Filtered and Intersection Homology

Jon Woolf, work in progress with Ryan Wissett

April, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Part I

Review of intersection homology

Singular intersection homology

Perversities

A perversity on a topologically stratified space X is a function p: {strata of X} $\rightarrow \mathbb{Z}$. If

1.
$$p(S) = p(\operatorname{codim} S)$$
 for some $p \colon \mathbb{N} \to \mathbb{Z}$

2.
$$p(k) = 0$$
 for $k \le 2$

3.
$$p(k+1) = p(k)$$
 or $p(k) + 1$.

then it is a Goresky-MacPherson (GM) perversity.

Singular intersection homology

Perversities

A perversity on a topologically stratified space X is a function $p: \{ \text{strata of } X \} \rightarrow \mathbb{Z}.$ If

1.
$$p(S) = p(\operatorname{codim} S)$$
 for some $p \colon \mathbb{N} \to \mathbb{Z}$

2.
$$p(k) = 0$$
 for $k \le 2$

3.
$$p(k+1) = p(k)$$
 or $p(k) + 1$.

then it is a Goresky–MacPherson (GM) perversity.

Examples

- the zero perversity 0(k) = 0
- the top perversity $t(k) = \max\{k 2, 0\}$
- the lower middle perversity $m(k) = \max\{|(k-2)/2|, 0\}$
- the upper middle perversity $n(k) = \max\{\lceil (k-2)/2 \rceil, 0\}$

GM perversities p and q are complementary if p + q = t. ・ロト ・ 母 ト ・ 目 ト ・ 目 ・ うへぐ

Intersection homology and Poincaré duality

Intersection homology

A perversity picks out a subcomplex of intersection chains in S_*X :

$$\Delta^i \xrightarrow{\sigma} X p$$
-allowable $\iff \sigma^{-1}S \subset (i - \operatorname{codim} S + p(S))$ -skeleton
 $c \in S_iX p$ -allowable \iff all simplices in c are p -allowable

Let $I^{p}S_{*}X = \{c \mid c, \partial c \text{ are } p\text{-allowable}\}$ and $I^{p}H_{*}X$ its homology.

Intersection homology and Poincaré duality

Intersection homology

A perversity picks out a subcomplex of intersection chains in S_*X :

$$\Delta^i \xrightarrow{\sigma} X$$
 p-allowable $\iff \sigma^{-1}S \subset (i - \operatorname{codim} S + p(S))$ -skeleton
 $c \in S_iX$ *p*-allowable \iff all simplices in *c* are *p*-allowable

Let $I^{p}S_{*}X = \{c \mid c, \partial c \text{ are } p\text{-allowable}\}$ and $I^{p}H_{*}X$ its homology.

Theorem (Goresky–MacPherson '80)

X pseudomfld, p GM perversity $\implies I^p H_* X$ topological invariant.

Intersection homology and Poincaré duality

Intersection homology

A perversity picks out a subcomplex of intersection chains in S_*X :

$$\Delta^i \xrightarrow{\sigma} X$$
 p-allowable $\iff \sigma^{-1}S \subset (i - \operatorname{codim} S + p(S))$ -skeleton
 $c \in S_iX$ *p*-allowable \iff all simplices in *c* are *p*-allowable

Let $I^{p}S_{*}X = \{c \mid c, \partial c \text{ are } p\text{-allowable}\}$ and $I^{p}H_{*}X$ its homology.

Theorem (Goresky–MacPherson '80)

X pseudomfld, p GM perversity $\implies I^p H_* X$ topological invariant.

Theorem (Goresky–MacPherson '80)

X compact, oriented n-dim pseudomfld, p, q complementary GM perversities $\implies \exists$ intersection pairing

$$I^{p}H_{i}X \times I^{q}H_{n-i}X \rightarrow \mathbb{Z}$$

which is non-degenerate over \mathbb{Q} .

Part II

Filtered homology

<□ > < @ > < E > < E > E のQ @

Filtered spaces and depth functions

Filtered spaces

A filtered space X_{α} is a topological space with a filtration

$$\emptyset = X_{-1} \subset X_0 \subset X_1 \subset X_2 \subset \cdots \subset X_\infty = X.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A filtered map $f: X_{\alpha} \to Y_{\beta}$ is a map with $f(X_k) \subset Y_k \ \forall \ k \in \mathbb{N}$.

