Dynamical properties of a family of entire functions

Dominique Fleischmann
d.s.fleischmann@open.ac.uk
Department of Mathematics
The Open University

January 2008

Outline

(1) Introduction

(2) The function has a Baker domain

3 Distribution of singular values

Fatou and Julia sets

Let f be a meromorphic function which is not rational of degree one and denote by $f^{n}, n \in \mathbb{N}$, the nth iterate of f.

- The Fatou set, $F(f)$, is defined to be the set of points, $z \in \mathbb{C}$, such that the sequence $\left\{f^{n}\right\}_{n \in \mathbb{N}}$ is well-defined, meromorphic and forms a normal family in some neighbourhood of z.
- The complement, $J(f)$, of $F(f)$ is called the Julia set of f.

Note: A family of functions is "normal" at a point z if every sequence in it contains a subsequence that is convergent on a neighbourhood of z.

Examples of Julia sets of rational functions

Figure: Douady Rabbit (courtesy of Peter Kankowski)

Examples of Julia sets of rational functions (continued)

Figure: Dendrite (courtesy of Peter Kankowski)

Some properties of $J(f)$ and $F(f)$

- By definition, for any rational or transcendental function $f, F(f)$ is open and $J(f)$ is closed.
- Both $F(f)$ and $J(f)$ are completely invariant.
- $J(f)$ is a perfect set; that is $J(f)$ is closed, non-empty and contains no isolated points.
- Either $J(f)=\mathbb{C}$ or $J(f)$ has empty interior.
- If $z_{0} \in J(f)$ is not an exceptional point, then $J(f)=\overline{\mathcal{O}^{-}\left(z_{0}\right)}$ where $\mathcal{O}^{-}\left(z_{0}\right)$ is the set of points $w \in \mathbb{C}$ such that $f^{n}(w)=z_{0}$ for some $n \in \mathbb{N}$.

Note: Sketch.

Types of Fatou components

Distinction between transcendental entire functions and polynomials
Common:

- attracting
- parabolic
- Siegel disc

Transcendental entire only:

- wandering
- Baker domain

Note: A "Fatou component" is a maximal open connected subset of $F(f)$.
Note: The framework for categorization of components is due to
Fatou and Julia (common) and Baker (transcendental entire).
Note: Fatou's example. $f(z)=z+1+e^{-z}$.

Link between order of growth and unbounded Fatou components

In 1981 (J. Austral. Math. Soc.) Baker proved

Theorem

If for transcendental entire f there is an unbounded invariant component of $F(f)$, then the growth off must exceed order $1 / 2$, minimal type.

- Is the value $1 / 2$ sharp?
- That is, can an example be found of a transcendental entire function with order of growth $1 / 2$ mean type which has an invariant unbounded Fatou component?

Note: There is a formal definition for "Order" and "Type" but I shall not give it here.

The family of functions

Baker demonstrated that the value $1 / 2$ is indeed sharp by introducing the example

$$
\begin{equation*}
f_{c}(z)=z+\frac{\sin \sqrt{z}}{\sqrt{z}}+c, \quad \text { for } c \in \mathbb{R} \tag{1}
\end{equation*}
$$

- Entire $\left(\frac{\sin \sqrt{z}}{\sqrt{z}}=1-\frac{z}{3!}+\frac{z^{2}}{5!}-\frac{z^{3}}{7!}+\ldots\right)$,
- Transcendental,
- Order $1 / 2$ (the order of $e^{z^{a}}$ is a).

Computer experiments

Figure: Julia set of f_{c} for $c=6$ and "typical" orbits

Computer experiments (continued)

Figure: Julia set of f_{c} for $c=0.05$ and "typical" orbits

Baker's original result

Proposition

The function f_{c} has a Baker domain for sufficiently large c.
Baker constructed a domain D symmetric about the real axis with a (truncated) parabolic boundary. He proved that $f(D) \subset D$, by showing that

$$
\left|\frac{\sin \sqrt{z}}{\sqrt{z}}\right|<\operatorname{dist}(z+c, \partial D)
$$

for $z \in D$ and c sufficiently large. The precise criterion is

$$
\frac{1}{2} c\left(x+1+\frac{1}{2} c\right)^{-1 / 2}>e|z|^{-1 / 2}, \quad \text { for } z=x+i y \in D
$$

which is true when $c>6$ so f_{c} has a Baker domain for such c.

