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Whitney stratified manifolds

Definition
A Whitney stratified manifold M is a manifold with a locally-finite
partition into disjoint locally-closed submanifolds {Si} (the strata)
satisfying Whitney’s condition B.

Example

M ⊂ N, Sn, RPn, CPn, Grassmannians, flag varieties . . .

Definition
Smooth f : M → N is a stratified transversal map if

I f (S) ⊂ T some T ⊂ N for each S ⊂ M

I df : NxS → NfxT surjective for each x ∈ S , fx ∈ T .

Basepoint given by stratified transversal map ∗ → M.
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Whitney’s condition B

Suppose X and Y are strata and x ∈ X ∩ Y with sequences
xi → x and yi → x in X and Y respectively.

X
Y

Li Pi

x

xi

yi

Whitney’s condition B: If secant lines Li = xiyi → L and tangent
planes Pi = Tyi Y → P then L ⊂ P.
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Transversal homotopy monoids

Definition
For Whitney stratified manifold M let

ψk (M) = {f : I k → M | f transversal, f (∂I k) = ∗}/ ∼

where I = [0, 1] and f ∼ g if there is a homotopy through such
transversal maps.

Examples

ψ0

(
S0

) ∼= {∗},
ψ1

(
S1

) ∼= free monoid on a and a†,
ψ2

(
S2

) ∼= free commutative monoid on a and a† ∼= N2.

By Pontrjagin–Thom ψk (Sm) is ambient isotopy classes of framed
codim-m submanifolds of (0, 1)k .
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Transversal homotopy monoids

Functoriality

ψk is a functor on Whitney stratified manifolds and stratified
transversal maps. There is a natural transformation ψk → πk .

Example

The linking number of a framed link is given by

ψ3

(
S2

)
// π3(S

2)

{framed links} Z

.

(Topologists’ framing, not knot theorists’ !)

Replacing spheres by other Thom spectra we can get plain-vanilla
links, oriented links etc and higher-dimensional variants.
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Transversal homotopy categories

Definition
Let ψ1

k (M) be the category with

objects : {f : I k → M | f transversal, f (∂I k) = ∗}

morphisms : {f : I k+1 → M | f transversal, f (∂I k × I ) = ∗}/ ∼ .

Example

By Pontrjagin–Thom ψ1
2

(
S2

)
' frTang1

2 is category of framed
tangles:
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Monoidal categories with duals

Examples

The category of framed tangles is monoidal with duals; we can turn
inputs into outputs, and vice versa (provided we dualise them):

The category of finite dim vector spaces is
another example, e.g.

Hom(V ,W ) ∼= Hom(1,V ∗ ⊗W ).

Theorem (W ‘09)

ψ1
k (M) is a monoidal category with duals for k > 0, braided

monoidal for k > 1 and symmetric monoidal for k > 2.
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Transversal homotopy n-categories?

To go ‘higher’ we need an appropriate notion of ‘monoidal
n-category with duals’. One difficulty is which ‘shapes’ to choose
for higher morphisms:

In Morrison and Walker’s definition of n-category ‘all’ shapes are
allowed. They work in the PL context; we give a smooth version of
their definition.
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Morrison–Walker n-categories

Terminology

Fix n ∈ N. Henceforth,

I by space we mean germ of an n-manifold along a subspace
admitting stratification with cellular strata;

I by diffeomorphism we mean homeomorphism with given germ
of an extension to a diffeomorphism of ambient n-manifolds.

Examples

Examples of 2-cells for n = 2 with stratifications indicated (only
the middle two are diffeomorphic):
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Morrison–Walker n-categories

The definition uses an inductive system of axioms for 0 ≤ k ≤ n.
We need the axioms for i < k to state the axioms for k.

Axiom 1: Morphisms

For 0 ≤ k ≤ n there is a functor

Ck : k-cells and diffeomorphisms → sets and bijections

defining sets of k-morphisms.

Lemma
Ck extends to functor on k-dim spaces and diffeomorphisms.
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Morrison–Walker n-categories

Axiom 2: Boundaries
For each k-cell (B, ∂B) there is a natural transformation

∂ : Ck(B) → Ck−1(∂B).

The boundary is the domain and codomain rolled into one.

BD D
′

E

E Lemma
If ∂B = D ∪ D ′ with ∂D = E = ∂D ′ then

C(D)×C(E) C(D ′) ↪→ C(∂B).

Denote the image by C(∂B;E ), and preimage under ∂ by C(B;E ).



Morrison–Walker n-categories

Axiom 2: Boundaries
For each k-cell (B, ∂B) there is a natural transformation

∂ : Ck(B) → Ck−1(∂B).