Filtered spaces and depth functions

Filtered spaces

A filtered space X_{α} is a topological space with a filtration

$$\emptyset = X_{-1} \subset X_0 \subset X_1 \subset X_2 \subset \cdots \subset X_\infty = X.$$

A filtered map $f: X_{\alpha} \to Y_{\beta}$ is a map with $f(X_k) \subset Y_k \ \forall \ k \in \mathbb{N}$.

Depth functions

The filtration on X_{α} is encoded in the depth function $\alpha \colon X \to \mathbb{N}_{\infty}$ where

$$\alpha(x) = k \iff x \in X_k - X_{k-1}$$

so $X_k = \alpha^{-1}\{0, \dots, k\}$ and $f: X_\alpha \to Y_\beta$ filtered $\iff \alpha \ge \beta \circ f$.

Examples of filtered spaces

1. A filtered space of depth ≤ 1 is a pair $X_0 \subset X_1 = X$; a filtered map of such is a map of pairs.

Examples of filtered spaces

- 1. A filtered space of depth ≤ 1 is a pair $X_0 \subset X_1 = X$; a filtered map of such is a map of pairs.
- 2. Filtering a CW complex by its skeleta fully faithfully embeds CW complexes and cellular maps into filtered spaces.

Examples of filtered spaces

- 1. A filtered space of depth ≤ 1 is a pair $X_0 \subset X_1 = X$; a filtered map of such is a map of pairs.
- 2. Filtering a CW complex by its skeleta fully faithfully embeds CW complexes and cellular maps into filtered spaces.
- 3. Let Δ_{δ}^{n} be the standard simplex filtered by depth function $\delta(t_0, \ldots, t_n) = \#\{i \mid t_i = 0\}$, e.g.

The face maps $\Delta_{\delta+1}^{i-1} \hookrightarrow \Delta_{\delta}^{i}$ are filtered.

Filtered homology

For filtered X_{α} define $S_i X_{\alpha} = \mathbb{Z} \{ \Delta_{\delta}^i \to X_{\alpha} \}$. Note

$$\partial \colon S_i X_{\alpha} \to S_{i-1} X_{\alpha-1}$$

where $(\alpha - 1)(x) = \max\{\alpha(x) - 1, 0\}.$

Filtered homology

For filtered X_{α} define $S_i X_{\alpha} = \mathbb{Z} \{ \Delta_{\delta}^i \to X_{\alpha} \}$. Note

$$\partial \colon S_i X_{\alpha} \to S_{i-1} X_{\alpha-1}$$

where
$$(\alpha - 1)(x) = \max\{\alpha(x) - 1, 0\}.$$

Definition

The filtered *i*-chains on X_{α} are

$$FS_iX_{\alpha} = \{ c \in S_iX_{\alpha} \mid \partial c \in S_{i-1}X_{\alpha} \}.$$

The filtered homology FH_*X_α is the homology of FS_*X_α .

Functoriality

Filtered $f: X_{\alpha} \rightarrow Y_{\beta}$ induces a chain map $FS_*X_{\alpha} \rightarrow FS_*Y_{\beta}$ and

 $f_*: FH_*X_\alpha \to FH_*Y_\beta.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Functoriality

Filtered $f: X_{\alpha} \rightarrow Y_{\beta}$ induces a chain map $FS_*X_{\alpha} \rightarrow FS_*Y_{\beta}$ and

$$f_*: FH_*X_\alpha \to FH_*Y_\beta.$$

Filtered homotopy invariance

If f and g are filtered homotopic then $f_* = g_* \colon FH_*X_\alpha \to FH_*Y_\beta$.

Functoriality

Filtered $f: X_{\alpha} \rightarrow Y_{\beta}$ induces a chain map $FS_*X_{\alpha} \rightarrow FS_*Y_{\beta}$ and

$$f_*: FH_*X_\alpha \to FH_*Y_\beta.$$

Filtered homotopy invariance

If f and g are filtered homotopic then $f_* = g_* \colon FH_*X_\alpha \to FH_*Y_\beta$.

