several complex variables $f(z) = Az+P_r(z)+\cdots,$ $f(O)=O, df_O=A$

Several complex variables $f(z) = Az+P_r(z)+\cdots,$ $f(O)=O, df_O=A$

sp(A): multipliers

Several complex variables $f(z) = Az + P_r(z) + \cdots,$ $f(O)=O, df_O=A$ sp(A): multipliers

 \odot Hyperbolic: $\operatorname{sp}(A) \subset \mathbb{C}^* \backslash S^1$

Several complex variables $f(z) = Az + P_r(z) + \cdots,$ $f(O)=O, df_O=A$ sp(A): multipliers \odot Hyperbolic: $\operatorname{sp}(A) \subset \mathbb{C}^* \backslash S^1$ • Superattracting: A=O

Several complex variables $f(z) = Az + P_r(z) + \cdots,$ $f(O)=O, df_O=A$ sp(A): multipliers \odot Hyperbolic: $\operatorname{sp}(A) \subset \mathbb{C}^* \backslash S^1$ • Superattracting: A=O• Parabolic (tangent to identity): A = I

Several complex variables $f(z) = Az + P_r(z) + \cdots,$ $f(O)=O, df_O=A$ sp(A): multipliers \odot Hyperbolic: $\operatorname{sp}(A) \subset \mathbb{C}^* \backslash S^1$ • Superattracting: A=O• Parabolic (tangent to identity): A = I© Elliptic...

Several complex variables $f(z) = Az + P_r(z) + \cdots,$ $f(O)=O, df_O=A$ sp(A): multipliers \odot Hyperbolic: $\operatorname{sp}(A) \subset \mathbb{C}^* \backslash S^1$ • Superattracting: A=O• Parabolic (tangent to identity): A = IMixed cases...

Several complex variables Hyperbolic: $sp(A) \subset \mathbb{C}^* \setminus S^1$ Similarities

Several complex variables Hyperbolic: $sp(A) \subset \mathbb{C}^* \setminus S^1$ Similarities

Perron-Hadamard Stable Manifold Theorem (\geq 1928): E^s : sum of gen. eigenspaces of attracting eigenvalues E^u : sum of gen. eigenspaces of repelling eigenvalues Then there are complex manifolds $W^{s/u}$ tangent to $E^{s/u}$ at the origin such that $f^k(z) \rightarrow O$ iff $z \in W^s$ and $f^{-k}(z) \rightarrow O$ iff $z \in W^u$

Several complex variables Hyperbolic: $sp(A) \subset \mathbb{C}^* \setminus S^1$ Similarities

Perron-Hadamard Stable Manifold Theorem (\geq 1928): E^s : sum of gen. eigenspaces of attracting eigenvalues E^u : sum of gen. eigenspaces of repelling eigenvalues Then there are complex manifolds $W^{s/u}$ tangent to $E^{s/u}$ at the origin such that $f^k(z) \rightarrow O$ iff $z \in W^s$ and $f^{-k}(z) \rightarrow O$ iff $z \in W^u$

Grobman-Hartman (1959-60): f is locally topologically conjugated to Az

Several complex variables Hyperbolic: $sp(A) \subset \mathbb{C}^* \setminus S^1$ Differences

Several complex variables Hyperbolic: $sp(A) \subset \mathbb{C}^* \setminus S^1$ Differences

In general, f is **not** locally holomorphically conjugated to Az

Several complex variables Hyperbolic: $sp(A) \subset \mathbb{C}^* \setminus S^1$ Differences

In general, f is not locally holomorphically conjugated to Az

 $(\boldsymbol{\lambda}_1)^{k_1 \cdots} (\boldsymbol{\lambda}_n)^{k_n} - \boldsymbol{\lambda}_j$

In general, $f \mbox{ is not locally holomorphically conjugated to <math display="inline">Az$

 $(\lambda_1)^{k_1\cdots}(\lambda_n)^{k_n}-\lambda_j$

Resonances prevent formal linearization

In general, f is not locally holomorphically conjugated to Az $(\lambda_1)^{k_1\cdots} \ (\lambda_n)^{k_n} - \lambda_j$

Resonances prevent formal linearization
 Poincaré (1893): if f is attracting/repelling, then f is holomorphically linearizable iff it is formally linearizable

In general, f is not locally holomorphically conjugated to Az $(\lambda_1)^{k_1\cdots} (\lambda_n)^{k_n} - \lambda_j$

Resonances prevent formal linearization
 Poincaré (1893): if f is attracting/repelling, then f is holomorphically linearizable iff it is formally linearizable

Poincaré-Dulac (1912): f is formally conjugated to a map with only resonant monomials

In general, f is not locally holomorphically conjugated to Az $(\lambda_1)^{k_1\cdots} (\lambda_n)^{k_n} - \lambda_j$

Resonances prevent formal linearization
 Poincaré (1893): if f is attracting/repelling, then f is holomorphically linearizable iff it is formally linearizable
 Poincaré-Dulac (1912): f is formally conjugated to a map with only resonant monomials
 Small divisors prevent holomorphic linearization

Aside (by popular demand): Fatou-Bieberbach domains Take f globally defined on \mathbb{C}^n .

 \odot Take f globally defined on \mathbb{C}^n .

Assume attracting, no resonances: we get a local holomorphic linearization ϕ .

Take f globally defined on \mathbb{C}^n .