Baker's parabola

Did Baker exhaust all possible values of c ?

With more care, similar arguments can be used to show that an invariant domain exists for $c>1$.
However, if $0<c<1$, a serious problem arises since $\boldsymbol{n} \boldsymbol{o}$ invariant parabolic domain exists.

- Is 1 a significant constant?
- Does f_{c} have a Baker domain for smaller values of c ?

A new proof strategy would be required for smaller c.

Statement of new Theorem

Theorem

For all $c>0$, the function f_{c} defined by

$$
f_{c}(z)=z+\frac{\sin \sqrt{z}}{\sqrt{z}}+c
$$

has an invariant Baker domain U, symmetric about the real axis and containing the interval $\left(x_{c}, \infty\right)$ for some $x_{c}>0$.

Key ideas of proof

We begin by observing that

- there exists some $x_{0} \in \mathbb{R}$ such that

$$
f(x)>x+\frac{c}{2}
$$

for all $x \geq x_{0}$, and

- Any curve defined by the interval $\left[x_{1}, \infty\right)$ is invariant, where $x_{1} \geq x_{0}$.
The rest of the proof is concerned with showing that there exists a
Fatou component U containing $\left[x_{1}, \infty\right)$ for some $x_{1}>x_{0}$.

Key ideas of proof (continued)

We consider the auxilliary function g_{c} defined by

$$
\begin{align*}
g_{c}(w)=h^{-1} \circ f_{c} \circ h(w)=\sqrt{f_{c}\left(w^{2}\right)} & =\sqrt{w^{2}+\frac{\sin w}{w}+c} \\
& =w \sqrt{1+\frac{\sin w}{w^{3}}+\frac{c}{w^{2}}} \tag{2}
\end{align*}
$$

which is analytic when $1+\frac{\sin w}{w^{3}}+\frac{c}{w^{2}}$ is away from the origin and negative real axis.
For $K \geq 0$ and $L>0$ we define the open half-strip R by

$$
R(K, L)=\{w: \Re(w)>K,|\Im(w)|<L\} .
$$

Note: g_{c} is not meromorphic, so $F\left(g_{c}\right)$ is not defined.

Change of variables - mapping of parabola to strip

Dynamics in the w-plane

Although $R(K, L)$ is not invariant for $0<c<1$, computer experiments do suggest that orbits omit a large part of \mathbb{C}.

Dominique Fleischmann
Dynamical properties of a family of entire functions

Key ideas of proof (continued)

We show that for any $c>0$ there are two strips $R(K, L)$ and $R(K, 2 L)$ such that

$$
g_{c}^{n}(R(K, L)) \subset R(K, 2 L), \quad \text { for all } n \in \mathbb{N}
$$

Figure: The sets $R(K, L)$ and $R(K, 2 L)$

Key steps to show that $g(R(K, L)) \subset R(K, 2 L)$

- Expand g_{c} using the binomial theorem:

$$
g_{c}(w)=w+\frac{\sin w}{2 w^{2}}+\frac{c}{2 w}+B(w) .
$$

- Real and imaginary parts of the function:
$g_{c}(w)=w+\delta u+i \delta v$, where
- $\delta u=\Re\left(\frac{\sin w}{2 w^{2}}\right)+\Re\left(\frac{c}{2 w}\right)+\Re(B(w))$, and
- $\delta v=\Im\left(\frac{\sin w}{2 w^{2}}\right)+\Im\left(\frac{c}{2 w}\right)+\Im(B(w))$.
- Estimate δu and δv.

