Transversal Homotopy Theory and the Tangle Hypothesis

Work in progress, joint with Conor Smyth.

November, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A Whitney stratified manifold M is a manifold with a locally-finite partition into disjoint locally-closed submanifolds $\{S_i\}$ (the strata) satisfying Whitney's condition B.

Definition

A Whitney stratified manifold M is a manifold with a locally-finite partition into disjoint locally-closed submanifolds $\{S_i\}$ (the strata) satisfying Whitney's condition B.

Example

 $M \subset N$, \mathbb{S}^n , \mathbb{RP}^n , \mathbb{CP}^n , Grassmannians, flag varieties ...

Definition

A Whitney stratified manifold M is a manifold with a locally-finite partition into disjoint locally-closed submanifolds $\{S_i\}$ (the strata) satisfying Whitney's condition B.

Example

 $M \subset N$, \mathbb{S}^n , \mathbb{RP}^n , \mathbb{CP}^n , Grassmannians, flag varieties ...

Definition

Smooth $f: M \rightarrow N$ is a stratified transversal map if

• $f(S) \subset T$ some $T \subset N$ for each $S \subset M$

Definition

A Whitney stratified manifold M is a manifold with a locally-finite partition into disjoint locally-closed submanifolds $\{S_i\}$ (the strata) satisfying Whitney's condition B.

Example

 $M \subset N$, \mathbb{S}^n , \mathbb{RP}^n , \mathbb{CP}^n , Grassmannians, flag varieties ...

Definition

Smooth $f: M \rightarrow N$ is a stratified transversal map if

- $f(S) \subset T$ some $T \subset N$ for each $S \subset M$
- $df: N_x S \rightarrow N_{fx} T$ surjective for each $x \in S, fx \in T$.

Definition

A Whitney stratified manifold M is a manifold with a locally-finite partition into disjoint locally-closed submanifolds $\{S_i\}$ (the strata) satisfying Whitney's condition B.

Example

 $M \subset N$, \mathbb{S}^n , \mathbb{RP}^n , \mathbb{CP}^n , Grassmannians, flag varieties ...

Definition

Smooth $f: M \rightarrow N$ is a stratified transversal map if

- $f(S) \subset T$ some $T \subset N$ for each $S \subset M$
- $df: N_x S \to N_{f_x} T$ surjective for each $x \in S, f_x \in T$.

Basepoint given by stratified transversal map $* \rightarrow M$.

Whitney's condition B

Suppose X and Y are strata and $x \in X \cap \overline{Y}$ with sequences $x_i \to x$ and $y_i \to x$ in X and Y respectively.

イロト イポト イヨト イヨト

э

Whitney's condition B

Suppose X and Y are strata and $x \in X \cap \overline{Y}$ with sequences $x_i \to x$ and $y_i \to x$ in X and Y respectively.

Whitney's condition B: If secant lines $L_i = \overline{x_i y_i} \to L$ and tangent planes $P_i = T_{y_i} Y \to P$ then $L \subset P$.

Definition For Whitney stratified manifold M let

$$\psi_k(M) = \{f: I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\} / \sim$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where I = [0, 1] and $f \sim g$ if there is a homotopy *through such transversal maps*.

Definition For Whitney stratified manifold M let

$$\psi_k(M) = \{f: I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\} / \sim$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where I = [0, 1] and $f \sim g$ if there is a homotopy *through such transversal maps*.

Examples

 $\psi_{\mathbf{0}}\left(\mathbb{S}^{\mathbf{0}}\right) \quad \cong \quad \{*\},$

Definition For Whitney stratified manifold M let

$$\psi_k(M) = \{f: I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\} / \sim$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where I = [0, 1] and $f \sim g$ if there is a homotopy *through such transversal maps*.

Examples

$$\begin{array}{rcl} \psi_0\left(\mathbb{S}^0\right) &\cong& \{*\},\\ \psi_1\left(\mathbb{S}^1\right) &\cong& \text{free monoid on } a \text{ and } a^{\dagger}, \end{array}$$

Definition For Whitney stratified manifold M let

$$\psi_k(M) = \{f: I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\} / \sim$$

where I = [0, 1] and $f \sim g$ if there is a homotopy *through such transversal maps*.