The boundary is the domain and codomain rolled into one.

BD D
′

E

E Lemma
If ∂B = D ∪ D ′ with ∂D = E = ∂D ′ then

C(D)×C(E) C(D ′) ↪→ C(∂B).

Denote the image by C(∂B;E ), and preimage under ∂ by C(B;E ).



Morrison–Walker n-categories

Axiom 2: Boundaries
For each k-cell (B, ∂B) there is a natural transformation

∂ : Ck(B) → Ck−1(∂B).

The boundary is the domain and codomain rolled into one.

BD D
′

E

E Lemma
If ∂B = D ∪ D ′ with ∂D = E = ∂D ′ then

C(D)×C(E) C(D ′) ↪→ C(∂B).

Denote the image by C(∂B;E ), and preimage under ∂ by C(B;E ).



Morrison–Walker n-categories

Axiom 3: Composition

In the pictured situation there is a composition

Ck(B;E )×C(D) Ck(B ′;E ) −→ Ck(B ∪ B ′;E ).
B

E

E

B
′

D

Composition is

I natural w.r.t. diffeomorphisms;

I compatible with boundaries;

I injective for k < n;

I strictly associative.
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Morrison–Walker n-categories

Axiom 4: Existence of identities
If B is a k-cell and D a d-cell (with d + k ≤ n) then there is a map

Ck(B) → Cd+k(D) : b 7→ b × D

which is

I natural w.r.t. diffeomorphisms;

I associative;

I compatible with composition;

I compatible with restriction to boundary cells.

(In fact require such maps for every ‘pinched product’.)
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Morrison–Walker n-categories

Axiom 5: Isotopy invariance in dimension n

The following act trivially on Cn(B):

I diffeomorphisms isotopic to the identity (relative to ∂B);

I collaring maps, where by these we mean:

B B

D D × I

C(B) −→ C (B ∪ (D × I )) −→ C(B)
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Examples of Morrison–Walker (n + k)-categories

Examples

I Framed tangles: frTangn
k(B i ) =

{codim-k framed submanifolds of B i which are
transverse to strata of some cellular stratification}

(up to isotopy when i = n + k).

I Transversal homotopy: ψn
k (M) (B i ) =

{f : B i → M | ∃ cellular stratification with f |S
transverse ∀S and f −1(∗) ⊃

⋃
codim S<k S}

(up to homotopy when i = n + k).
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k-tuply monoidal n-categories

Definition

I C is k-tuply monoidal if C(B) = {1} whenever dim B < k.

I A k-tuply monoidal n-category with duals is a k-tuply
monoidal Morrison–Walker (n + k)-category.

Examples
frTangn

k and ψn
k (M) are k-tuply monoidal n-category with duals.
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Functors between Morrisson–Walker n-categories

Definition
The most general definition of functor is not completely clear,
however any reasonable definition must include a system

Ck → Dk 0 ≤ k ≤ n

of natural transformations compatible with boundaries,
compositions and identitites.

Examples

I stratified transversal f : M → N induces ψn
k (M) → ψn

k (N);

I taking preimage stratification induces ψn
k

(
Sk

)
→ frTangn

k .
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D-framed tangles and collapse maps

Fix k-cell D and point q ∈ D.

D-framed tangles

Define D-frTangn
k as before but with compatible choices (for each

tangle t) of tubular neighbourhood N and diffeomorphism

N ∼= t × D

identifying t and t × q.

Collapse map functor

For each D-framed tangle t define a map B → Sk : t 7→ p by
choosing a transversal map

(D, ∂D) → (Sk , ∗) : q 7→ p.

This determines a functor D-frTangn
k → ψn

k

(
Sk

)
.
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k

(
Sk

)
.



Patchwork functors

Given k-tuply monoidal n-category with duals C and c ∈ Ck(D)
define a patchwork functor

Pc : D-frTangn
k −→ C

B

A

t

D × A
′

For t ∈ D-frTangn
k(B)

I choose cellular stratification
compatible with D-framing;

I assign c × A′ ∈ C(D × A′);

I assign 1× A ∈ C(A) etc;

I composite is Pc(B)(t).
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Transversal Homotopy and the Tangle Hypothesis

We have sketched the construction of

ψn
k

(
Sk

)

preimage

&&

D-frTangn
k

collapseoo Pc //

forget

��

C

frTangn
k

choose

KK

I LHS is Pontrjagin–Thom construction.

I RHS is Tangle Hypothesis: frTangn
k is free k-tuply monoidal

n-category with duals on one generator.
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