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Abelian categories and com-
plexes

Derived categories and functors arise because

1. we want to work with complexes but only

up to an equivalence relation which retains

cohomological information,

2. many interesting functors between abelian

categories are only left (or right) exact.
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A is abelian if A is additive and morphisms in

A have kernels and cokernels.

Examples 1. 1. Ab = Abelian groups,

2. R-Mod = left modules over a ring R,

3. R-Mod(X) = sheaves of R-modules on a

topological space X.

Theorem 1 (Freyd–Mitchell). If A is a small

abelian category then A embeds fully faithfully

in R-Mod for some ring R.
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Often we can associate a cochain complex

A· = · · · → Ai d−→ Ai+1 d−→ Ai+2 → · · ·

in A to ‘some mathematical object’. (Cochain
complex means d2 = 0 or ker d ⊃ im d.) For
example

Space X 7−→ C∗T (X;Z)

Sheaf F 7−→ Č∗(U;F )

In both these cases there is no unique way to
do this (we need to choose a triangulation T

in the first case and an open cover U in the
second) but the cohomology groups

Hi(A·) =
ker d : Ai → Ai+1

im d : Ai−1 → Ai

are well-defined up to isomorphism in A.

The Hi measure the failure of A· to be exact
i.e. for ker d = im d eg.

0→ A
f−→ B → 0

has H0 = ker f and H1 = coker f .
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First wish: find a good equivalence relation
on complexes which retains this cohomological
information.

For complexes A·, B· in A define

Homi(A·, B·) =
⊕
j

Hom(Aj, Ai+j)

There is a differential

δ : Homi(A·, B·) −→ Homi+1(A·, B·)
f 7−→ fdA + (−1)i+1dBf

with the property that

f ∈ Hom0(A·, B·) is

{
a cochain map if δf = 0
null-homotopic if f = δg

In particular H0Hom·(A·, B·) = homotopy classes
of cochain maps.

Com(A) has objects complexes in A and mor-
phisms cochain maps (of degree 0).

K(A) has objects complexes in A and mor-
phisms homotopy classes of cochain maps.
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A cochain map f : A· → B· induces maps

Hi(f) : Hi(A·)→ Hi(B·).

Homotopic cochain maps induce the same map

on cohomology.

Say f is a quasi-isomorphism (QI) if it in-

duces isomorphisms for all i.

Examples 2. 1. homotopy equivalences are QIs

2. not all QIs are homotopy equivalences eg.

A· = 0 //

��

Z //

��

Z //

��

0

��

B· = 0 // 0 // Z/2 // 0

QIs generate an equivalence relation on the

objects of Com(A) which is stronger than ho-

motopy equivalence.
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The derived category D(A) is the localisation

of Com(A) at the class of QIs: it has the same

objects as Com(A) and morphisms given by

diagrams

A· ← C·0 → · · · → C·n ← B·

where the wrong-way arrows are QIs.

For technical reasons we usually want to con-

sider the full subcategory of bounded below,

bounded above or bounded complexes and we

write

D+(A) D−(A) Db(A)

accordingly.

Fact: D+(A) is the localisation of K+(A) at

QIs i.e. inverting QIs automatically identifies

homotopic cochain maps!
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The class of QIs in K(A) is localising i.e.

1. 1X ∈ QI and s, t ∈ QI implies st ∈ QI,

2. We can complete diagrams as below

W //___

t
��
�
�
� Y

s
��

X // Z

W Yoo_ _ _

X
t

OO�
�
�

Z

s
OO

oo

3. sf = sg for s ∈ QI =⇒ ft = gt for some

t ∈ QI.

Follows that morphisms in D+(A) can be rep-

resented by ‘roofs’

C·
∼
}}{{

{{
{{

{{

!!DD
DD

DD
DD

A· B·

with composition given by 2.
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Functors between abelian categories

Most of the functors in which we are interested

are additive i.e.

Hom(A, B)→ Hom(FA, FB)

is a homomorphism of abelian groups eg.

−⊗A : Ab → Ab

Hom(A,−) : Ab → Ab

Hom(−, A) : Abop → Ab

Say an additive functor F is exact if it pre-

serves kernels and cokernels, equivalently

0→ A→ B → C → 0 exact

=⇒ 0→ FA→ FB → FC → 0 exact

Say it is left exact if 0 → FA → FB → FC is

exact and right exact if 0→ FA→ FB → FC

is exact.
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Examples 3. Consider the complex of abelian

groups

A· = 0→ Z 2−→ Z→ Z/2→ 0.