Relative long exact sequence

For filtered $f: X_{\alpha} \to Y_{\beta}$ where the underlying map is an inclusion we define $FH_i(Y_{\beta}, X_{\alpha}) = H_i(FS_*Y_{\beta}/FS_*X_{\alpha})$. There is a LES

 $\cdots \rightarrow FH_*X_{\alpha} \rightarrow FH_*Y_{\beta} \rightarrow FH_*(Y_{\beta}, X_{\alpha}) \rightarrow FH_{*-1}X_{\alpha} \rightarrow \cdots$

Functoriality

Filtered $f: X_{\alpha} \rightarrow Y_{\beta}$ induces a chain map $FS_*X_{\alpha} \rightarrow FS_*Y_{\beta}$ and

$$f_*: FH_*X_\alpha \to FH_*Y_\beta.$$

Filtered homotopy invariance

If f and g are filtered homotopic then $f_* = g_* \colon FH_*X_\alpha \to FH_*Y_\beta$.

Relative long exact sequence

For filtered $f: X_{\alpha} \to Y_{\beta}$ where the underlying map is an inclusion we define $FH_i(Y_{\beta}, X_{\alpha}) = H_i(FS_*Y_{\beta}/FS_*X_{\alpha})$. There is a LES

$$\cdots \rightarrow FH_*X_{\alpha} \rightarrow FH_*Y_{\beta} \rightarrow FH_*(Y_{\beta}, X_{\alpha}) \rightarrow FH_{*-1}X_{\alpha} \rightarrow \cdots$$

Excision

For $Z_{\alpha} \subset Y_{\alpha} \subset X_{\alpha}$ with $\overline{Z} \subset Y^{o}$ there are isomorphisms

$$FH_*(X_\alpha - Z_\alpha, Y_\alpha - Z_\alpha) \cong FH_*(X_\alpha, Y_\alpha).$$

Simple examples of filtered homology

Cones For $[x, t] \in CX$, the cone on X, and d > 1 have

$$\beta[x,t] = \begin{cases} \alpha(x) & t > 0 \\ d & t = 0 \end{cases} \implies FH_i CX_\beta \cong \begin{cases} FH_i X_\alpha & i < d-1 \\ 0 & i \ge d-1. \end{cases}$$

・ロト・日本・モート モー うへぐ

When $d \leq 1$ obtain homology of a point.

Simple examples of filtered homology

Cones For $[x, t] \in CX$, the cone on X, and d > 1 have

$$\beta[x,t] = \begin{cases} \alpha(x) & t > 0 \\ d & t = 0 \end{cases} \implies FH_i CX_\beta \cong \begin{cases} FH_i X_\alpha & i < d-1 \\ 0 & i \ge d-1. \end{cases}$$

When $d \leq 1$ obtain homology of a point.

Suspended torus

Let $X_{\alpha} = \Sigma T^2$ where $\alpha(x) = 2$ at suspension points and 0 elsewhere. Then

$$FH_i X_{\alpha} = \begin{cases} \mathbb{Z} & i = 0\\ 0 & i = 1\\ \mathbb{Z}^2 & i = 2\\ \mathbb{Z} & i = 3. \end{cases}$$

Simple examples of filtered homology

Cones For $[x, t] \in CX$, the cone on X, and d > 1 have

$$\beta[x,t] = \begin{cases} \alpha(x) & t > 0 \\ d & t = 0 \end{cases} \implies FH_i CX_\beta \cong \begin{cases} FH_i X_\alpha & i < d-1 \\ 0 & i \ge d-1. \end{cases}$$

When $d \leq 1$ obtain homology of a point.

Suspended torus

Let $X_{\alpha} = \Sigma T^2$ where $\alpha(x) = 3$ at suspension points and 0 elsewhere. Then

$$FH_i X_{\alpha} = \begin{cases} \mathbb{Z} & i = 0 \\ \mathbb{Z}^2 & i = 1 \\ 0 & i = 2 \\ \mathbb{Z} & i = 3. \end{cases}$$

Given stratified X and perversity p define a depth function

$$\hat{p}(x) = \operatorname{codim} S - p(S)$$

 $\text{for } x\in \mathcal{S}. \text{ The identity } X_{\hat{\rho}} \to X_{\hat{q}} \text{ is filtered } \iff p \leq q.$

Given stratified X and perversity p define a depth function

$$\hat{p}(x) = \operatorname{codim} S - p(S)$$

Setting
$$X^k = \bigcup_{\text{codim } S \leq k} S$$
 gives
• $X_{\hat{0}} = (X^0 \subset X^1 \subset \cdots \subset X^k \subset \cdots \subset X)$

