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Introduction

Formation of patterns in many natural systems can be modelled by systems of non-
linear reaction-diffusion equations. That equations are often difficult to solve ex-
plicitly in closed analytic form and some special methods must be applied in ana-
lyzing the nature of the solutions. These reaction-diffusion systems have a variety
of solutions such as propagating waves, stationary spots, pulsating waves and self-
replicating spots. In two-variable systems, depending on the nature and the number
of stationary spatially-homogeneous solutions, we can classify the reaction-diffusion
systems into different classes such as excitable, oscillatory and multistable. Some
solutions can be observed only in specific systems and some others can be observed in
all of these systems with an appropriate set of parameters. Homogeneous oscillations
for example, can be observed only in oscillatory systems, transitions from one steady
state to another are only observed in multistable systems and other solutions such as
travelling waves and stationary spots can be observed in all of these systems. In this
project we focus on patterns arising in two-variable excitable system described by
Fitz-Hugh Nagumo equations. Before we get to study of patterns, we describe ana-
lytical techniques for solving systems of ordinary differential equations (chapter 1),
numerical methods for partial differential equations (chapter 2), and we examine
their solutions. Also we introduce the reaction-diffusion systems and espsecially the
modified Fitz-Hugh Nagumo model (chapters 2 and 3). Finally, we describe one-
dimensional patterns arising in response to a single stimulation and classify them.
All the results presented in the project, can be useful to the reader who is inter-
ested about pattern-formation to understand phenomena in hydrodynamic systems,
nonlinear optics, autocatalytic chemical reactions and variety of biological systems
including excitable tissues (muscles and nerves), developing biological systems (mor-
phogenesis, gastrulation) and many more. For further details about this phenomena,
the interested reader should consult [1], [2], [3] and [4].
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Chapter 1

Analytical techniques for solving
systems of ordinary differential
equations

Differential equations arise in many areas of sciences and play an important role to
the examination of many phenomena. Differential equations are the mathematical
equations for an unknown function of one or several variables that relates the values
of the function itself and its derivatives of various orders. Ordinary differential equa-
tions, are the differential equations, in which the unknown function is a function of
a single independent variable and partial differential equations, are the differential
equations in which the unknown fuction is a function of multiple independent vari-
ables, and the equation involves its partial derivatives. Both ordinary and partial
differential equations are classified as linear and nonlinear. In this first section we
present the analytical methods for solving systems of ordinary differential equations
and we examine some of their solutions. The solutions give the phase plane which is
a visual display of certain characteristics of certain kinds of differential equations and
is useful in visualizing the behavior of dynamical systems (if are stable or unstable).

1.1 Linear Systems

1. For one linear differential equation of the form

dx

dt
= ax+ b (1.1)

where a, b are constants, the solution is given by

x(t) = c1e
at − b

a
(1.2)

where c1 is arbitrary constant.

The following phase-portraits shows the different solutions of linear equa-
tion (1.1) for a < 0 and a > 0 respectively:
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Figure 1.1: Phase-portraits of (1.1). A: for a < 0 and B: for a > 0.

2. The linear form of two equations is equivalent to the system:

dx

dt
= a11x+ a12y (1.3)

dy

dt
= a21x+ a22y. (1.4)

We can define the Jacobian matrix

J =

(
a11 a12

a21 a22

)
(1.5)

where a11, a12, a21, a22 are real constants.

Let λ1 and λ2 be the eigenvalues of the matrix J , that is

∣∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣∣ = 0⇒ (a11 − λ)(a22 − λ)− a12a21 = 0 (1.6)

⇒ λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0 (1.7)

⇒ λ1, λ2 =
(a11 + a22)± [(a11 + a22)2 − 4(a11a22 − a12a21)]1/2

2
(1.8)

⇒ λ1, λ2 =
trJ ± [(trJ)2 − 4detJ ]1/2

2
. (1.9)

Let D = X−1JX ⇒ J = XDX−1. We can write the system (1.3), (1.4) in the
form
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[
ẋ
ẏ

]
= J

[
x
y

]
⇒
[
ẋ
ẏ

]
= XDX−1

[
x
y

]
. (1.10)

The solutions of this system are then

[
x
y

]
= c1u1e

λ1t + c2u2e
λ2t, (1.11)

where c1 and c2 are arbitrary constants and u1,u2 are the eigenvectors of J
corresponding to λ1 and λ2 respectively. This form of solutions is for distinct
eigenvalues. If the eigenvalues are equal the solutions are proportional to

[
x
y

]
= (c1 + c2t)eλt. (1.12)

If λ1 and λ2 are real and distinct, then:

(i) If λ1 and λ2 have the same sign we take the node case where we have for
λ1 ≤ 0, λ2 ≤ 0, a stable node, and for λ1 > λ2 > 0, we have an unstable
node.