1. A· ⊗ Z/2 = 0→ Z/2
0−→ Z/2

1−→ Z/2→ 0

2. Hom(Z/2, A·) = 0→ 0→ 0→ Z/2→ 0

3. Hom(A·, Z) = 0← Z 2←− Z← 0← 0

In fact −⊗A is right exact and Hom(A,−) and

Hom(−, A) are left exact (for any A and in any

abelian category).

Proposition 2. Left adjoints are right exact

(and right adjoints are left exact).

For example, −⊗A is left adjoint to Hom(A,−).
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Second wish: measure the failure of a left or
right exact functor to be exact.

Step 1: Find complexes on which left exact
functors are exact.
Definition 1. I ∈ A is injective ⇐⇒ Hom(−, I)
is exact ⇐⇒

I

A

OO

� � // B

``A
A

A
A

For example Q is injective in Ab.

Injectives are well-behaved for any left exact
functor F , in the sense that if

0→ Ir → Ir+1 → · · ·
is a bounded below exact complex of injectives
then

0→ FIr → FIr+1 → · · ·

is bounded below and exact (but the FIi need
not be injective).
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Step 2: Replace objects by complexes of in-

jectives.

An injective resolution is a QI

A = · · · // 0 //

��

A //

��

0 //

��

0

��

// · · ·

I · = · · · // 0 // I0 // I1 // I2 // · · ·
Note that

Hi(I ·) =

{
A i = 0
0 i 6= 0

Example 4. The diagram

· · · // 0 //

��

Z //

��

0 //

��

0

��

// · · ·

· · · // 0 // Q // Q/Z // 0 // · · ·

defines an injective resolution of Z in Ab.
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If A has enough injectives, i.e. every object

injects into an injective, then every object A

has an injective resolution (defined inductively

by embedding A into an injective, then em-

bedding the cokernel of this injection into and

injective and so on).

Theorem 3.R-Mod(X) has enough injectives.

In fact, we can show that every bounded be-

low complex is QI to a bounded below com-

plex of injectives which is unique up to (non-

canonical) isomorphism in K+(A). (Unique-

ness requires bounded belowness!)

Hence, in D+(A), every object is isomorphic

to a complex of injectives.
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Step 3: Given left exact F : A→ A′ define an

‘exact’ functor

RF : D+(A)→ D+(A).

Need to make sense of ‘exactness’ because

D+(A) is additive but not, in general, abelian.

(In fact D+(A) is abelian if and only if

D+(A)→ Com0(A) : A· 7→ H ·(A)

is an equivalence.)

Want a replacement for kernels and cokernels.
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Given f : A· → B· in Com(A) define the map-

ping cone Cone·(f) by

Conei(f)

��

Ai+1 ⊕Bi(
−dA 0
f i+1 dB

)
��

Conei+1(f) Ai+2 ⊕Bi+1

There are maps

A·
f−→ B·

(01)t

−→ Cone·(f)
(10)−→ ΣA· (1)

where Σ is the left shift:

ΣA· = · · · → Ai+1 −d−→ Ai+2 → · · ·

with Ai in degree i− 1.
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Theorem 4.Applying H0 to (1) gives an exact

complex

· · ·H0A· → H0B· → H0Cone·(F )→ H1A· → · · ·

Example 5. Let f : A → B be a morphism in

A considered as a cochain map of complexes

which are zero except in degree 0. Then

Cone·(f) = · · · → 0→ A
f−→ B → 0→ · · ·

where B is in degree 0 and the associated exact

complex of cohomology groups is

0→ ker f → A
f−→ B → coker f → 0

Note that

f is a QI ⇐⇒ Hif an isomorphism ∀i
⇐⇒ HiCone·(f) = 0 ∀i
⇐⇒ Cone·(f) ∼= 0 in D+(A)
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Say a diagram

A· → B· → C· → ΣA·

in D+(A) is an exact triangle if it is isomor-

phic to a diagram of the form (1).

Example 6. An exact sequence

0→ A→ B → C → 0

in A determines an exact triangle

A→ B → C → ΣA

because Cone·(A→ B) is QI to coker (A→ B).

(Here we think of objects of A as complexes

which are zero except in degree 0.)

Any morphism f : A· → B· can be completed

to an exact triangle (but not uniquely).