Given stratified X and perversity p define a depth function

$$\hat{p}(x) = \operatorname{codim} S - p(S)$$

Setting
$$X^k = \bigcup_{\operatorname{codim} S \leq k} S$$
 gives
• $X_{\hat{0}} = (X^0 \subset X^1 \subset \cdots \subset X^k \subset \cdots \subset X)$
• $X_{\hat{t}} = (X^0 \subset X^1 \subset X)$

Given stratified X and perversity p define a depth function

$$\hat{p}(x) = \operatorname{codim} S - p(S)$$

Setting
$$X^k = \bigcup_{\operatorname{codim} S \leq k} S$$
 gives
• $X_{\hat{0}} = (X^0 \subset X^1 \subset \cdots \subset X^k \subset \cdots \subset X)$
• $X_{\hat{t}} = (X^0 \subset X^1 \subset X)$
• $X_{\hat{m}} = (X^0 \subset X^1 \subset X^2 \subset X^4 \subset \cdots \subset X)$

Given stratified X and perversity p define a depth function

$$\hat{p}(x) = \operatorname{codim} S - p(S)$$

Setting
$$X^k = \bigcup_{\operatorname{codim} S \leq k} S$$
 gives
• $X_{\hat{0}} = (X^0 \subset X^1 \subset \cdots \subset X^k \subset \cdots \subset X)$
• $X_{\hat{t}} = (X^0 \subset X^1 \subset X)$
• $X_{\hat{m}} = (X^0 \subset X^1 \subset X^2 \subset X^4 \subset \cdots \subset X)$
• $X_{\hat{n}} = (X^0 \subset X^1 \subset X^3 \subset X^5 \subset \cdots \subset X)$

Given stratified X and perversity p define a depth function

$$\hat{p}(x) = \operatorname{codim} S - p(S)$$

for $x \in S$. The identity $X_{\hat{p}} \to X_{\hat{q}}$ is filtered $\iff p \leq q$.

Setting
$$X^k = \bigcup_{\text{codim } S \le k} S$$
 gives
• $X_{\hat{0}} = (X^0 \subset X^1 \subset \cdots \subset X^k \subset \cdots \subset X)$
• $X_{\hat{t}} = (X^0 \subset X^1 \subset X)$
• $X_{\hat{m}} = (X^0 \subset X^1 \subset X^2 \subset X^4 \subset \cdots \subset X)$
• $X_{\hat{n}} = (X^0 \subset X^1 \subset X^3 \subset X^5 \subset \cdots \subset X)$

▶ p is a Goresky–Macpherson perversity ⇔ X_{p̂} is filtration by those X^k with p(k) = p(k + 1)

Given stratified X and perversity p define a depth function

$$\hat{p}(x) = \operatorname{codim} S - p(S)$$

 $\text{for } x\in \mathcal{S}. \text{ The identity } X_{\hat{\rho}} \to X_{\hat{q}} \text{ is filtered } \iff p \leq q.$

Setting
$$X^{k} = \bigcup_{\operatorname{codim} S \leq k} S$$
 gives
• $X_{\hat{0}} = (X^{0} \subset X^{1} \subset \cdots \subset X^{k} \subset \cdots \subset X)$
• $X_{\hat{t}} = (X^{0} \subset X^{1} \subset X)$
• $X_{\hat{m}} = (X^{0} \subset X^{1} \subset X^{2} \subset X^{4} \subset \cdots \subset X)$
• $X_{\hat{n}} = (X^{0} \subset X^{1} \subset X^{3} \subset X^{5} \subset \cdots \subset X)$
• n is a Corocley Macroberron perversity \longleftrightarrow X₀ is filter

- ▶ p is a Goresky–Macpherson perversity ⇔ X_{p̂} is filtration by those X^k with p(k) = p(k + 1)
- Complementary perversities p and q give 'complementary' filtrations: X^k with k ≥ 2 appears in either X_{p̂} or X_{q̂}.

An elementary calculation gives

$$\Delta^i_\delta \xrightarrow{\sigma} X_{\hat{p}}$$
 filtered $\iff \sigma^{-1}S \subset (i - \operatorname{codim} S + p(S))$ -skeleton
 $\iff \sigma p$ -allowable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An elementary calculation gives

$$\Delta^i_\delta \xrightarrow{\sigma} X_{\hat{p}}$$
 filtered $\iff \sigma^{-1}S \subset (i - \operatorname{codim} S + p(S))$ -skeleton
 $\iff \sigma p$ -allowable

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary $FS_*X_{\hat{p}} = I^p S_*X$ and $FH_*X_{\hat{p}} = I^p H_*X$.

