An overview of local dynamics in several complex variables

Liverpool, January 15, 2008

Marco Abate
University of Pisa, Italy http://www.dm.unipi.it/~abate

Local dynamics

Local dynamics

- Dynamics about a fixed point

Local dynamics

- Dynamics about a fixed point
- Stable set (iterates do not escape)

Local dynamics

- Dynamics about a fixed point
- Stable set (iterates do not escape)
- Conjugacy helps

One complex variable

$$
\begin{gathered}
f(z)=\lambda z+a_{r} z^{r}+\cdots, \\
f(0)=0, f^{\prime}(0)=\lambda
\end{gathered}
$$

One complex variable

$$
\begin{gathered}
f(z)=\lambda z+a_{r} z^{r}+\cdots, \\
f(0)=0, f^{\prime}(0)=\lambda
\end{gathered}
$$

λ : multiplier

One complex variable
 $$
f(z)=\lambda z+a_{r} z^{r}+\cdots,
$$
 $$
f(0)=0, f^{\prime}(0)=\lambda
$$

λ : multiplier

$$
|\lambda| \neq 0,1
$$

One complex variable
 $$
f(z)=\lambda z+a_{r} z^{r}+\cdots,
$$
 $$
f(0)=0, f^{\prime}(0)=\lambda
$$

λ : multiplier

$$
\begin{array}{r}
|\lambda| \neq 0,1 \\
\lambda=0
\end{array}
$$

One complex variable

$$
\begin{gathered}
f(z)=\lambda z+a_{r} z^{r}+\cdots, \\
f(0)=0, f^{\prime}(0)=\lambda
\end{gathered}
$$

λ : multiplier
$|\lambda| \neq 0,1$
(2)
$\lambda=0$

- Parabolic $|\lambda|=1, \lambda=e^{2 \pi i \theta}, \theta \in \mathbb{Q}$

One complex variable

$$
\begin{gathered}
f(z)=\lambda z+a_{r} z^{r}+\cdots \\
f(0)=0, f^{\prime}(0)=\lambda
\end{gathered}
$$

λ : multiplier
$|\lambda| \neq 0,1$
$\lambda=0$

- Parabolic: $|\lambda|=1, \lambda=e^{2 \pi i \theta}, \theta \in \mathbb{Q}$
- Elliptic: $|\lambda|=1, \lambda=e^{2 \pi i \theta}, \theta \notin \mathbb{Q}$

One complex variable

$|\lambda| \neq 0,1$

One complex variable

$$
|\lambda| \neq 0,1
$$

$$
\begin{aligned}
& \text { Königs (1884): } \\
& f(z)=\lambda z+a_{r} z^{r}+\cdots
\end{aligned}
$$

is locally holomorphically conjugated to

$$
g(z)=\lambda z
$$

(it is holomorphically linearizable).

One complex variable

$$
|\lambda| \neq 0,1
$$

$$
\begin{gathered}
\text { Königs (1884): } \\
f(z)=\lambda z+a_{r} z^{r}+\cdots
\end{gathered}
$$

is locally holomorphically conjugated to

$$
g(z)=\lambda z
$$

(it is holomorphically linearizable).
$0<|\lambda|<1$: attracting; $|\lambda|>1$: repelling

One complex variable

$\lambda=0$

One complex variable

$\lambda=0$

Böttcher (1904):
 $$
f(z)=a_{r} z^{r}+\cdots
$$

is locally holomorphically conjugated to

$$
g(z)=z^{r}
$$

One complex variable $|\lambda|=1, \lambda=\mathrm{e}^{2 \pi i \theta}, \theta \in \mathbb{Q}$

One complex variable
 $$
|\lambda|=1, \lambda=e^{2 \pi i \theta}, \theta \in \mathbb{Q}
$$