Say an additive functor D+(A) → D+(A′) is

triangulated if it commutes with Σ and pre-

serves exact triangles.
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If F is left exact then naively applying F to
complexes term-by-term is a bad idea because

1. A· ∼= 0 ⇐⇒ A· exact 6=⇒ FA· exact,

2. f a QI 6=⇒ Ff a QI.

Solution: apply F to complexes of injectives!

If we have functorial injective resolutions (for
instance for sheaves of vector spaces)

I : Com+(A)→ Com+(InjA)

then define the right derived functor of F by

RF = F ◦ I.

More generally use fact that there is an equiv-
alence

K+(InjA)→ D+(A)

(follows because QIs of complexes of injectives
are homotopy equivalences).
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Eyes on the prize! We’ve turned a left exact

functor F : A→ A′ into a triangulated functor

RF : D+(A) → D+(A′). Furthermore, direct

computation shows that for A ∈ A

H0(RFA) ∼= FA.

Now we can measure the failure of F to be

exact as follows: an exact sequence

0→ A→ B → C → 0

in A becomes an exact triangle

A→ B → C → ΣA

in D+(A) becomes an exact triangle

RFA→ RFB → RFC → ΣRFA

in D+(A′) becomes an exact sequence

0→ FA→ FB → FC → H1(RFA)→ · · ·

in A′.
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Examples 7. 1. Hi◦RHom(A,−) ∼= Ext i(A,−)

is the classical Ext functor (and Tor is the

cohomology of the left derived functor of

tensor product).

2. Global sections ΓX : Ab(X) → Ab is left

exact and

Hi ◦RΓX(−) ∼= Hi(X;−)

is sheaf cohomology.

3. Group cohomology, Lie algebra cohomol-

ogy, Hochschild cohomology...

Typically higher cohomology groups of a de-

rived functor can be interpreted as obstruction

groups to some problem.
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We can define the left derived functor LF of

a right derived functor F in a similar way but

using projective resolutions, provided of course

that there are enough projectives i.e. that ev-

ery object is a quotient of a projective.

We say an object P in A is projective if Hom(P,−)

is exact or equivalently

P

��~~}
}

}
}

A // // B

and that a QI

P · = · · · // P2

��

// P1 //

��

P0

��

// 0 //

��

· · ·

A = · · · // 0 //// 0 // A // 0 // · · ·
is a projective resolution. Since projective

resolutions go to the left we need to work with

bounded above complexes and define

LF : D−(A)→ D−(A′).
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What do we do if there are not enough injec-

tives or projectives?

We can abstract the properties of projectives

(and of course similarly for injectives) as fol-

lows. Say a class C of objects in A is adapted

to a right exact functor F if

1. C is closed under ⊕,

2. F takes exact complexes in Com−(C) to

exact complexes,

3. any object is a quotient of an object in C.
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Examples 8. If there are enough projectives

then the class of projectives is adapted to any

right exact functor. The class of flat modules

is adapted to −⊗A in R-Mod.

Theorem 5. If C is adapted to F then there is

an equivalence

K−(C)QI
∼−→ D−(A)

from the localisation of the homotopy cate-

gory of complexes in C at QIs to the derived

category.

We can define LF = F ◦Φ where Φ is an inverse

to the equivalence.
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Since there may be many adapted classes and

the inverse to the equivalence is not unique

we need to characterise derived functors more

precisely. Formally a left derived functor of a

right exact functor FA → A′ is a pair (LF, η)

where

LF : D−(A)→ D−(A′)

is triangulated and η : K−(F )→ LF is a natural

transformation such that for any triangulated

G : D−(A)→ D−(A′)

and α : K−(F ) → G we have a unique factori-

sation

LF

!!C
C

C
C

C

K−(F )

η 88rrrrrrrrrr

α
// G

24



Easy mistakes to be avoided!

1. A· is not in general QI to H ·(A) eg.

C[x, y]2
(x y)−→ C[x, y]

and

C[x, y]
0−→ C

have the same cohomology groups but are

not QI as complexes of C[x, y]-modules.

2. There are non-zero maps f in D+(A) which

induce the zero map on cohomology, i.e.

Hif = 0 ∀i.

For example, the connecting map δ in the

exact triangle associated to a non-split short

exact sequence.

25



Why bother with the derived category?

The exact sequence

0→ FA→ FB → FC → H1(RFA)→ · · ·

can be constructed without this machinery (us-

ing the snake lemma and a little homologi-

cal algebra) but RF contains more information

than just its cohomology groups. For exam-

ple we retain higher order information such as

Massey products.