(ii) If λ1 and λ2 have different signs we have the saddle point which is always
unstable.

If λ1 and λ2 are complex: λ1, λ2 = a± ib, b 6= 0, then

(i) If a 6= 0 we have a spiral which is stable if a < 0 and unstable if a > 0.

(ii) If a = 0 we have a centre which is not stable in the usual sense.

If λ1 and λ2 are not distinct, λ1 = λ2 = λ, we take a node.

A B C D

Figure 1.2: Phase portraits for linear differential system (1.3), (1.4). A: Unstable
node for λ1, λ2 > 0, B: Saddle point for λ1 > 0, λ2 < 0, C: Unstable spiral for
complex λ1, λ2 with positive real parts and D: Centre for complex λ1, λ2 with real
parts zero.
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The following diagram showing how trJ = a11+a22 and detJ = a11a22−a21a12

determine the type of phase plane singularity for the system (1.3), (1.4).

Figure 1.3: Classification of steady-states of the linear system (1.3), (1.4).

1.2 Nonlinear systems

1. For one nonlinear differential equation in the form:

ẋ = f(x) (1.13)

where f(x) is a function of a variable x the solutions can be found using quali-
tative analysis.

Let’s consider two simple nonlinear examples:

(a) Quadratic where the function f(x) in equation (1.13) is written in the form
f(x) = ax2 + bx + c where a, b, c are constants. In particular for the
Fisher equation we have f(x) = x(x − 1). Here are two stationary points
x = 0 and x = 1. For this example see figure 1.4A about the plot of f(x)
versus x for Fisher equation. Since ẋ = f(x), x is increasing when f is
positive, decreasing when f is negative, and stationary when f = 0. Thus
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implies that in this example the first stationary point x = 0, is stable and
the second x = 1, is unstable.

(b) Cubic equation where in (1.13) the function f(x) has the form f(x) = ax3+
bx2 + cx+d and in particular form we have the Fitz-Hugh equation where
f(x) = −x(x−x0)(x−x1). For this example see figure 1.4B about the plot
of f(x) versus x for Fitz-Hugh equation particular for x0 = 1 and x1 = 3.
Here we have 3 stationary points, where x = 0 is stable, x0 = 1 is unstable
and x1 = 3 is stable. This case is called multistable.
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Figure 1.4: Plot of function f(x) for the nonlinear equation (1.13). A: for Fisher
equation and B: for Fitz-Hugh equation.

2. For the nonlinear system with two first order differential equations we consider
the general form of:

ẋ = f(x, y) (1.14)

ẏ = g(x, y) (1.15)

where x and y are functions of time t.

Definition
A point (x∗, y∗) is called an equilibrium point of the system (1.14), (1.15) if

f(x∗, y∗) = 0, g(x∗, y∗) = 0. (1.16)

To explore the stability of steady states values of a nonlinear differential system
we will apply linearization as described in the next section.

1.3 Linearization

Linearization refers to the linear approximation to a function at a given point. In
the study of dynamical systems, linearization is a method for assessing the stability
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of an equilibrium point of a system of nonlinear differential equations. For the
system (1.14), (1.15), we take the steady-state values x0 and y0, which satisfy

f(x0, y0) = 0 and g(x0, y0) = 0. (1.17)

We can examine the stability of these steady states by analyzing them with
small deviations. This will result in a linearised system of equation for the small
perturbations ε and δ. To achieve this, we must use Taylor series expansions of the
functions of two variables, f and g. We assume that

x = x0 + ε⇒ ẋ = ε̇ (1.18)

y = y0 + δ ⇒ ẏ = δ̇. (1.19)

We approximate f(x0 + ε, y0 + δ) and g(x0 + ε, y0 + δ) by the expressions

ẋ = f(x0 + ε, y0 + δ) = f(x0, y0) + εf ′x(x0, y0) + δf ′y(x0, y0) (1.20)

⇒ ε̇ = εf ′x + δf ′y (1.21)

and similar
δ̇ = εg′x + δg′y. (1.22)

The Jacobian matrix now has the form

J =

(
f ′x f ′y
g′x g′y

)
. (1.23)

Comparing this form of Jacobian with the (1.5), we now take the tr(J) and det(J)
by

tr(J) = f ′x + g′y and det(J) = f ′xg
′
y − f ′yg′x. (1.24)

Now the problem has been reduced to a linear system of equations for states that are
nearness to the steady state (x0, y0). Thus we can determine the stability of (x0, y0)
by methods for linear system equations as we refer in section 1.1.

