An introduction to derived and triangulated categories

Jon Woolf

PSSL, Glasgow, 6–7th May 2006

Abelian categories and complexes

Derived categories and functors arise because

- we want to work with complexes but only up to an equivalence relation which retains cohomological information,
- 2. many interesting functors between abelian categories are only left (or right) exact.

A is abelian if A is additive and morphisms in A have kernels and cokernels. Examples 1. 1. $Ab = Abelian \ groups$,

- 2. \mathbf{R} -Mod = left modules over a ring R,
- 3. \mathbf{R} -Mod(X) = sheaves of R-modules on a topological space X.

Theorem 1 (Freyd–Mitchell). If A is a small abelian category then A embeds fully faithfully in R-Mod for some ring R.

Often we can associate a **cochain complex**

 $A^{\cdot} = \cdots \rightarrow A^{i} \xrightarrow{d} A^{i+1} \xrightarrow{d} A^{i+2} \rightarrow \cdots$

in A to 'some mathematical object'. (Cochain complex means $d^2 = 0$ or ker $d \supset \operatorname{im} d$.) For example

Space
$$X \longmapsto C^*_T(X; \mathbb{Z})$$

Sheaf $\mathcal{F} \longmapsto \check{C}^*(\mathcal{U}; F)$

In both these cases there is no unique way to do this (we need to choose a triangulation Tin the first case and an open cover \mathcal{U} in the second) *but* the **cohomology groups**

$$H^{i}(A^{\cdot}) = \frac{\ker d : A^{i} \to A^{i+1}}{\operatorname{im} d : A^{i-1} \to A^{i}}$$

are well-defined up to isomorphism in A.

The H^i measure the failure of A^{\cdot} to be **exact** i.e. for ker $d = \operatorname{im} d$ eg.

$$0 \to A \xrightarrow{f} B \to 0$$

has $H^0 = \ker f$ and $H^1 = \operatorname{coker} f$.

First wish: find a good equivalence relation on complexes which retains this cohomological information.

For complexes A^{\cdot} , B^{\cdot} in A define

$$\operatorname{Hom}^{i}(A^{\cdot}, B^{\cdot}) = \bigoplus_{j} \operatorname{Hom}(A^{j}, A^{i+j})$$

There is a differential

$$\delta : \operatorname{Hom}^{i}(A^{\cdot}, B^{\cdot}) \longrightarrow \operatorname{Hom}^{i+1}(A^{\cdot}, B^{\cdot})$$
$$f \longmapsto f d_{A} + (-1)^{i+1} d_{B} f$$

with the property that

 $f \in \operatorname{Hom}^{0}(A^{\cdot}, B^{\cdot})$ is $\begin{cases} \text{ a cochain map if } \delta f = 0 \\ \text{null-homotopic if } f = \delta g \end{cases}$ In particular $H^{0}\operatorname{Hom}^{\cdot}(A^{\cdot}, B^{\cdot}) = \text{homotopy classes}$ of cochain maps.

Com(A) has objects complexes in A and morphisms cochain maps (of degree 0).

 $\mathbf{K}(\mathbf{A})$ has objects complexes in \mathbf{A} and morphisms homotopy classes of cochain maps.

A cochain map $f: A^{\cdot} \to B^{\cdot}$ induces maps

$$H^i(f): H^i(A^{\cdot}) \to H^i(B^{\cdot}).$$

Homotopic cochain maps induce the same map on cohomology.

Say f is a **quasi-isomorphism** (QI) if it induces isomorphisms for all i.

Examples 2. 1. homotopy equivalences are QIs

2. not all QIs are homotopy equivalences eg.

$$\begin{array}{cccc} A^{\cdot} = & 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0 \\ & \downarrow & \downarrow & \downarrow \\ B^{\cdot} = & 0 \longrightarrow 0 \longrightarrow \mathbb{Z}/2 \longrightarrow 0 \end{array}$$

QIs generate an equivalence relation on the objects of Com(A) which is stronger than homotopy equivalence.

The derived category D(A) is the localisation of Com(A) at the class of QIs: it has the same objects as Com(A) and morphisms given by diagrams

$$A^{\cdot} \leftarrow C_0^{\cdot} \to \cdots \to C_n^{\cdot} \leftarrow B^{\cdot}$$

where the wrong-way arrows are QIs.

For technical reasons we usually want to consider the full subcategory of bounded below, bounded above or bounded complexes and we write

$$D^+(A)$$
 $D^-(A)$ $D^b(A)$

accordingly.