Examples

 $\begin{array}{lll} \psi_0 \left(\mathbb{S}^0 \right) & \cong & \{*\}, \\ \psi_1 \left(\mathbb{S}^1 \right) & \cong & \text{free monoid on } a \text{ and } a^{\dagger}, \\ \psi_2 \left(\mathbb{S}^2 \right) & \cong & \text{free commutative monoid on } a \text{ and } a^{\dagger} \cong \mathbb{N}^2. \end{array}$

Definition For Whitney stratified manifold M let

$$\psi_k(M) = \{f: I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\} / \sim$$

where I = [0, 1] and $f \sim g$ if there is a homotopy *through such transversal maps*.

Examples

$$\begin{array}{rcl} \psi_0 \left(\mathbb{S}^0 \right) &\cong& \{*\}, \\ \psi_1 \left(\mathbb{S}^1 \right) &\cong& \text{free monoid on } a \text{ and } a^{\dagger}, \\ \psi_2 \left(\mathbb{S}^2 \right) &\cong& \text{free commutative monoid on } a \text{ and } a^{\dagger} \cong \mathbb{N}^2. \end{array}$$

By Pontrjagin–Thom $\psi_k(\mathbb{S}^m)$ is ambient isotopy classes of framed codim-*m* submanifolds of $(0,1)^k$.

Functoriality

 ψ_k is a functor on Whitney stratified manifolds and stratified transversal maps. There is a natural transformation $\psi_k \rightarrow \pi_k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Functoriality

 ψ_k is a functor on Whitney stratified manifolds and stratified transversal maps. There is a natural transformation $\psi_k \rightarrow \pi_k$.

Example

The linking number of a framed link is given by

(Topologists' framing, not knot theorists'!)

Replacing spheres by other Thom spectra we can get plain-vanilla links, oriented links etc and higher-dimensional variants.

Transversal homotopy categories

Definition Let $\psi_k^1(M)$ be the category with

objects :
$$\{f: I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Transversal homotopy categories

Definition Let $\psi_k^1(M)$ be the category with

 $\begin{array}{ll} \text{objects}: & \{f:I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\} \\ \text{morphisms}: & \{f:I^{k+1} \to M \mid f \text{ transversal}, f(\partial I^k \times I) = *\} / \sim. \end{array}$

Transversal homotopy categories

Definition Let $\psi_k^1(M)$ be the category with

 $\begin{array}{ll} \text{objects}: & \{f: I^k \to M \mid f \text{ transversal}, f(\partial I^k) = *\} \\ \text{morphisms}: & \{f: I^{k+1} \to M \mid f \text{ transversal}, f(\partial I^k \times I) = *\} / \sim . \end{array}$

Example

By Pontrjagin–Thom $\psi_2^1(\mathbb{S}^2) \simeq {}^{\mathrm{fr}}\mathrm{Tang}_2^1$ is category of framed tangles:

Examples

The category of framed tangles is monoidal with duals; we can turn inputs into outputs, and vice versa (provided we dualise them):

Examples

The category of framed tangles is monoidal with duals; we can turn inputs into outputs, and vice versa (provided we dualise them):

Examples

The category of framed tangles is monoidal with duals; we can turn inputs into outputs, and vice versa (provided we dualise them):

Examples

The category of framed tangles is monoidal with duals; we can turn inputs into outputs, and vice versa (provided we dualise them):

The category of finite dim vector spaces is another example, e.g.

 $\operatorname{Hom}(V, W) \cong \operatorname{Hom}(1, V^* \otimes W).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Examples

The category of framed tangles is monoidal with duals; we can turn inputs into outputs, and vice versa (provided we dualise them):

The category of finite dim vector spaces is another example, e.g.

 $\operatorname{Hom}(V, W) \cong \operatorname{Hom}(1, V^* \otimes W).$

Theorem (W '09)

 $\psi_k^1(M)$ is a monoidal category with duals for k > 0, braided monoidal for k > 1 and symmetric monoidal for k > 2.

Globular?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Simplicial?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

In Morrison and Walker's definition of *n*-category 'all' shapes are allowed. They work in the PL context; we give a smooth version of their definition.

Terminology

- Fix $n \in \mathbb{N}$. Henceforth,
 - by space we mean germ of an *n*-manifold along a subspace admitting stratification with cellular strata;

Terminology

Fix $n \in \mathbb{N}$. Henceforth,

- by space we mean germ of an *n*-manifold along a subspace admitting stratification with cellular strata;
- by diffeomorphism we mean homeomorphism with given germ of an extension to a diffeomorphism of ambient *n*-manifolds.

Terminology

Fix $n \in \mathbb{N}$. Henceforth,

- by space we mean germ of an *n*-manifold along a subspace admitting stratification with cellular strata;
- by diffeomorphism we mean homeomorphism with given germ of an extension to a diffeomorphism of ambient *n*-manifolds.