Symmetry

Since f_{c} and g_{c} are symmetrical in the sense that

$$
f_{c}(\bar{z})=\overline{f_{c}(z)} \quad \text { and } g_{c}(\bar{w})=\overline{g_{c}(w)},
$$

it suffices to consider $w \in R^{+}(K, L)$.
Note: Sketch

Key ideas of proof (continued)

It can be shown that

- $\delta u=\frac{c}{2 u}+O\left(\frac{1}{u^{2}}\right)$ and
- $\delta v=\frac{\cos u \sinh v}{2 u^{2}}-\frac{c v}{2 u^{2}}+O\left(\frac{v}{u^{3}}\right)$, as $|w| \rightarrow \infty$ in $R^{+}(K, L)$
for K sufficiently large.

When $0<c<1$ and $w=2 \pi n+i v \in R^{+}(K, L)$, we have $\delta v>0$, so $R^{+}(K, L)$ (and hence $R(K, L)$) is not invariant under g_{c} no matter how small L.

Key ideas of proof (continued)

Writing $w_{n}=u_{n}+i v_{n}=g_{c}^{n}\left(w_{0}\right)$, from the form of δu and δv we can deduce that

- orbits move to the right by $\delta u_{n} \approx \frac{c}{2 u_{n}}$, and
- the growth of the imaginary part of the orbit is controlled as the real part increases from u_{0} to $u_{0}+2 \pi$. In particular,

$$
\left|v_{n}-v_{0}\right|<A \frac{v_{0}}{u_{0}}
$$

for every iterate w_{n} in $R^{+}(K, 2 L)$ with real part lying between u_{0} and $u_{0}+2 \pi$.

We use this to improve the particular estimate for $v_{N}-v_{0}$, where $u_{N} \approx u_{0}+2 \pi$.
Note: Sketch

Key ideas of proof (continued)

In fact, $0<v_{N}<v_{0}$ for all $w_{0} \in R^{+}(K, L) \subset R^{+}(K, 2 L)$.

Below we outline why this is so.

Key ideas of proof (continued)

$$
\begin{aligned}
v_{N}-v_{0} & =\sum_{n=0}^{N-1} \delta v_{n} \\
& =\frac{1}{2} \sum_{n=0}^{N-1} \frac{\sinh v_{n} \cos u_{n}}{u_{n}^{2}}-\frac{c}{2} \sum_{n=0}^{N-1} \frac{v_{n}}{u_{n}^{2}}+A \sum_{n=0}^{N-1} \frac{v_{n}}{u_{n}^{3}},
\end{aligned}
$$

for some constant A. Now the last sum is much smaller as $u_{0} \rightarrow \infty$, so the task is to show that

$$
\frac{1}{2} \sum_{n=0}^{N-1} \frac{\sinh v_{n} \cos u_{n}}{u_{n}^{2}}<\frac{c}{2} \sum_{n=0}^{N-1} \frac{v_{n}}{u_{n}^{2}}
$$

Key ideas of proof (continued)

The key problem here is that $\sinh v_{n}>c v_{n}$ when $c<1$, so the $\cos u_{n}$ term must be exploited to reduce the size of the left-hand side; that is, there is significant cancelation.

Key ideas of proof (continued)

Now

$$
\frac{\pi}{12} \frac{v_{0}}{u_{0}}<\frac{c}{2} \sum_{n=0}^{N-1} \frac{v_{n}}{u_{n}^{2}}
$$

since $N>\frac{4 \pi u_{0}}{3 c}$, and

$$
\frac{1}{2} \sum_{n=0}^{N-1} \frac{\sinh v_{n} \cos u_{n}}{u_{n}^{2}} \approx \frac{\sinh v_{0}}{2 u_{0}^{2}} \sum_{n=0}^{N-1} \cos u_{n}+\text { smaller terms }
$$

So it suffices to show that

$$
\sum^{N-1} \cos u_{n}=O(1) \quad \text { as } u_{0} \rightarrow \infty
$$

Note: v_{0} is very close to v_{n}.

Key ideas of proof (continued)

We do this by noting that $\sum_{n=0}^{N-1} \delta u_{n} \cos u_{n}$ is a Riemann sum for

$$
\int_{0}^{2 \pi} \cos u d u
$$

Note: It is crucial that the factor δu_{n} can be introduced without too much error, since $\delta u_{n} \approx \frac{c}{2 u_{n}} \approx \frac{2 \pi}{N}$.