Secondly, derived functors are often ‘better be-

haved’. For example Hom(−, Z) doesn’t induce

a duality on Ab but the right derived functor

RHom(−, Z) : D+
fg(Ab)

op
→ D+

fg(Ab)

does square to the identity.

Thirdly...
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Triangulated categories

We can abstract the structure of the derived

category as follows.

An additive category D is triangulated if there

are

1. an additive automorphism Σ,

2. a class of diagrams, closed under isomor-

phism and called exact triangles,

A→ B → C → ΣA

satisfying four axioms as below.
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TR1 A
1−→ A → 0 → ΣA is exact and any

morphism can be completed to an exact
triangle (not necessarily uniquely);

TR2 we can ‘rotate’ triangles:

A
f−→ B

g−→ C
h−→ ΣA exact

⇐⇒ B
g−→ C

h−→ ΣA
−Σf−→ ΣB exact

TR3 we can complete commuting diagrams of
maps between triangles as below (but not
necessarily uniquely)

A //

a
��

B //

b
��

C //

∃
��
�
�
� ΣA

Σa
��

A′ // B′ // C′ // ΣA′

TR4 the octahedron axiom (beyond my TEXskills)!

Warning: there are categories which admit
several different triangulated structures.
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Examples 9. K∗(A),D∗(A) where ∗ = ±, b.

There are other important examples, in par-

ticular the stable homotopy category: consider

the homotopy category K(CW) of pointed CW

complexes and homotopy classes of pointed

maps between them. Up to homotopy any

map is a cofibration, essentially an inclusion.

Puppe sequences

X
f

−→ Y
g

−→ Cone(f)
h

−→ Cone(g) →

give a potential class of triangles because the

mapping cone Cone(g) is homotopic to the

suspension ΣX.
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K(CW) is not triangulated because

1. there is no additive structure on the mor-

phisms [X, Y ] and,

2. Σ is not invertible.

However, suspension does have a right adjoint,

the loop space functor,

[ΣX, Y ] ∼= [X,ΩY ].

Furthermore [X,ΩY ] is a group and [X,Ω2Y ]

an abelian group. By replacing CW complexes

by CW-spectra, very roughly infinite loop spaces

with explicit deloopings, we obtain a triangu-

lated category

K(CW − spectra)

called the stable homotopy category.
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A t-structure is a pair of full subcategories

D≤0 D≥0

satisfying

1. ΣD≤0 ⊂ D≤0 and ΣD≥0 ⊃ D≥0

2. Hom(A, B) = 0 for any A ∈ D≤0 and B ∈
Σ−1D≥0

3. any B is in an exact triangle

A→ B → C → ΣA

with A ∈∈ D≤0 and B ∈ Σ−1D≥0.

Example 10. Derived categories come with a

natural choice of t-structure given by the full

subcategories of complexes which are zero in

strictly positive and in strictly negative degrees.
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Theorem 6. The heart D≤0 ∩ D≥0 of a t-

structure is an abelian category.

There can be different t-structures on the same

triangulated category. Hence equivalences of

triangulated categories can provide interesting

relationships between different abelian cate-

gories. This is a very fruitful point of view and

we end with some examples from geometry.

A. Birational geometry:

Conjecture 7 (Bondal–Orlov). Smooth com-

plex projective Calabi–Yau varieties X and Y

are birational ⇐⇒ there is a triangulated

equivalence

Db
coh(X)

∼−→ Db
coh(Y)

between the bounded derived categories of co-

herent sheaves.

This is known to hold in dimension 3.
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B. Riemann–Hilbert correspondence: for any
complex projective variety X there is a trian-
gulated equivalence

Db
rh(DX −Mod)

∼−→ Db
alg-c(X)

relating regular holonomic D-modules, certain
systems of analytic differential equations on X,
to algebraically constructible sheaves, which
encode the topology of the subvarieties of X.

C. Homological mirror symmetry:
Conjecture 8 (Kontsevitch). Smooth projec-
tive Calabi–Yau varieties come in mirror pairs
X and Y so that there is a triangulated equiv-
alence

Db
coh(X)

∼−→ DbFuk0(Y

between the dounded derived category of co-
herent sheaves (algebraic geometry) of X and
the bounded derived Fukaya category (sym-
plectic geometry) of Y , and vice versa.

This is known to hold, for instance, for elliptic
curves.
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