Examples

Examples of 2-cells for n = 2 with stratifications indicated (only the middle two are diffeomorphic):

・ロト ・ 戸 ・ モ ト ・ モ ・ うへぐ

The definition uses an inductive system of axioms for $0 \le k \le n$. We need the axioms for i < k to state the axioms for k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The definition uses an inductive system of axioms for $0 \le k \le n$. We need the axioms for i < k to state the axioms for k.

Axiom 1: Morphisms For $0 \le k \le n$ there is a functor

 \mathcal{C}^k : k-cells and diffeomorphisms \rightarrow sets and bijections

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

defining sets of k-morphisms.

The definition uses an inductive system of axioms for $0 \le k \le n$. We need the axioms for i < k to state the axioms for k.

Axiom 1: Morphisms

For $0 \le k \le n$ there is a functor

 $\mathcal{C}^k:k\text{-cells}$ and diffeomorphisms \rightarrow sets and bijections

defining sets of k-morphisms.

Lemma

 C^k extends to functor on k-dim spaces and diffeomorphisms.

Axiom 2: Boundaries

For each k-cell $(B, \partial B)$ there is a natural transformation

$$\partial: \mathcal{C}^k(B) \to \mathcal{C}^{k-1}(\partial B).$$

The boundary is the domain and codomain rolled into one.

Axiom 2: Boundaries

For each k-cell $(B, \partial B)$ there is a natural transformation

$$\partial: \mathcal{C}^k(B) \to \mathcal{C}^{k-1}(\partial B).$$

The boundary is the domain and codomain rolled into one.

Lemma
If
$$\partial B = D \cup D'$$
 with $\partial D = E = \partial D'$ then
 $\mathcal{C}(D) \times_{\mathcal{C}(E)} \mathcal{C}(D') \hookrightarrow \mathcal{C}(\partial B).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Axiom 2: Boundaries

For each k-cell $(B, \partial B)$ there is a natural transformation

$$\partial: \mathcal{C}^k(B) \to \mathcal{C}^{k-1}(\partial B).$$

The boundary is the domain and codomain rolled into one.

Lemma
If
$$\partial B = D \cup D'$$
 with $\partial D = E = \partial D'$ then
 $\mathcal{C}(D) \times_{\mathcal{C}(E)} \mathcal{C}(D') \hookrightarrow \mathcal{C}(\partial B).$

Denote the image by $\mathcal{C}(\partial B; E)$, and preimage under ∂ by $\mathcal{C}(B; E)$.

Axiom 3: Composition

In the pictured situation there is a composition

 $\mathcal{C}^k(B;E)\times_{\mathcal{C}(D)}\mathcal{C}^k(B';E)\longrightarrow \mathcal{C}^k(B\cup B';E).$

Axiom 3: Composition

In the pictured situation there is a composition

$$\mathcal{C}^{k}(B; E) \times_{\mathcal{C}(D)} \mathcal{C}^{k}(B'; E) \longrightarrow \mathcal{C}^{k}(B \cup B'; E).$$

Composition is

natural w.r.t. diffeomorphisms;

Axiom 3: Composition

In the pictured situation there is a composition

$$\mathcal{C}^{k}(B; E) \times_{\mathcal{C}(D)} \mathcal{C}^{k}(B'; E) \longrightarrow \mathcal{C}^{k}(B \cup B'; E).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Composition is

- natural w.r.t. diffeomorphisms;
- compatible with boundaries;

Axiom 3: Composition

In the pictured situation there is a composition

$$\mathcal{C}^{k}(B; E) \times_{\mathcal{C}(D)} \mathcal{C}^{k}(B'; E) \longrightarrow \mathcal{C}^{k}(B \cup B'; E).$$

Composition is

- natural w.r.t. diffeomorphisms;
- compatible with boundaries;
- injective for k < n;

Axiom 3: Composition

In the pictured situation there is a composition

$$\mathcal{C}^{k}(B; E) \times_{\mathcal{C}(D)} \mathcal{C}^{k}(B'; E) \longrightarrow \mathcal{C}^{k}(B \cup B'; E).$$

Composition is

- natural w.r.t. diffeomorphisms;
- compatible with boundaries;
- ▶ injective for k < n;</p>
- strictly associative.