Example:

In the following example we have a system of one nonlinear equation (1.25), and one
linear equation (1.26)

ẋ = −x(x− a)(x− 1)− y (1.25)

ẏ = b(x− y) + c. (1.26)

The nullclines ẋ = 0, ẏ = 0, of this system gives the stationary points for different
values of constants a, b, c. If we have one stable steady state point the dynamical
system is excitable (see figure 1.5A). For one unstable steady state point (see fig-
ure 1.5B), we have an oscillatory system and for more stationary points we have a
multistable system. In particular in the figure 1.5C for the multistable system we
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Figure 1.5: Respectively of the number and stability of steady states, we can have:
A: excitable system, B: oscillatory system and C: multistable system.

have 3 stationary points, were the first one and the third are stable and the second
is unstable.

We have seen that by linearizing a set of nonlinear equations about a given steady
state, we can describe the behavior of that system. This behavior falls into the pos-
sible cases which were described in figure 1.3. Consider that we have equations with
parameters. The bifurcation is a qualitative change of the equations properties as
the parameter change continiously. In this project we describe the Hopf bifurcation,
where a transition from a stable to an unstable focus, or form an unstable to stable
focus exists, as a parameter c is varied.

1.4 Hopf bifurcation

Let us consider the following system of differential equations depending on parameter
c

ẋ = f(x, y, c) (1.27)

ẏ = g(x, y, c). (1.28)

We assume that the system has an equilibrium point at (x0(c), y0(c)), such that
eigenvalues of the Jacobian matrix

J(c) =

(
∂f
∂x

∂f
∂y

∂f
∂x

∂f
∂y

)
(x0,y0)

(1.29)

are complex in the form λ1,2 = a(c) ± ib(c), where a(c) is the real part and ib(c) is
the imaginary part of λ. The solutions have the form:[

x
y

]
= c1u1e

(a(c)+ib(c))t + c2u2e
(a(c)−ib(c))t. (1.30)

At some point, however, the fixed point looses its stability, which implies that the
real part of the eigenvalues changes from negative to positive. In other words, the
real part passes through zero. We suppose that there is a value c1 such that a(c1) =
0 and b(c1) 6= 0. At this point the behaviour of the system changes form stable spiral
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to unstable or vice versa. The point where the transition occurs is called a bifurcation
point, and c is the bifurcation parameter. If the solution lose its stability, the case
is called a supercritical Hopf-bifurcation and if the solution which appears the Hopf
bifurcation, is itself unstable, this case is called subcritical Hopf bifurcation.

1.5 Reduction of fast-slow systems

We consider the system of differential equations

du

dt
= f(u, v) (1.31)

dv

dt
= εg(u, v) (1.32)

of which u is ‘fast’ variable and v is ‘slow’, and 0 < ε << 1 is a very small parameter.
The transformation of time T = εt brings the system to the form

ε
du

dT
= f(u, v) (1.33)

dv

dT
= g(u, v). (1.34)

Systems (1.31), (1.32) (the fast-time system) and (1.33), (1.34) (the slow-time sys-
tem) are equivalent to each other for every fixed ε > 0, but have different properties
in the limit ε→ 0.

Since ε = 0 from the fast-time system,

dv

dt
' 0 ⇒ v = constant = v1

and the system (1.31), (1.32) reduces to the equation

du

dt
= f(u, v1) (1.35)

which means that the slow variable v remain constant and only the fast variable u
vary.

From the slow-time system for ε = 0

f(u, v) = 0 ⇒ u = Φ(v) where Φ is a function of variable v

and the system (1.33), (1.34) reduces to the equation

dv

dt
= g(Φ(v), v). (1.36)

Reduction is the technique used to reduce the differential system of two variables u
and v to a system of one variable. We consider the two dynamic variables u and v
which are one ‘fast’ and the other ‘slow’ and we can called the differential system
fast-slow time system.
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Chapter 2

Spatio-temporal patterns in
systems of partial differential
equations

2.1 Spatially distributed systems

Assume that we have a function of two variables f(x, t), i.e. x is the space and t is
the time. We can find derivatives of this function in the x-direction ∂f/∂x and in
the t-direction ∂f/∂t.