Fact: $D^+(A)$ is the localisation of $K^+(A)$ at QIs i.e. inverting QIs automatically identifies homotopic cochain maps!

The class of QIs in K(A) is **localising** i.e.

1. $1_X \in QI$ and $s, t \in QI$ implies $st \in QI$,

2. We can complete diagrams as below

3. sf = sg for $s \in QI \implies ft = gt$ for some $t \in QI$.

Follows that morphisms in $D^+(A)$ can be represented by 'roofs'

with composition given by 2.

Functors between abelian categories

Most of the functors in which we are interested are **additive** i.e.

 $Hom(A, B) \rightarrow Hom(FA, FB)$

is a homomorphism of abelian groups eg.

$$-\otimes A : \mathbf{Ab} \rightarrow \mathbf{Ab}$$

 $\mathsf{Hom}(A, -) : \mathbf{Ab} \rightarrow \mathbf{Ab}$
 $\mathsf{Hom}(-, A) : \mathbf{Ab}^{op} \rightarrow \mathbf{Ab}$

Say an additive functor F is **exact** if it preserves kernels and cokernels, equivalently

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$
 exact
 $\implies 0 \rightarrow FA \rightarrow FB \rightarrow FC \rightarrow 0$ exact

Say it is **left exact** if $0 \rightarrow FA \rightarrow FB \rightarrow FC$ is exact and **right exact** if $0 \rightarrow FA \rightarrow FB \rightarrow FC$ is exact.

8

Examples 3. Consider the complex of abelian groups

$$A^{\cdot} = 0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z}/2 \rightarrow 0.$$

1.
$$A^{\cdot} \otimes \mathbb{Z}/2 = 0 \to \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{1} \mathbb{Z}/2 \to 0$$

2. Hom($\mathbb{Z}/2, A^{\cdot}$) = 0 \rightarrow 0 \rightarrow 0 \rightarrow $\mathbb{Z}/2 \rightarrow$ 0

3. Hom
$$(A^{\cdot},\mathbb{Z}) = 0 \leftarrow \mathbb{Z} \xleftarrow{2} \mathbb{Z} \leftarrow 0 \leftarrow 0$$

In fact $-\otimes A$ is right exact and Hom(A, -) and Hom(-, A) are left exact (for any A and in any abelian category).

Proposition 2. Left adjoints are right exact (and right adjoints are left exact).

For example, $-\otimes A$ is left adjoint to Hom(A, -).

Second wish: measure the failure of a left or right exact functor to be exact.

Step 1: Find complexes on which left exact functors are exact.

Definition 1. $I \in \mathbf{A}$ *is* **injective** \iff Hom(-, I) *is exact* \iff

For example \mathbb{Q} is injective in Ab.

Injectives are well-behaved for any left exact functor F, in the sense that if

$$0 \to I^r \to I^{r+1} \to \cdots$$

is a bounded below exact complex of injectives then

$$0 \to FI^r \to FI^{r+1} \to \cdots$$

is bounded below and exact (but the FI^i need not be injective).

Step 2: Replace objects by complexes of injectives.

An injective resolution is a QI

Note that

$$H^{i}(I^{\cdot}) = \begin{cases} A & i = 0\\ 0 & i \neq 0 \end{cases}$$

Example 4. The diagram

defines an injective resolution of \mathbb{Z} in Ab.

If A has enough injectives, i.e. every object injects into an injective, then every object A has an injective resolution (defined inductively by embedding A into an injective, then embedding the cokernel of this injection into and injective and so on).

Theorem 3. \mathbf{R} -Mod(X) has enough injectives.

In fact, we can show that every bounded below complex is QI to a bounded below complex of injectives which is unique up to (noncanonical) isomorphism in $K^+(A)$. (Uniqueness requires bounded belowness!)

Hence, in $D^+(A)$, every object is isomorphic to a complex of injectives.

Step 3: Given left exact $F : \mathbf{A} \to \mathbf{A}'$ define an 'exact' functor

$$RF: D^+(A) \to D^+(A).$$

Need to make sense of 'exactness' because $D^+(A)$ is additive but not, in general, abelian. (In fact $D^+(A)$ is abelian if and only if

$$D^+(A) \to Com_0(A) : A^{\cdot} \mapsto H^{\cdot}(A)$$

is an equivalence.)

Want a replacement for kernels and cokernels.