Axiom 4: Existence of identities If B is a k-cell and D a d-cell (with $d + k \le n$) then there is a map

 $\mathcal{C}^k(B) \to \mathcal{C}^{d+k}(D) : b \mapsto b \times D$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Axiom 4: Existence of identities If B is a k-cell and D a d-cell (with $d + k \le n$) then there is a map

$$\mathcal{C}^k(B) \to \mathcal{C}^{d+k}(D) : b \mapsto b \times D$$

which is

natural w.r.t. diffeomorphisms;

Axiom 4: Existence of identities If B is a k-cell and D a d-cell (with $d + k \le n$) then there is a map

$$\mathcal{C}^k(B) \to \mathcal{C}^{d+k}(D) : b \mapsto b \times D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

which is

natural w.r.t. diffeomorphisms;

associative;

Axiom 4: Existence of identities If B is a k-cell and D a d-cell (with $d + k \le n$) then there is a map

$$\mathcal{C}^k(B) \to \mathcal{C}^{d+k}(D) : b \mapsto b \times D$$

which is

- natural w.r.t. diffeomorphisms;
- associative;
- compatible with composition;

Axiom 4: Existence of identities If B is a k-cell and D a d-cell (with $d + k \le n$) then there is a map

$$\mathcal{C}^k(B) \to \mathcal{C}^{d+k}(D) : b \mapsto b \times D$$

which is

- natural w.r.t. diffeomorphisms;
- associative;
- compatible with composition;
- compatible with restriction to boundary cells.

Axiom 4: Existence of identities If B is a k-cell and D a d-cell (with $d + k \le n$) then there is a map

$$\mathcal{C}^k(B) \to \mathcal{C}^{d+k}(D) : b \mapsto b \times D$$

which is

- natural w.r.t. diffeomorphisms;
- associative;
- compatible with composition;
- compatible with restriction to boundary cells.

(In fact require such maps for every 'pinched product'.)

Axiom 5: Isotopy invariance in dimension nThe following act trivially on $C^n(B)$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Axiom 5: Isotopy invariance in dimension n

The following act trivially on $C^n(B)$:

• diffeomorphisms isotopic to the identity (relative to ∂B);

Axiom 5: Isotopy invariance in dimension n

The following act trivially on $C^n(B)$:

- diffeomorphisms isotopic to the identity (relative to ∂B);
- collaring maps, where by these we mean:

 $\mathcal{C}(B) \longrightarrow \mathcal{C}\left(B \cup (D \times I)\right) \longrightarrow \mathcal{C}(B)$

Examples of Morrison–Walker (n + k)-categories

Examples

• Framed tangles: $\operatorname{fr}\operatorname{Tang}_k^n(B^i) =$

{codim-k framed submanifolds of Bⁱ which are transverse to strata of some cellular stratification}

(up to isotopy when i = n + k).

Examples of Morrison–Walker (n + k)-categories

Examples

• Framed tangles: ${}^{\mathrm{fr}}\mathrm{Tang}_k^n(B^i) =$

{codim-k framed submanifolds of B^i which are transverse to strata of some cellular stratification}

(up to isotopy when i = n + k).

• Transversal homotopy: $\psi_k^n(M)(B^i) =$

 $\{f : B^i \to M \mid \exists \text{ cellular stratification with } f|_S$ transverse $\forall S$ and $f^{-1}(*) \supset \bigcup_{codim \ S < k} S\}$

(日) (同) (三) (三) (三) (○) (○)

(up to homotopy when i = n + k).

k-tuply monoidal n-categories

Definition

• C is k-tuply monoidal if $C(B) = \{1\}$ whenever dim B < k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

k-tuply monoidal n-categories

Definition

• C is *k*-tuply monoidal if $C(B) = \{1\}$ whenever dim B < k.

► A k-tuply monoidal n-category with duals is a k-tuply monoidal Morrison-Walker (n + k)-category.

k-tuply monoidal n-categories

Definition

- C is *k*-tuply monoidal if $C(B) = \{1\}$ whenever dim B < k.
- ► A k-tuply monoidal n-category with duals is a k-tuply monoidal Morrison-Walker (n + k)-category.

Examples

 $\operatorname{fr}\operatorname{Tang}_k^n$ and $\psi_k^n(M)$ are k-tuply monoidal n-category with duals.

Functors between Morrisson–Walker n-categories

Definition

The most general definition of functor is not completely clear, however any reasonable definition must include a system

$$\mathcal{C}^k o \mathcal{D}^k \qquad 0 \le k \le n$$

of natural transformations compatible with boundaries, compositions and identitites.

Functors between Morrisson–Walker n-categories

Definition

The most general definition of functor is not completely clear, however any reasonable definition must include a system

$$\mathcal{C}^k o \mathcal{D}^k \qquad 0 \le k \le n$$

of natural transformations compatible with boundaries, compositions and identitites.