An elementary calculation gives

$$\Delta^i_\delta \xrightarrow{\sigma} X_{\hat{p}}$$
 filtered $\iff \sigma^{-1}S \subset (i - \operatorname{codim} S + p(S))$ -skeleton
 $\iff \sigma p$ -allowable

Corollary
$$FS_*X_{\hat{p}} = I^p S_*X$$
 and $FH_*X_{\hat{p}} = I^p H_*X$.

Remarks

• Functoriality of $FH_* \implies$ known functoriality of IH_*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An elementary calculation gives

$$\Delta^i_\delta \xrightarrow{\sigma} X_{\hat{\rho}} \text{ filtered } \iff \sigma^{-1}S \subset (i - \operatorname{codim} S + \rho(S)) \text{-skeleton}$$

 $\iff \sigma p \text{-allowable}$

Corollary
$$FS_*X_{\hat{p}} = I^p S_*X$$
 and $FH_*X_{\hat{p}} = I^p H_*X$.

Remarks

- Functoriality of $FH_* \implies$ known functoriality of IH_*
- Intersection homology is a filtered homotopy invariant

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An elementary calculation gives

$$\Delta^i_\delta \xrightarrow{\sigma} X_{\hat{\rho}} ext{ filtered } \iff \sigma^{-1}S \subset (i - \operatorname{codim} S + p(S)) ext{-skeleton}$$

 $\iff \sigma ext{ p-allowable}$

Corollary
$$FS_*X_{\hat{p}} = I^p S_*X$$
 and $FH_*X_{\hat{p}} = I^p H_*X$.

Remarks

- Functoriality of $FH_* \implies$ known functoriality of IH_*
- Intersection homology is a filtered homotopy invariant
- ► Filtered homology LES gives relative LES for *IH*_{*}, and obstruction sequence for change of perversities.

Part III

Spectral sequence of a filtered space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For filtered X_{α} the singular complex S_*X has natural filtration

$$0 \hookrightarrow S_*X_{\alpha} \hookrightarrow S_*X_{\alpha-1} \hookrightarrow \cdots \hookrightarrow S_*X$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For filtered X_{α} the singular complex S_*X has natural filtration

$$0 \hookrightarrow S_*X_{\alpha} \hookrightarrow S_*X_{\alpha-1} \hookrightarrow \cdots \hookrightarrow S_*X$$

yielding a spectral sequence with E^0 -page

converging to $Gr_{\bullet}H_{*}X$ where

$$Gr_i H_j X = \frac{\{[c] \in H_j X \mid c \in S_j X_{\alpha-i}\}}{\{[c] \in H_j X \mid c \in S_j X_{\alpha-i+1}\}}.$$

The singular complex S_*X of filtered X_{α} has natural filtration

$$0 \hookrightarrow S_*X_{\alpha} \hookrightarrow S_*X_{\alpha-1} \hookrightarrow \cdots \hookrightarrow S_*X$$

yielding a spectral sequence with E^1 -page

$$FS_0X_{lpha} \longleftarrow FS_1X_{lpha} \longleftarrow FS_2X_{lpha}$$

$$0 \longleftarrow \frac{FS_0 X_{\alpha-1}}{S_0 X_{\alpha} + \partial S_1 X_{\alpha}} \longleftarrow \frac{FS_1 X_{\alpha-1}}{S_1 X_{\alpha} + \partial S_2 X_{\alpha}}$$
$$0 \longleftarrow 0 \longleftarrow \frac{FS_0 X_{\alpha-2}}{S_0 X_{\alpha-1} + \partial S_1 X_{\alpha-1}}$$

converging to $Gr_{\bullet}H_{*}X$ where

$$Gr_{i}H_{j}X = \frac{\{[c] \in H_{j}X \mid c \in S_{j}X_{\alpha-i}\}}{\{[c] \in H_{j}X \mid c \in S_{j}X_{\alpha-i-1}\}}.$$