Given $f : A^{\cdot} \to B^{\cdot}$ in Com(A) define the mapping cone Cone[•](f) by

$$\operatorname{Cone}^{i}(f) = A^{i+1} \oplus B^{i} \\ \left| \begin{pmatrix} -d_{A} & 0 \\ f^{i+1} & d_{B} \end{pmatrix} \right|$$
$$\operatorname{Cone}^{i+1}(f) = A^{i+2} \oplus B^{i+1}$$

There are maps

$$A^{\cdot} \xrightarrow{f} B^{\cdot} \xrightarrow{(01)^{t}} \operatorname{Cone}^{\cdot}(f) \xrightarrow{(10)} \Sigma A^{\cdot}$$
 (1)

where Σ is the **left shift**:

 $\Sigma A^{\cdot} = \cdots \rightarrow A^{i+1} \xrightarrow{-d} A^{i+2} \rightarrow \cdots$ with A^{i} in degree i - 1. **Theorem 4.** Applying H^0 to (1) gives an exact complex

 $\cdots H^{0}A^{\cdot} \to H^{0}B^{\cdot} \to H^{0}\text{Cone}^{\cdot}(F) \to H^{1}A^{\cdot} \to \cdots$

Example 5. Let $f : A \rightarrow B$ be a morphism in A considered as a cochain map of complexes which are zero except in degree 0. Then

 $\operatorname{Cone}^{\cdot}(f) = \cdots \to 0 \to A \xrightarrow{f} B \to 0 \to \cdots$

where B is in degree 0 and the associated exact complex of cohomology groups is

$$0 \to \ker f \to A \xrightarrow{f} B \to \operatorname{coker} f \to 0$$

Note that

$$f \text{ is a QI} \iff H^i f \text{ an isomorphism } \forall i$$

 $\iff H^i \text{Cone}(f) = 0 \quad \forall i$
 $\iff \text{Cone}(f) \cong 0 \text{ in } \mathbf{D}^+(\mathbf{A})$

Say a diagram

 $A^{\cdot} \to B^{\cdot} \to C^{\cdot} \to \Sigma A^{\cdot}$

in $D^+(A)$ is an **exact triangle** if it is isomorphic to a diagram of the form (1). **Example 6.** An exact sequence

 $\mathsf{O} \to A \to B \to C \to \mathsf{O}$

in A determines an exact triangle

 $A \to B \to C \to \Sigma A$

because Cone^($A \rightarrow B$) is QI to coker ($A \rightarrow B$). (Here we think of objects of A as complexes which are zero except in degree 0.)

Any morphism $f : A^{\cdot} \to B^{\cdot}$ can be completed to an exact triangle (but not uniquely).

Say an additive functor $D^+(A) \rightarrow D^+(A')$ is **triangulated** if it commutes with Σ and preserves exact triangles.

If F is left exact then naively applying F to complexes term-by-term is a bad idea because

1. $A^{\cdot} \cong 0 \iff A^{\cdot} \text{ exact } \neq FA^{\cdot} \text{ exact}$,

2. $f a QI \not\Longrightarrow Ff a QI$.

Solution: apply *F* to complexes of injectives!

If we have functorial injective resolutions (for instance for sheaves of vector spaces)

$$I: \operatorname{Com}^+(A) \to \operatorname{Com}^+(\operatorname{Inj} A)$$

then define the **right derived functor** of F by

$$RF = F \circ I.$$

More generally use fact that there is an equivalence

$$\mathrm{K}^+(\mathrm{Inj}\,\mathrm{A})
ightarrow \mathrm{D}^+(\mathrm{A})$$

(follows because QIs of complexes of injectives are homotopy equivalences).

Eyes on the prize! We've turned a left exact functor $F : \mathbf{A} \to \mathbf{A}'$ into a triangulated functor $RF : \mathbf{D^+}(\mathbf{A}) \to \mathbf{D^+}(\mathbf{A}')$. Furthermore, direct computation shows that for $A \in \mathbf{A}$

$$H^0(RFA) \cong FA.$$

Now we can measure the failure of F to be exact as follows: an exact sequence

 $\mathbf{0} \to A \to B \to C \to \mathbf{0}$

in A becomes an exact triangle

 $A \to B \to C \to \mathbf{\Sigma} A$

in $D^+(A)$ becomes an exact triangle

 $RFA \rightarrow RFB \rightarrow RFC \rightarrow \Sigma RFA$

in $D^+(A')$ becomes an exact sequence

 $0 \to FA \to FB \to FC \to H^1(RFA) \to \cdots$ in A'. **Examples 7.** 1. $H^i \circ R$ Hom $(A, -) \cong$ Ext $^i(A, -)$ is the classical Ext functor (and Tor is the cohomology of the left derived functor of tensor product).