Examples

▶ stratified transversal $f : M \to N$ induces $\psi_k^n(M) \to \psi_k^n(N)$;

Functors between Morrisson–Walker n-categories

Definition

The most general definition of functor is not completely clear, however any reasonable definition must include a system

$$\mathcal{C}^k o \mathcal{D}^k \qquad 0 \le k \le n$$

of natural transformations compatible with boundaries, compositions and identitites.

Examples

- ▶ stratified transversal $f : M \to N$ induces $\psi_k^n(M) \to \psi_k^n(N)$;
- ► taking preimage stratification induces ψ_k^n (\mathbb{S}^k) \rightarrow frTang^{*n*}_{*k*}.

D-framed tangles and collapse maps

Fix k-cell D and point $q \in D$.

D-framed tangles

Define $\frac{D-\text{fr}\text{Tang}_k^n}{N}$ as before but with compatible choices (for each tangle *t*) of tubular neighbourhood *N* and diffeomorphism

 $N \cong t \times D$

identifying t and $t \times q$.

D-framed tangles and collapse maps

Fix k-cell D and point $q \in D$.

D-framed tangles

Define $\frac{D-\text{fr}\text{Tang}_k^n}{N}$ as before but with compatible choices (for each tangle *t*) of tubular neighbourhood *N* and diffeomorphism

$$N \cong t \times D$$

identifying t and $t \times q$.

Collapse map functor

For each *D*-framed tangle *t* define a map $B \to \mathbb{S}^k : t \mapsto p$ by choosing a transversal map

$$(D,\partial D) \to (\mathbb{S}^k,*): q \mapsto p.$$

D-framed tangles and collapse maps

Fix k-cell D and point $q \in D$.

D-framed tangles

Define $\frac{D-\text{fr}\text{Tang}_k^n}{N}$ as before but with compatible choices (for each tangle *t*) of tubular neighbourhood *N* and diffeomorphism

$$N \cong t \times D$$

identifying t and $t \times q$.

Collapse map functor

For each *D*-framed tangle *t* define a map $B \to \mathbb{S}^k : t \mapsto p$ by choosing a transversal map

$$(D,\partial D) \to (\mathbb{S}^k,*): q \mapsto p.$$

This determines a functor ${}^{D-\mathrm{fr}}\mathrm{Tang}_k^n \to \psi_k^n(\mathbb{S}^k)$.

Given k-tuply monoidal n-category with duals C and $c \in C^k(D)$ define a patchwork functor

$$P_c: {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n \longrightarrow \mathcal{C}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given k-tuply monoidal n-category with duals C and $c \in C^k(D)$ define a patchwork functor

$$P_c: {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n \longrightarrow \mathcal{C}$$

For $t \in {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n(B)$

 choose cellular stratification compatible with *D*-framing;

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Given k-tuply monoidal n-category with duals C and $c \in C^k(D)$ define a patchwork functor

$$P_c: {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n \longrightarrow \mathcal{C}$$

For $t \in {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n(B)$

 choose cellular stratification compatible with *D*-framing;

• assign
$$c \times A' \in \mathcal{C}(D \times A')$$
;

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Given k-tuply monoidal n-category with duals C and $c \in C^k(D)$ define a patchwork functor

$$P_c: {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n \longrightarrow \mathcal{C}$$

For $t \in {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n(B)$

- choose cellular stratification compatible with *D*-framing;
- assign $c \times A' \in C(D \times A')$;

・ロト ・四ト ・ヨト ・ヨト ・ヨ

▶ assign $1 \times A \in C(A)$ etc;

Given k-tuply monoidal n-category with duals C and $c \in C^k(D)$ define a patchwork functor

$$P_c: {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n \longrightarrow \mathcal{C}$$

For $t \in {}^{D-\mathrm{fr}}\mathrm{Tang}_k^n(B)$

- choose cellular stratification compatible with *D*-framing;
- assign $c \times A' \in C(D \times A')$;

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- ▶ assign $1 \times A \in C(A)$ etc;
- composite is $P_c(B)(t)$.

Transversal Homotopy and the Tangle Hypothesis

We have sketched the construction of

Transversal Homotopy and the Tangle Hypothesis

We have sketched the construction of

LHS is Pontrjagin–Thom construction.

Transversal Homotopy and the Tangle Hypothesis

We have sketched the construction of

- ► LHS is Pontrjagin–Thom construction.
- RHS is Tangle Hypothesis: ^{fr}Tangⁿ_k is free k-tuply monoidal n-category with duals on one generator.