If we have a process of diffusion of a substance, then it is possible to show that
the flux is directly proportional to the concentration gradient and directed to the
side which is opposite to the gradient. Therefore we can write:

−→
J = −D∇u, (2.1)

where J(x) is a flux of particles at the section x which means number of particles
crossing a unit area at x in the x direction per unit of time, and in a multi-dimensional
space we take a vector −→J as the flux depends on orientation of a surface. D is the
proportionality coefficient which is called the diffusion coefficient, and ∇u is the
gradient of the function u, i.e. is a vector which has the x-coordinate ∂u/∂x and t-
coordinate ∂u/∂t. The equation which describes the diffusion in one dimension (1D)
is given by:

∂u

∂t
= −∂J

∂x
= D

∂2u

∂x2
. (2.2)

2.2 Reaction diffusion systems

A theoretical consideration of many natural systems shows that they can described
by systems of nonlinear reaction-diffusion equations. Depending on the nature and
the number of stationary spatially homogeneous solutions, reaction diffusion systems
can fall into different classes such as excitable, oscillatory and multistable. The

11



widely known solutions of that systems are travelling waves and stationary spots. In
chapter 3, we focus on patterns arising in two-variable excitable system described by
modified Fitz-Hugh Nagumo equations and we describe all one-dimensional patterns
of propagating waves and stationary spots.

Mathematically, reaction-diffusion systems can be described by nonlinear partial
differential equations in the general form as follows:

∂u

∂t
= Du∆u+ εuf(u, v) (2.3)

∂v

∂t
= Dv∆v + εφ(u, v), (2.4)

where the functions f(u, v) and φ(u, v) define the kinetics of the dependent variables
u and v, εu and ε specify the rate of kinetics terms, ∆u = ∂2u/∂x2, ∆v = ∂2v/∂x2

and Du, Dv are the diffusion coefficients.

Modified Fitz-Hugh Nagumo model

Consider we have the reaction diffusion system (2.3), (2.4). For the functions f(u, v)
and φ(u, v), we can use the kinetics terms

f(u, v) = −kuu(u− u0)(u− u1)− kvv and φ(u, v) = u− v.

These terms are from the widely known Fitz-Hugh Nagumo (FHN) model describing
exitable media (for further details the reader should consult [5]). Also rescaling of
time and space allows elimination of one of the diffusion coefficients and one of the
ε -parameters, so that we can put into (2.3), (2.4), Du = 1 and εu = 1. Thus the
system take the form

∂u

∂t
= ∆u− (kuu(u− u0)(u− u1) + kvv) (2.5)

∂v

∂t
= Dv∆v + ε(u− v). (2.6)

At this system we can define the variable u as an activator which involved in
the increase of its own production and variable v as an inhibitor which reduces the
production rate of activator. The diffusive spread of the inhibitor around the excited
area is often referred to as lateral inhibition (more information in [6]), where ku, kv
are constants adjusting the kinetics (i.e. excitable, bistable) of the system.

For numerical integration of the system (2.5), (2.6), we have used the Euler
explicit method with central differencing for the diffusion terms and with no-flux
conditions on the boundaries of the medium (described in section 2.5).
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2.3 Propagating wave solution

Consider we have the excitable system described by the following Fitz-Hugh Nagumo
system:

∂u

∂t
= D

∂2u

∂x2
+ f(u, v) (2.7)

∂v

∂t
= ε(u− v) (2.8)

where f(u, v) = −u(u− a)(u− 1)− v.
Travelling waves solutions of the system (2.7), (2.8), in which u and v are func-

tions only of the travelling coordinate variable z = x − ct, satisfy the travelling
coordinate form of (2.7), (2.8), namely

−c∂u
∂z

= D
∂2u

∂z2
+ f(u, v) (2.9)

−c∂v
∂t

= ε(u− v) (2.10)

where c denotes the velocity of the wave.
While the wave is moving right we examine the two parts. The wave front

(v = v+) where u increases, and the wave back (v = v−) where u decreases. From
the equation (2.9), for the wave front part we have

D
∂2u

∂z2
+ c

∂u

∂z
+ f(u, v+) = 0. (2.11)

We multiply this equation by ∂u/∂z

⇒ 1
2
D[(

∂u

∂z
)2]′z + c(

∂u

∂z
)2 + f(u, v+)

∂u

∂z
(2.12)

and integrate respect to z

⇒
∫ ∞
0

1
2
D[(

∂u

∂z
)2]′z∂z +

∫ ∞
0

c(
∂u

∂z
)2∂z +

∫ ∞
0

f(u, v+)
∂u

∂z
∂z. (2.13)

So we get the velocity c of the wave in the form

c =
−
∫ 1
0 f(u, v+)∂u∫∞
0 (∂u∂z )2∂z

. (2.14)

Similarly about the back wave part we have

c =
−
∫ 1
0 f(u, v−)∂u∫∞
0 (∂u∂z )2∂z

. (2.15)

While the wave is moving right, if its shape does not change, then the velocity
must be equal in the two parts of the wave