Leau-Fatou flower theorem $(1897,1919)$:

$$
f(z)=z+a_{r} z^{r}+\cdots
$$ dynamical flower with $r-1$ petals

One complex variable
 $$
|\lambda|=1, \lambda=e^{2 \pi i \theta}, \theta \in \mathbb{Q}
$$

Leau-Fatou flower theorem $(1897,1919)$:

$$
f(z)=z+a_{r} z^{r}+\cdots
$$

dynamical flower with $r-1$ petals

Camacho (1978):

f is locally topologically conjugated to

$$
g(z)=z+z^{r}
$$

and formally conjugated to

$$
h(z)=z+z^{r}+c z^{2 r-1}
$$

One complex variable
 $$
|\lambda|=1, \lambda=e^{2 \pi i 0}, \theta \in \mathbb{Q}
$$

Leau-Fatou flower theorem $(1897,1919)$:

$$
f(z)=z+a_{r} z^{r}+\cdots
$$

dynamical flower with $r-1$ petals

Camacho (1978):

f is locally topologically conjugated to

$$
g(z)=z+z^{r}
$$

and formally conjugated to

$$
h(z)=z+z^{r}+c z^{2 r-1}
$$

Écalle, Voronin (1981):
(very complicated) holomorphic classification

One complex variable
 $|\lambda|=1, \lambda=\mathrm{e}^{2 \pi i \theta}, \theta \notin \mathbb{Q}$

One complex variable $|\lambda|=1, \lambda=\mathrm{e}^{2 \pi i \theta}, \theta \notin \mathbb{Q}$

Siegel-Bryuno (1942, 1965):

if $\lambda \in B$ (full-measure subset of S^{1}) then all

$$
f(z)=\lambda z+a_{r} z^{r}+\cdots
$$

are holomorphically linearizable.

One complex variable $|\lambda|=1, \lambda=\mathrm{e}^{2 \pi i \theta}, \theta \notin \mathbb{Q}$

Siegel-Bryuno (1942, 1965):
if $\lambda \in B$ (full-measure subset of S^{1}) then all

$$
f(z)=\lambda z+a_{r} z^{r}+\cdots
$$

are holomorphically linearizable.
Cremer-Yoccoz (1927, 1988):
if $\lambda \notin B$ (dense uncountable subset of S^{1}) then

$$
f(z)=\lambda z+z^{2}
$$

is not holomorphically linearizable.

Several complex variables

$$
\begin{gathered}
f(z)=A z+P_{r}(z)+\cdots, \\
f(O)=O, d f o=A
\end{gathered}
$$

Several complex variables

$$
\begin{gathered}
f(z)=A z+P_{r}(z)+\cdots, \\
f(O)=O, d f o=A
\end{gathered}
$$

$\mathrm{sp}(A):$ multipliers

Several complex variables

$$
\begin{gathered}
f(z)=A z+P_{r}(z)+\cdots, \\
f(O)=O, d f o=A
\end{gathered}
$$

$\operatorname{sp}(A):$ multipliers
-

$$
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}
$$

Several complex variables

$$
\begin{gathered}
f(z)=A z+P_{r}(z)+\cdots, \\
f(O)=O, d f o=A
\end{gathered}
$$

$$
\mathrm{sp}(A): \text { multipliers }
$$

-

$$
\begin{gathered}
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1} \\
A=O
\end{gathered}
$$

Several complex variables

$$
\begin{gathered}
f(z)=A z+P_{r}(z)+\cdots, \\
f(O)=O, d f o=A
\end{gathered}
$$

$$
\operatorname{sp}(A): \text { multipliers }
$$

-

$$
\begin{gathered}
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1} \\
A=O
\end{gathered}
$$

-

$$
A=I
$$

Several complex variables

$$
\begin{gathered}
f(z)=A z+P_{r}(z)+\cdots, \\
f(O)=O, d f o=A
\end{gathered}
$$

$$
\operatorname{sp}(A): \text { multipliers }
$$

-

$$
\begin{gathered}
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1} \\
A=O
\end{gathered}
$$

-

$A=I$

- Elliptic...