The singular complex S_*X of filtered X_{α} has natural filtration

$$0 \hookrightarrow S_* X_{\alpha} \hookrightarrow S_* X_{\alpha-1} \hookrightarrow \cdots \hookrightarrow S_* X$$

yielding a spectral sequence with E^2 -page

converging to $Gr_{\bullet}H_*X$ where

$$Gr_iH_jX = \frac{\{[c] \in H_jX \mid c \in S_jX_{\alpha-i}\}}{\{[c] \in H_jX \mid c \in S_jX_{\alpha-i-1}\}}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

The singular complex S_*X of filtered X_{α} has natural filtration

$$0 \hookrightarrow S_* X_{\alpha} \hookrightarrow S_* X_{\alpha-1} \hookrightarrow \cdots \hookrightarrow S_* X$$

yielding a spectral sequence with E^{∞} -page

0

 Gr_2H_0X

converging to $Gr_{\bullet}H_*X$ where

$$Gr_iH_jX = \frac{\{[c] \in H_jX \mid c \in S_jX_{\alpha-i}\}}{\{[c] \in H_jX \mid c \in S_jX_{\alpha-i-1}\}}.$$

 X_{α} CW-complex with skeletal filtration

 E^2 -page is cellular chain complex:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 X_{α} CW-complex with skeletal filtration

 $E^3 = E^{\infty}$ -page is cellular homology:

$$H_0^{\text{cell}}X \qquad 0 \qquad 0$$
$$0 \qquad 0 \qquad H_1^{\text{cell}}X$$
$$0 \qquad 0 \qquad 0$$

 $X_{\alpha} = \Sigma T^2$ with α (suspension points) = 3

E²-page:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

 $X_{\alpha} = \Sigma T^2$ with α (suspension points) = 3

 $E^3 = E^\infty$ -page:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Part IV

Cap products and Poincaré Duality?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Alternative filtration for simplices

Let $\Delta^n_{\delta'}$ denote the *n*-simplex with filtration

$$\delta'(t_0,\ldots,t_n)=\min\{i\mid t_{n-i}\neq 0\}$$

and FS'_*X_{α} the associated complex of filtered chains.

Proposition

There is a homotopy equivalence $FS_*X_{\alpha} \simeq FS'_*X_{\alpha}$ provided by composition with id: $\Delta^n_{\delta} \to \Delta^n_{\delta'}$ and barycentric subdivision. So filtered homology can be computed using either complex.

Cap products

Filtered homology as a module

The inclusions of the 'back' faces of $\Delta_{\delta'}^n$ are filtered. The usual cap product formula restricts to $S^i X \otimes S'_i X_\alpha \to S'_{i-i} X_\alpha$ inducing

$$H^i X \otimes FH_j X_{\alpha} \to FH_{j-i} X_{\alpha},$$

so that FH_*X_{α} is an H^*X -module.

Cap products

Filtered homology as a module

The inclusions of the 'back' faces of $\Delta_{\delta'}^n$ are filtered. The usual cap product formula restricts to $S^i X \otimes S'_i X_\alpha \to S'_{i-i} X_\alpha$ inducing

$$H^i X \otimes FH_j X_{\alpha} \to FH_{j-i} X_{\alpha},$$

so that FH_*X_{α} is an H^*X -module.

Generalised Poincaré duality?

A more refined approach should yield a cap product

$$FH^{i}X_{\hat{\rho}}\otimes FH_{j}X_{\hat{0}} \rightarrow FH_{j-i}X_{\hat{q}-1}$$

where p + q = t.

Cap products

Filtered homology as a module

The inclusions of the 'back' faces of $\Delta^n_{\delta'}$ are filtered. The usual cap product formula restricts to $S^i X \otimes S'_i X_\alpha \to S'_{i-i} X_\alpha$ inducing

$$H^i X \otimes FH_j X_{\alpha} \to FH_{j-i} X_{\alpha},$$

so that FH_*X_{α} is an H^*X -module.

Generalised Poincaré duality?

A more refined approach should yield a cap product

$$FH^{i}X_{\hat{\rho}}\otimes FH_{j}X_{\hat{0}} \rightarrow FH_{j-i}X_{\hat{q}-1}$$

where p + q = t. If we can improve this to

$$FH^{i}X_{\hat{\rho}}\otimes FH_{j}X_{\hat{0}} \rightarrow FH_{j-i}X_{\hat{q}}$$

then generalised Poincaré duality would follow.