⇒
∫ 1

0
f(u, v+)∂u =

∫ 1

0
f(u, v−)∂u. (2.16)
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2.4 Turing instability

Consider we have the system

∂u

∂t
= ∆u + γf(u, v) (2.17)

∂v

∂t
= Dv∆v + γφ(u, v). (2.18)

We suppose that (u0, v0) is a constant equilibrium solution,

f(u0, v0) and φ(u0, v0) = 0. (2.19)

In fact, the constant solution (u0, v0) is also an equilibrium solution of a system of
ordinary differential equations:

du

dt
= γf(u, v) (2.20)

dv

dt
= γφ(u, v). (2.21)

Turing suggested that, under certain conditions, chemical can react and diffuse in
such way as to produse non-constant equilibrium solutions, which represent spatial
patterns of chemical or morphogen concentration. Turing’s theory said that if in
the absense of the diffusion (system (2.20), (2.21)), we have a stable steady state,
then, under certain conditions, the uniform steady state can become unstable and
spatial patterns can evolve through bifurcations. So a constant equilibrium can
be stable with respect to the system (2.20), (2.21), but it is unstable with respect
to (2.17), (2.18). Therefore this constant equilibrium solution becomes unstable
because of the diffusion. More information of Turing instability can be found in [1].

In the absense of diffusion the solution of the system is determined by analytical
techniques which are described in chapter 1. With linearization we take the Jacobian
matrix (1.23), with the partial derivatives of f and φ. The eigenvalues have the form

λ1, λ2 =
(f ′u + φ′v)± [(f ′u + φ′v)

2 − 4(f ′uφ
′
v − f ′vφ′u]1/2

2
. (2.22)

Linear stability is defined if the eigenvalues have negative real part, Reλ < 0, which
is equivalent to

tr(J) = f ′u + φ′v < 0 and det(J) = f ′uφ
′
v − f ′vφ′u > 0. (2.23)

Now suppose that (u0, v0) is unstable with respect to the reaction-diffusion sys-
tem (2.17), (2.18). Then (u0, v0) must be unstable with respect to the following
linearized system, with small perturbations ε and δ

∂ε

∂t
=
∂2ε

∂x2
+ γf ′u(u0, v0)ε+ γf ′v(u0, v0)δ, (2.24)
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∂δ

∂t
= Dv

∂2δ

∂x2
+ γφ′u(u0, v0)ε+ γφ′v(u0, v0)δ. (2.25)

We consider the matrix notation:

Ψt = DΨxx + γJΨ, (2.26)

where

Ψ(t, x) =

(
ε(t, x)
δ(t, x)

)
, and D =

(
1 0
0 Dv

)
. (2.27)

For the separation of variables for single equation, we except that ε and δ are both
separable, and we try the following form

Ψ(t, x) =

(
ε(t, x)
δ(t, x)

)
=

(
uk(t)
vk(t)

)
cos(kπx) = Wk(t)cos(kπx). (2.28)

We shall try this form of solution, and the general solution of Ψ would be

Ψ(t, x) =
∞∑
k=0

Wk(t)cos(kπx). (2.29)

By substitution of this form into (2.26), we obtain that Wk(t) satisfies a system of
ordinary differential equations:

dWk

dt
= (γJ − k2π2D)Wk. (2.30)

If (2.24), (2.25) is an unstable system, then at least one of Wk(t) would go to infinity
as t→∞, one of the eigenvalues of matrix Mk = γJ − k2π2D has positive real part.
The eigenvalues λ1 and λ2 of Mk satisfy

λ2−[γ(f ′u+φ′v)−(Dv+1)k2π2]λ+(f ′uφ
′
v−f ′vφ′u)γ2−k2π2(Dvf

′
u+φ′v)γ+Dvk

4π4 = 0,
(2.31)

and
tr(Mk) = γ(f ′u + φ′v)− (Dv + 1)k2π2, (2.32)

det(Mk) = (f ′uφ
′
v − f ′vφ′u)γ2 − k2π2(Dvf

′
u + φ′v)γ +Dvk

4π4. (2.33)

Since f ′u +φ′v < 0, then tr(Mk) < 0. So Mk cannot be an unstable spiral or unstable
node (see figure 1.3). If Mk is unstable, then it can only be a saddle. Therefore we
must have det(Mk) < 0.