2. Global sections Γ_X : $Ab(X) \rightarrow Ab$ is left exact and

$$H^i \circ R\Gamma_X(-) \cong H^i(X; -)$$

is sheaf cohomology.

3. Group cohomology, Lie algebra cohomology, Hochschild cohomology...

Typically higher cohomology groups of a derived functor can be interpreted as obstruction groups to some problem. We can define the left derived functor LF of a right derived functor F in a similar way but using projective resolutions, provided of course that there are enough projectives i.e. that every object is a quotient of a projective.

We say an object P in \mathbf{A} is **projective** if Hom(P, -) is exact or equivalently

and that a QI

is a **projective resolution**. Since projective resolutions go to the left we need to work with bounded above complexes and define

$$LF: \mathbf{D}^{-}(\mathbf{A}) \to \mathbf{D}^{-}(\mathbf{A}').$$

What do we do if there are not enough injectives or projectives?

We can abstract the properties of projectives (and of course similarly for injectives) as follows. Say a class C of objects in A is **adapted** to a right exact functor F if

- 1. ${\mathcal C}$ is closed under \oplus ,
- 2. F takes exact complexes in $\operatorname{Com}^{-}(\mathcal{C})$ to exact complexes,
- 3. any object is a quotient of an object in \mathcal{C} .

Examples 8. If there are enough projectives then the class of projectives is adapted to any right exact functor. The class of flat modules is adapted to $- \otimes A$ in R-Mod.

Theorem 5. If C is adapted to F then there is an equivalence

$$\mathbf{K}^{-}(\mathcal{C})_{QI} \xrightarrow{\sim} \mathbf{D}^{-}(\mathbf{A})$$

from the localisation of the homotopy category of complexes in *C* at QIs to the derived category.

We can define $LF = F \circ \Phi$ where Φ is an inverse to the equivalence.

Since there may be many adapted classes and the inverse to the equivalence is not unique we need to characterise derived functors more precisely. Formally a left derived functor of a right exact functor $FA \rightarrow A'$ is a pair (LF, η) where

$$LF: \mathbf{D}^{-}(\mathbf{A}) \to \mathbf{D}^{-}(\mathbf{A}')$$

is triangulated and $\eta : K^-(F) \to LF$ is a natural transformation such that for any triangulated

$$G: \mathbf{D}^{-}(\mathbf{A}) \to \mathbf{D}^{-}(\mathbf{A}')$$

and $\alpha : K^-(F) \to G$ we have a unique factorisation

Easy mistakes to be avoided!

1. A^{\cdot} is not in general QI to $H^{\cdot}(A)$ eg.

$$\mathbb{C}[x,y]^2 \xrightarrow{(x \ y)} \mathbb{C}[x,y]$$

and

$$\mathbb{C}[x,y] \stackrel{\mathsf{0}}{\longrightarrow} \mathbb{C}$$

have the same cohomology groups but are not QI as complexes of $\mathbb{C}[x, y]$ -modules.

2. There are non-zero maps f in $D^+(A)$ which induce the zero map on cohomology, i.e.

$$H^i f = 0 \qquad \forall i.$$

For example, the connecting map δ in the exact triangle associated to a non-split short exact sequence.

Why bother with the derived category?

The exact sequence

 $0 \to FA \to FB \to FC \to H^1(RFA) \to \cdots$

can be constructed without this machinery (using the snake lemma and a little homological algebra) *but RF* contains more information than just its cohomology groups. For example we retain higher order information such as Massey products.

Secondly, derived functors are often 'better behaved'. For example $Hom(-,\mathbb{Z})$ doesn't induce a duality on Ab but the right derived functor

 $R\text{Hom}(-,\mathbb{Z}): \text{D}^+_{fg}(Ab)^{op} \to \text{D}^+_{fg}(Ab)$ does square to the identity.

Thirdly...

Triangulated categories

We can abstract the structure of the derived category as follows.

An additive category \mathbf{D} is triangulated if there are

- 1. an additive automorphism Σ ,
- 2. a class of diagrams, closed under isomorphism and called exact triangles,

$$A \to B \to C \to \Sigma A$$

satisfying four axioms as below.