Several complex variables

$$
\begin{gathered}
f(z)=A z+P_{r}(z)+\cdots, \\
f(O)=O, d f o=A
\end{gathered}
$$

$$
\operatorname{sp}(A): \text { multipliers }
$$

-

$$
\begin{gathered}
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1} \\
A=O
\end{gathered}
$$

-

$$
A=I
$$

- Elliptic...
- Mixed cases...

Several complex variables $\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}$
 Similarities

Several complex variables

$$
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}
$$

Similarities

Perron-Hadamard Stable Manifold Theorem ($\geqq 1928$): E^{s} : sum of gen. eigenspaces of attracting eigenvalues E^{u} : sum of gen. eigenspaces of repelling eigenvalues

Then there are complex manifolds W^{s} / u tangent to $E^{s / u}$ at the origin such that $f^{k}(z) \rightarrow O$ iff $z \in W^{s}$ and $f^{k}(z) \rightarrow O$ iff $z \in W^{u}$

Several complex variables

$$
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}
$$

Similarities

Perron-Hadamard Stable Manifold Theorem (≥ 1928): $E^{\text {s: }}$: sum of gen. eigenspaces of attracting eigenvalues E^{u} : sum of gen. eigenspaces of repelling eigenvalues

Then there are complex manifolds W^{s} / u tangent to $E^{s / u}$ at the origin such that $f^{k}(z) \rightarrow O$ iff $z \in W^{s}$ and $f^{k}(z) \rightarrow O$ iff $z \in W^{u}$

Grobman-Hartman (1959-60):
f is locally topologically conjugated to $A z$

Several complex variables $\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}$
 Differences

Several complex variables $\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}$
 Differences

In general, f is not locally holomorphically conjugated to $A z$

Several complex variables $\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}$
 Differences

In general, f is not locally holomorphically conjugated to $A z$
$\left.\left(\lambda_{1}\right)^{k_{1} \cdots(} \lambda_{n}\right)^{k_{n}-\lambda_{j}}$

Several complex variables
 $$
\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}
$$

Differences

In general, f is not locally holomorphically conjugated to $A z$

$$
\left(\lambda_{1}\right)^{k_{1} \cdots}\left(\lambda_{n}\right)^{k_{n}-\lambda_{j}}
$$

- Resonances prevent formal linearization

Several complex variables $\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}$

Differences

In general, f is not locally holomorphically conjugated to $A z$

$$
\left(\lambda_{1}\right)^{k_{1} \cdots}\left(\lambda_{n}\right)^{k_{n}-\lambda_{j}}
$$

- Resonances prevent formal linearization - Poincaré (1893): if f is attracting/repelling, then f is holomorphically linearizable iff it is formally linearizable

Several complex variables $\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}$

Differences

In general, f is locally holomorphically conjugated to $A z$

$$
\left(\lambda_{1}\right)^{k_{1} \cdots}\left(\lambda_{n}\right)^{k_{n}-\lambda_{j}}
$$

- Resonances prevent formal linearization - Poincaré (1893): if f is attracting/repelling, then f is holomorphically linearizable iff it is formally linearizable
- Poincaré-Dulac (1912): f is formally conjugated to a map with only resonant monomials

Several complex variables $\operatorname{sp}(A) \subset \mathbb{C}^{*} \backslash S^{1}$

Differences

In general, f is locally holomorphically conjugated to $A z$

$$
\left(\lambda_{1}\right)^{k_{1} \cdots}\left(\lambda_{n}\right)^{k_{n}-\lambda_{j}}
$$

- Resonances prevent formal linearization - Poincaré (1893): if f is attracting/repelling, then f is holomorphically linearizable iff it is formally linearizable
- Poincaré-Dulac (1912): f is formally conjugated to a map with only resonant monomials
- Small divisors prevent holomorphic linearization

Aside (by popular demand):
Fatou-Bieberbach domains

Aside (by popular demand): Fatou-Bieberbach domains
 - Take f globally defined on \mathbb{C}^{n}.