We only need one of Mk is unstable. So we look the values of h(k2π2) = det(Mk)
for different k. Here we define the function

h(ω) = (f ′uφ
′
v − f ′vg′u)γ2 − ω(Dvf

′
u + g′v)γ +Dvω

2. (2.34)

When ω = 0, h(0) = (f ′uφ
′
v − f ′vφ′u)γ2 > 0 because we require f ′uφ

′
v − f ′vφ′u > 0, and

when k2π2 →∞, we also have

lim
ω→∞

h(ω) =∞. (2.35)
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So we must have for some 0 < k2π2 < ∞, h(k2π2) < 0. Since h is a quatratic
equation, we must require

min
ω≥0

h(ω) < 0. (2.36)

It is easy to caldulate that the minimum value at ω0 is achieved at

ω0 =
Dvf

′
u + φ′v

2Dv
. (2.37)

This implisitly implies that
Dvf

′
u + φ′v > 0, (2.38)

otherwise h(ω) > 0 for all ω ≥ 0. The minimum value at ω0 is

h(ω0) = γ2(f ′uφ
′
v − f ′vφ′u −

(Dvf
′
u + φ′v)

2

4Dv
), (2.39)

which must be negative, so

(Dvf
′
u + φ′v)

2 − 4Dv(f ′uφ
′
v − f ′vφ′u) > 0. (2.40)

Summarizing all conditions we got, if (u0, v0) is stable with respect to (2.17), (2.18)
but unstable with respect to (2.20), (2.21), then Dv and J must satisfy

f ′u + φ′v < 0, f ′uφ
′
v − f ′vφ′u > 0, (2.41)

Dvf
′
u + φ′v > 0, (Dvf

′
u + φ′v)

2 − 4Dv(f ′uφ
′
v − f ′vφ′u) > 0. (2.42)

2.5 Numerical methods of integration of partial differ-
ential equations

In order to study partial differential equation (PDE) numerically we need to find
numerical approximations for the main spatial and time derivatives of the function
u(x) and other functions which are used in our equations. In this section we describe
how we can solve numerically the partial differential equations. Let us formulate a
procedure for numerical solution of PDE similar to the diffusion equation (2.2) in 1D
space. We need to specify in which region R of space we want to solve our equation,
and we need to specify the initial distribution of the substance u = u0. After that
we can discretize our equation in the region R.

Assume that our region R is the interval [x0, xk] and that the point xi belong
in this interval for i = 0, 1, . . . , k. Let us correspond all the points xi from region
R into the function u. For example for the point xi we have u(xi). Also we define
∆x = xi+1 − xi.

Using Taylor expansion in a general point x we can write:

u(x+ ∆x) = u(x) + u′(x)∆x+
u′′(x)(∆x)2

2
(2.43)
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u(x−∆x) = u(x)− u′(x)∆x+
u′′(x)(∆x)2

2
. (2.44)

From the sum of two equations we take

u(x+ ∆x) + u(x−∆x) = 2u(x) + u′′(x)(∆x)2 (2.45)

⇒ u′′(x) =
u(x+ ∆x)− 2u(x) + u(x−∆x)

(∆x)2
. (2.46)

If we substitute the expression (2.46) for the second derivative, into (2.3), and

∂u

∂t
=
ut+1 − ut

∆t

for the first derivative, with εu = 1, then we have

ut+1(x)− ut(x)
∆t

= Du
ux+1 − 2ux + ux−1

∆x2
+ f(u, v) (2.47)

⇒ ut+1(x) = ut(x) + ∆t[Du
ux+1 − 2ux + ux−1

∆x2
+ f(u, v)]. (2.48)

The above method which have used, is the widely known Euler explicit method and
it used for the numerical integration of partial differential equations.
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Chapter 3

Patterns in excitable systems
with lateral inhibition

Stimulation of the medium described by reaction diffusion system (2.3), (2.4) results
in the formation of different spatio-temporal patterns. If the inhibitor’s diffusion is
small compared with that of the activator, the stimulation causes the formation of
propagating waves. If the inhibitor’s diffusion is large stationary spots are formed.
Generally we can divide the parameter space of system (2.3), (2.4), into 4 domains
(R1 − R4) corresponding to four different types of solutions. R1 is a domain cor-
responding to propagating wave solutions (figure 3.3). R2 is a domain were the
patterns are unstable and the medium returns to the homogeneous state. R3 is a
domain where stable pulsating spots are observed (figure 3.2A). R4 is a domain
where stationary spots arise (figure 3.2B).

3.1 Stability of stationary solutions

A B

Figure 3.1: The profiles of u. A: for a stationary spot, B: for a propagating wave
(moving right).

To simplify our analysis we replace both u-profiles (figure 3.1), by rectangular
functions: u = 1 in the excited region and u = 0 in the rest of the medium. This
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approximation can be justified by the fact that R1−R4 solutions are also observed
in the system (2.3), (2.4) where f(u, v) is a piecewise linear function (consult [7])
such that u-profiles in corresponding solutions are almost rectangular.