TR1 $A \xrightarrow{1} A \rightarrow 0 \rightarrow \Sigma A$ is exact and any morphism can be completed to an exact triangle (not necessarily uniquely);

TR2 we can 'rotate' triangles:

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \quad \text{exact}$$
$$\iff B \xrightarrow{g} C \xrightarrow{h} \Sigma A \xrightarrow{-\Sigma f} \Sigma B \quad \text{exact}$$

TR3 we can complete commuting diagrams of maps between triangles as below (but not necessarily uniquely)

$$\begin{array}{c} A \longrightarrow B \longrightarrow C \longrightarrow \Sigma A \\ a \downarrow \quad b \downarrow \quad \exists_{\downarrow}^{!} \quad \Sigma a \downarrow \\ A' \longrightarrow B' \longrightarrow C' \longrightarrow \Sigma A' \end{array}$$

TR4 the octahedron axiom (beyond my $T_EXskills$)!

Warning: there are categories which admit several different triangulated structures.

Examples 9. $K^*(A)$, $D^*(A)$ where $* = \pm, b$.

There are other important examples, in particular the stable homotopy category: consider the homotopy category K(CW) of pointed CW complexes and homotopy classes of pointed maps between them. Up to homotopy any map is a cofibration, essentially an inclusion. Puppe sequences

give a *potential* class of triangles because the mapping cone Cone(g) is homotopic to the suspension ΣX .

 $\mathbf{K}(\mathbf{C}\mathbf{W})$ is not triangulated because

- 1. there is no additive structure on the morphisms [X, Y] and,
- 2. Σ is not invertible.

However, suspension does have a right adjoint, the loop space functor,

 $[\mathbf{\Sigma}X,Y]\cong[X,\Omega Y].$

Furthermore $[X, \Omega Y]$ is a group and $[X, \Omega^2 Y]$ an abelian group. By replacing CW complexes by CW-spectra, very roughly infinite loop spaces with explicit deloopings, we obtain a triangulated category

$$K(CW - spectra)$$

called the stable homotopy category.

A $\mathit{t}\text{-}\mathsf{structure}$ is a pair of full subcategories $\mathbf{D}_{\leq 0} \qquad \mathbf{D}_{\geq 0}$ satisfying

- 1. $\Sigma D_{\leq 0} \subset D_{\leq 0}$ and $\Sigma D_{\geq 0} \supset D_{\geq 0}$
- 2. Hom(A, B) = 0 for any $A \in \mathbf{D}_{\leq 0}$ and $B \in \Sigma^{-1}\mathbf{D}_{\geq 0}$
- 3. any B is in an exact triangle

$$A \to B \to C \to \Sigma A$$

with $A \in \mathbb{D}_{\leq 0}$ and $B \in \Sigma^{-1} \mathbb{D}_{\geq 0}$.

Example 10. Derived categories come with a natural choice of t-structure given by the full subcategories of complexes which are zero in strictly positive and in strictly negative degrees.

Theorem 6. The heart $D_{\leq 0} \cap D_{\geq 0}$ of a *t*-structure is an abelian category.

There can be different *t*-structures on the same triangulated category. Hence equivalences of triangulated categories can provide interesting relationships between different abelian categories. This is a very fruitful point of view and we end with some examples from geometry.

A. Birational geometry:

Conjecture 7 (Bondal–Orlov). Smooth complex projective Calabi–Yau varieties X and Yare birational \iff there is a triangulated equivalence

 $D^b_{\textit{coh}}(X) \overset{\sim}{\longrightarrow} D^b_{\textit{coh}}(Y)$

between the bounded derived categories of coherent sheaves.

This is known to hold in dimension 3.

B. Riemann–Hilbert correspondence: for any complex projective variety X there is a triangulated equivalence

 $D^b_{\text{rh}}(\mathcal{D}_X-Mod) \ \stackrel{\sim}{\longrightarrow} \ D^b_{\text{alg-c}}(X)$

relating regular holonomic D-modules, certain systems of analytic differential equations on X, to algebraically constructible sheaves, which encode the topology of the subvarieties of X.

C. Homological mirror symmetry:

Conjecture 8 (Kontsevitch). Smooth projective Calabi–Yau varieties come in mirror pairs X and Y so that there is a triangulated equivalence

$D^b_{\textit{coh}}(\mathbf{X}) \overset{\sim}{\longrightarrow} D^b Fuk_0(\mathbf{Y}$

between the dounded derived category of coherent sheaves (algebraic geometry) of X and the bounded derived Fukaya category (symplectic geometry) of Y, and vice versa.

This is known to hold, for instance, for elliptic curves.