Assume attracting, no resonances: we get a local holomorphic linearization φ.
Extend φ to basin of attraction B≠ Cⁿ: the image is Cⁿ.

 \odot Take f globally defined on \mathbb{C}^n .

Assume attracting, no resonances: we get a local holomorphic linearization φ.
Extend φ to basin of attraction B≠ Cⁿ: the

image is \mathbb{C}^n .

No critical points of f in B implies no critical points of ϕ in B.

 \odot Take f globally defined on \mathbb{C}^n .

- Assume attracting, no resonances: we get a local holomorphic linearization ϕ .
- Sector Secto
- No critical points of f in B implies no critical points of ϕ in B.
- $n=1: \phi$ covering of \mathbb{C} , impossible.

 \odot Take f globally defined on \mathbb{C}^n .

- Assume attracting, no resonances: we get a local holomorphic linearization ϕ .
- Solution Extend ϕ to basin of attraction $B \neq \mathbb{C}^n$: the image is \mathbb{C}^n .
- No critical points of f in B implies no critical points of ϕ in B.
- $\circ n=1: \phi$ covering of \mathbb{C} , impossible.
- n > 1 and f globally invertible: B is biholomorphic to \mathbb{C}^n but not $\mathbb{C}^n!$

Take f globally defined on \mathbb{C}^n .

- Assume attracting, no resonances: we get a local holomorphic linearization ϕ .
- Sector Secto
- No critical points of f in B implies no critical points of ϕ in B.
- \circ $n=1: \phi$ covering of \mathbb{C} , impossible.
- n > 1 and f globally invertible: B is biholomorphic to \mathbb{C}^n but not $\mathbb{C}^n!$

 $f(z,w) = (w/2-z^2,z)$

Several complex variables Superattracting: A=O

Differences

Several complex variables Superattracting: A=O

Differences

In general, f is not locally topologically conjugated to $P_r(z)$

Several complex variables Superattracting: A=O

Differences

In general, f is not locally topologically conjugated to $P_r(\boldsymbol{z})$

Topological, holomorphic, formal classifications: wide open, as well as local dynamics. (Some results by Hubbard, Favre-Jonsson).

Characteristic direction: $P_r(v) = cv$

Characteristic direction: $P_r(v) = cv$ Degenerate: c=0; Non-degenerate otherwise.

Characteristic direction: P_r(v)=cv
 Degenerate: c=0; Non-degenerate otherwise.
 (Orbit tangent to v implies characteristic.)

Characteristic direction: P_r(v)=cv
Degenerate: c=0; Non-degenerate otherwise.
(Orbit tangent to v implies characteristic.)
Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O.

Characteristic direction: P_r(v)=cv
Degenerate: c=0; Non-degenerate otherwise.
(Orbit tangent to v implies characteristic.)
Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O.
It can be (asymptotically) tangent to v.

Characteristic direction: $P_r(v) = cv$ Degenerate: c=0; Non-degenerate otherwise. \circ (Orbit tangent to v implies characteristic.) Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O. \oslash It can be (asymptotically) tangent to v. Écalle-Hakim (1985, 1998): if v is a non-degenerate characteristic direction, then there is a Fatou flower for f tangent to v.

Characteristic direction: $P_r(v) = cv$ Degenerate: c=0; Non-degenerate otherwise. \odot (Orbit tangent to v implies characteristic.) Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O. \oslash It can be (asymptotically) tangent to v. Écalle-Hakim (1985, 1998): if v is a non-degenerate characteristic direction, then there is a Fatou flower for f tangent to v. \oslash A. (2001): if n=2 and O isolated fixed point, then there is a Fatou flower for f.

In general, parabolic curves are 1-dimensional only.

In general, parabolic curves are 1-dimensional only.

Topological, holomorphic, formal classifications: wide open, as well as local dynamics. (Some results by Écalle, A.-Tovena).

 $\omega(m) = \inf\{|(\lambda_1)^{k_1 \cdots (\lambda_n)^k} - \lambda_j|; 2 \leq k_1 + \cdots + k_n \leq m\}$

ω(m)=inf{|(λ₁)<sup>k₁... (λ_n)^{k_n}-λ_j|; 2≤k₁+...+ k_n≤m}
 Brjuno (1971): if -Σ_m2^{-m} log ω(2^{-m-1})<+∞ (Brjuno condition) then f is holomorphically linearizable
</sup>

ω(m)=inf{|(λ₁)<sup>k₁... (λ_n)^{k_n}-λ_j|; 2≤k₁+...+ k_n≤m}
Brjuno (1971): if -Σ_m2^{-m} log ω(2^{-m-1})<+∞ (Brjuno condition) then f is holomorphically linearizable
Pöschel (1986): partial linearization results
</sup>

Several complex variables Elliptic...: $f(z) = Az + P_r(z) + \cdots$

Differences

Several complex variables Elliptic...: $f(z) = Az + P_r(z) + \cdots$ Differences

Not known if Brjuno condition is necessary.

Several complex variables Elliptic...: $f(z) = Az + P_r(z) + \cdots$ Differences

Not known if Brjuno condition is necessary.

Convergence of a Poincaré-Dulac normal form?

An overview of local dynamics in several complex variables

Liverpool, January 15, 2008

Marco Abate University of Pisa, Italy <u>http://www.dm.unipi.it/~abate</u>