Now we can derive the analytic expression for the v-profile in a stationary spot
by solving the linear equation

Dvv
′′ + ε(u− v) = 0 (3.1)

when u = 1 for |x| ≤ a and u = 0 for |x| > a with boundary contitions

v(−∞) = v(∞) = 0 (3.2)

assuming that v ∈ C1(−∞,∞) and v(−a) = v(a) = v0. The solution is a symmetric
function

v(x) = 1 + (v0 − 1)
cosh(λx)
cosh(λa)

, for |x| ≤ a (3.3)

and
v(x) = v0e

[λ(a−|x|)], for |x| > a, (3.4)

where λ =
√
ε/Dv. The requirement that v′(x) is continuous at |x| = a, gives the

relationship
aλ = 0.5ln(1− 2v0)−1, (3.5)

i.e. the product aλ is constant. Note that the maximum value of inhibitor, v(0) =
1−
√

1− 2v0, depends only on v0.
Let us assume that the symmetric variations in the size of the spot and in the

value of the inhibitor on the spot’s ‘wall’ affect each other according to the system

da

dt
= b11δa+ b12δv (3.6)

dv

dt
= b21δa+ b22δv. (3.7)

The stationary spot is stable if for the Jacobian matrix B, associated with this
system, det(B) > 0 and tr(B) < 0. Since Dv = D3 corresponds to the stationary-
pulsating spot transition, this bifurcation point is associated with

tr(B) = b11 + b22 = 0. (3.8)

For b11, we can write
b11 = c′(v0)v′(a) (3.9)

where c(v) is a velocity of the spot’s ‘wall’ as a function of the inhibitor concentration.
The derivative c′(v) is negative (c increases with a decrease of v, more informations
can be found in [5]) and its exact value can be found from (2.3). Further,

v′(a) = −λv0 and thus b11 = λv0|c′(v0)|. (3.10)
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It is easy to see that
b22 = Dv∆− ε, (3.11)

where ∆ is the Laplasian operator.
The spatial distribution of the perturbation of v can be represented as a series

∞∑
i=0

ckcos(kx), (3.12)

which gives for mode k, ∆ = −k2. Therefore the condition for each mode to become
unstable is

tr(B) = λv0|cv| −Dvk
2 − ε > 0. (3.13)

This indicates that the most sensitive mode corresponds to k = 0 or when δv(x) = δv
is a constant. Finally for the bifurcation point D3 we have tr(B) = λv0|cv| − ε = 0
or taking into account that λ =

√
ε/Dv :

D3 = (cvv0)2ε−1, (3.14)

i.e., D3 is proportional to ε−1. This confirms results obtained in [8] and [9] where
more complicated methods were used to analyse more general systems. To analyse
the condition det(B) > 0 we shall find expressions for b12 and b21. It is easy to see
that b12 = c′(v0) and the expression for b21 = ε(v0(a + δa) − v(a + δa)), i.e., b21

depends on the difference between the value of v at the front of stationary spot with
size a+ δa, which is

v0(a+ δa) = v0 + (1− 2v0)λδa, (3.15)

and the value of v at distance δa from the front of stationary spot of size a,

v(a+ δa) = v0(1− λδa). (3.16)

Thus b21 = ε(1 − v0)λ and the condition det(B) = b11b22 − b12b21 > 0 trasforms
into 2v0 < 1. The sign of det(B), which is positive if v0 < 0.5, does not depend on
Dv and ε.

Example of stationary and pulsating spots

From the Fitz-Hugh Nagumo system (2.5), (2.6), for different values of the kinetics
terms and of the diffusion coefficients, we have different kinds of one dimensional
solutions (different patterns forms). In this example we have used the following
values (see Init procedure in chapter 4), to produce pulsating and stationary spots.
To create a pulsating spot (figure 3.2A) we have used space-step = 0.16, time-step
= 0.02, Du = 1, Dv = 3.2, ku = 4.5, kv = 1, u1 = 1, u0 = 0.05, ε = 1, and size of
the plot 200× 201. For the time-space plot of the stationary spot (figure 3.2B), we
have used space-step = 0.16, time-step = 0.01, Du = 1, Dv = 5, ku = 4.5, kv = 1,
u1 = 1, u0 = 0.05, ε = 1, and size of the plot 400× 500.
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A B

Figure 3.2: Time-space plot of one dimensinal solutions of the reaction-diffusion
system (2.3), (2.4). A: pulsating spot, B: stationary spot.