Generalizing the key steps

If x_{1} is sufficiently large (and $x_{1}>x_{0}$), then for any $w_{0} \in R\left(x_{1}, L\right)$

- w_{n} moves to the right and $u_{N} \approx u_{0}+2 \pi$, and
- $0<v_{n}<2 L$ for all $n \in\{0, \ldots, N\}$ and $0<v_{N}<v_{0}$.

By induction $w_{n} \in R\left(x_{1}, L\right)$, for all $n \in \mathbb{N}$.
For $z_{0} \in h\left(R\left(x_{1}, L\right)\right) \equiv P$ we have $z_{n} \in h\left(R\left(x_{1}, 2 L\right)\right) \equiv Q$ for all $n \in \mathbb{N}$.

Concluding the proof

- $\mathbb{C} \backslash Q$ contains more than 3 points, so by Montel's theorem, $P \subset F\left(f_{c}\right)$.
- Since P is connected and unbounded, there exists a single unbounded component, U say, of $F\left(f_{c}\right)$ such that $P \subset U$.
- From above,
- $\left[x_{1}, \infty\right) \subset P \subset U$ is invariant, and
- $f_{c}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \in\left[x_{1}, \infty\right)$
- Thus all points in U tend to infinity under f_{c}, so U is a Baker domain.

This concludes the proof.

Background

For $p \in \mathbb{N}$, we denote by

$$
\operatorname{sing}\left(f^{-p}\right)
$$

the set of finite singularities of f^{-p}; that is, the set of points $w \in \mathbb{C}$ such that some branch of f^{-p} cannot be analytically continued through w.

The set $\operatorname{sing}\left(f^{-1}\right)$ consists of the critical values and finite asymptotic values of f, and we refer to these points as singular values of f.

Let γ be a curve starting at zero and tending to ∞. Suppose there exists $\alpha \in \mathbb{C}$ such that $f(z) \rightarrow \alpha$ as $z \rightarrow \infty$ on γ. Then α is a finite asymptotic value of f.

Bargmann's Theorem (J. Anal. Math.) 2001

Theorem

Let f be an entire function with an invariant Baker domain. Then there exist constants $C>1$ and $r_{0}>0$ such that:

$$
\{z: r / C<|z|<C r\} \cap \operatorname{sing}\left(f^{-1}\right) \neq \emptyset, \quad \text { for } r \geq r_{0} .
$$

Note: Generalized by Rippon and Stallard to meromorphic functions that have a finite number of poles and a p-cycle of Baker domains with $\operatorname{sing}\left(f^{-1}\right)$ replaced by $\operatorname{sing}\left(f^{-p}\right)$.

Comment on Bargmann's Theorem

It is natural to ask if Bargmann's result is sharp.
Many known examples of functions satisfying the hypotheses have the property that $\operatorname{sing}\left(f^{-1}\right)$ meets every annulus of some uniform width.

For example $f(z)=z+e^{-z}+1$ has an invariant Baker domain with no finite asymptotic values and critical points $\{2 n \pi i: n \in \mathbb{Z}\}$ so $\operatorname{sing}\left(f^{-1}\right)=\{2 n \pi i+2: n \in \mathbb{Z}\}$.

f_{c} has sparsely distributed singular values

Theorem

For the function

$$
f_{c}(z)=z+\frac{\sin \sqrt{z}}{\sqrt{z}}+c, \quad c>0
$$

the set $\mathbb{C} \backslash \operatorname{sing}\left(f_{c}^{-1}\right)$ contains an infinite sequence of nested annuli $\left\{A_{n}\right\}$ with $A_{n}=\left\{z: a_{n}<|z|<a_{n}+K n\right\}$ where $\left\{a_{n}\right\}$ is an increasing sequence which tends to ∞ and where K is a positive constant.

This is the first example of a transcendental entire function with such sparsely distributed singular values.
Whereas this does not demonstrate the sharpness of Bargmann's result, it does close the gap somewhat.