Aside (by popular demand): Fatou-Bieberbach domains

- Take f globally defined on \mathbb{C}^{n}.
- Assume attracting, no resonances: we get a local holomorphic linearization ϕ.

Aside (by popular demand): Fatou-Bieberbach domains

- Take f globally defined on \mathbb{C}^{n}.
- Assume attracting, no resonances: we get a local holomorphic linearization ϕ.
- Extend ϕ to basin of attraction $B \neq \mathbb{C}^{n}$: the image is \mathbb{C}^{n}.

Aside (by popular demand):

Fatou-Bieberbach domains

- Take f globally defined on \mathbb{C}^{n}.
- Assume attracting, no resonances: we get a local holomorphic linearization ϕ.
- Extend ϕ to basin of attraction $B \neq \mathbb{C}^{n}$: the image is \mathbb{C}^{n}.
- No critical points of f in B implies no critical points of ϕ in B.

Aside (by popular demand):

Fatou-Bieberbach domains

- Take f globally defined on \mathbb{C}^{n}.
- Assume attracting, no resonances: we get a local holomorphic linearization ϕ.
- Extend ϕ to basin of attraction $B \neq \mathbb{C}^{n}$: the image is \mathbb{C}^{n}.
- No critical points of f in B implies no critical points of ϕ in B.
- $n=1$: ϕ covering of \mathbb{C}, impossible.

Aside (by popular demand):

Fatou-Bieberbach domains

- Take f globally defined on \mathbb{C}^{n}.
- Assume attracting, no resonances: we get a local holomorphic linearization ϕ.
- Extend ϕ to basin of attraction $B \neq \mathbb{C}^{n}$: the image is \mathbb{C}^{n}.
- No critical points of f in B implies no critical points of ϕ in B.
- $n=1: \phi$ covering of \mathbb{C}, impossible.
- $n>1$ and f globally invertible: B is biholomorphic to \mathbb{C}^{n} but not $\mathbb{C}^{n!}$

Aside (by popular demand):

Fatou-Bieberbach domains

- Take f globally defined on \mathbb{C}^{n}.
- Assume attracting, no resonances: we get a local holomorphic linearization ϕ.
- Extend ϕ to basin of attraction $B \neq \mathbb{C}^{n}$: the image is \mathbb{C}^{n}.
- No critical points of f in B implies no critical points of ϕ in B.
- $n=1: \phi$ covering of \mathbb{C}, impossible.
- $n>1$ and f globally invertible: B is biholomorphic to \mathbb{C}^{n} but not $\mathbb{C}^{n!}$

$$
f(z, w)=\left(w / 2-z^{2}, z\right)
$$

Several complex variables

$A=O$

Differences

Several complex variables

$A=O$

Differences

In general, f is not locally topologically conjugated to $P_{r}(z)$

Several complex variables

 $A=O$
Differences

In general, f is not locally topologically

 conjugated to $P_{r}(z)$Topological, holomorphic, formal classifications: wide open, as well as local dynamics.
(Some results by Hubbard, Favre-Jonsson).

Several complex variables

$$
f(z)=z+P_{r}(z)+
$$

Similarities

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Similarities

- Characteristic direction: $P_{r}(v)=c v$

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Similarities

- Characteristic direction: $P_{r}(v)=c v$
- Degenerate: $c=0$; Non-degenerate otherwise.

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Similarities

- Characteristic direction: $P_{r}(v)=c v$
- Degenerate: $c=0$; Non-degenerate otherwise.
- (Orbit tangent to v implies characteristic.)

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Similarities

- Characteristic direction: $P_{r}(v)=c v$
- Degenerate: $c=0$; Non-degenerate otherwise.
- (Orbit tangent to v implies characteristic.)
- Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O.

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Similarities

- Characteristic direction: $P_{r}(v)=c v$ - Degenerate: $c=0$; Non-degenerate otherwise.
- (Orbit tangent to v implies characteristic.)
- Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O.
- It can be (asymptotically) tangent to v.

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Similarities

- Characteristic direction: $P_{r}(v)=c v$
- Degenerate: $c=0$; Non-degenerate otherwise.
- (Orbit tangent to v implies characteristic.)
- Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O.
- It can be (asymptotically) tangent to v.
- Écalle-Hakim (1985, 1998): if v is a non-degenerate characteristic direction, then there is a Fatou flower for f tangent to v.

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Similarities

- Characteristic direction: $P_{r}(v)=c v$
- Degenerate: $c=0$; Non-degenerate otherwise.
- (Orbit tangent to v implies characteristic.)
- Parabolic curve: 1-dimensional holomorphic f-invariant curve, attracted by O.
- It can be (asymptotically) tangent to v.
- Écalle-Hakim (1985, 1998): if v is a non-degenerate characteristic direction, then there is a Fatou flower for f tangent to v.
- A. (2001): if $n=2$ and O isolated fixed point, then there is a Fatou flower for f.

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Differences

Several complex variables

$f(z)=z+P_{r}(z)+\cdots$

Differences

In general, parabolic curves are 1-dimensional

Several complex variables

$$
f(z)=z+P_{r}(z)+\cdots
$$

Differences

In general, parabolic curves are 1-dimensional

Topological, holomorphic, formal classifications: wide open, as well as local dynamics.
(Some results by Écalle, A.-Tovena).

Several complex variables $f(z)=A z+P_{r}(z)+\cdots$

Similarities

Several complex variables

$$
f(z)=A z+P_{r}(z)+\cdots
$$

Similarities

$\bullet \omega(m)=\inf \left\{\left|\left(\lambda_{1}\right)^{k_{1} \cdots}\left(\lambda_{n}\right)^{k_{n}-\lambda_{j}}\right| ; 2 \leq k_{1}+\cdots+k_{n} \leq m\right\}$

Several complex variables

$$
f(z)=A z+P_{r}(z)+\cdots
$$

Similarities

๑ $\omega(m)=\inf \left\{\left|\left(\lambda_{1}\right)^{k_{1} \cdots}\left(\lambda_{n}\right)^{k_{n}}-\lambda_{j}\right| ; 2 \leq k_{1}+\cdots+k_{n} \leq m\right\}$

- Brjuno (1971): if $-\Sigma_{m} 2^{-m} \log \omega\left(2^{-m-1}\right)<+\infty$ (Brjuno condition) then f is holomorphically linearizable

Several complex variables

$$
f(z)=A z+P_{r}(z)+\cdots
$$

Similarities

๑ $\omega(m)=\inf \left\{\left|\left(\lambda_{1}\right)^{k_{1} \cdots}\left(\lambda_{n}\right)^{k_{n}-\lambda_{j}}\right| ; 2 \leq k_{1}+\cdots+k_{n} \leq m\right\}$ - Brjuno (1971): if $-\Sigma_{m} 2^{-m} \log \omega\left(2^{-m-1}\right)<+\infty$ (Brjuno condition) then f is holomorphically linearizable - Pöschel (1986): partial linearization results

Several complex variables
 $$
f(z)=A z+P_{r}(z)+\cdots
$$

Differences

Several complex variables $f(z)=A z+P_{r}(z)+\cdots$

Differences

Not known if Brjuno condition is necessary.

Several complex variables $f(z)=A z+P_{r}(z)+\cdots$

Differences

Not known if Brjuno condition is necessary.
Convergence of a Poincaré-Dulac normal form?

An overview of local dynamics in several complex variables

Liverpool, January 15, 2008

Marco Abate
University of Pisa, Italy http://www.dm.unipi.it/~abate