3.2 Existence of wave solution

We assume now that Dv = D1, the v-diffusion coefficient for propagating waves. To
estimate D1 we shall find conditions when the system (2.3), (2.4) has a travelling
wave solution. In a similar way to the case of stationary spot we replace the u-profile
(see figure 3.1B), by the rectangular wave and look for a solution v(x − ct) = v(z)
to the equation Dvv

′′ + cv′ + ε(u − v) = 0 under the same conditions as for the
stationary spot, except for v(a) = v+ and v(−a) = v−. The solution is

v(z) = v0e
[λ1(z−a)] for z > a, (3.17)

v(z) = v1e
[λ2(z+a)] for z < −a (3.18)

and

v(z) = 1− λ2
e[λ1(z+a)]

(λ2 − λ1)
+ λ1

e[λ1(z−a)]

(λ2 − λ1)
for |z| ≤ a (3.19)

where

λ1,2 =
(−c∓

√
c2 + 4εDv)

(2Dv)
. (3.20)

Parameters c and a are defined by v+ and v− according to the following equations:

v+ = λ2[1− e(2λ1a)]

(λ2 − λ1)
(3.21)

and

v− = λ1[
e(−2λ2a)]

(λ2 − λ1)
. (3.22)

Note that the size a, of the wave, must be big enough for v− > v0. To find conditions
for the existence of a propagating wave solution we rewrite the expression for v− as

v−
(λ2 − λ1)

λ1
+ 1 = e(−2λ2a). (3.23)
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Since 0 < e(−2λ2a) < 1, we conclude −1 < v−(λ2 − λ1)/λ1 < 0. From the last
inequality, after putting the expressions for λ1 and λ2 we take

Dvε < c2v−
(1− v−)

(2v− − 1)2
. (3.24)

Since the velocity c, of the wave, can vary in a limited range and c = O(1) (consult [5])
and v− = O(1), we can expect that:

D1 ∝ ε−1. (3.25)

This result was also obtained in [8] where a propagating wave solution of (2.3), (2.4)
was studied using analogies with mathematical systems. Our numerical results con-
firm both contitions (3.14), (3.25).

Example of propagating wave

For this example we have used the Fitz-Hugh Nagumo system (2.5), (2.6). The one-
dimensional solution of this system represented by the follow time-space plot, where
vertical axis is the time and horizontal axis is the space.

Figure 3.3: Time-space plot of propagating waves.

A set of numerical simulations carried out with various grid sizes and time steps
showed that to achieve continuity and accuracy of the solution (while Du = 1) we can
set the value of grid size to 0.4 and the time step to 0.01 (or less when Dv < 4). For
this time-space plot (figure 3.3), we have used space-step = 0.16, time-step = 0.01,
Du = 1, Dv = 1, ku = 4.5, kv = 1, u1 = 1, u0 = 0.05, ε = 1, and size of the plot
400× 210 (see Init procedure in chapter 4).
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Chapter 4

Maple work

4.1 Useful procedures

LinearDifferentialSystem procedure:

With this procedure we can input the real coefficients a,b,c,d of the system

dx

dt
= ax(t) + by(t),

dy

dt
= cx(t) + dy(t).

The programme output a plot of the solution of the differential system with initial
contitions x(0) = i, y(0) = j, where −2 ≤ i, j ≤ 2. We used this procedure in
section 1.1 to plot the figure 1.2 showing the phase-portraits for a variety of the
solutions of the linear system (1.3), (1.4).

> with(DEtools):
> #--------------------------------------------------------------------
# Name: LinearDifferentialSystem:=proc(A::realcons,B::realcons,
C::realcons,D::realcons)
# Arguments:
# A - Coefficient of function x in the first ode.
# B - Coefficient of function y in the first ode.
# C - Coefficient of function x in the second ode.
# D - Coefficient of function y in the second ode.
# Output:
# A plot of the ode system for a selection of initial
# conditions and parameters described above.
#--------------------------------------------------------------------

LinearDifferentialSystem:=proc(A::realcons, B::realcons ,
C::realcons ,D::realcons)

#Declare the variables
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local i, j, ode_system, initial_conditions;

#Setup the ode system given the parameters passed

ode_system:=[diff(x(t),t)=A*x(t)+B*y(t), diff(y(t),t)=C*x(t)+D*y(t)];
initial_conditions :=[];

#Rather than repeatedly call DEplot, we can give it a list of
# initial conditions, which it will plot for us

for i from -2 to 2 do
for j from -2 to 2 do

initial_conditions := [op(initial_conditions),[x(0)=i,y(0)=j]];
end do;

end do;

#Now call DEplot with the selection of initial conditions and
# display the results

DEplot(ode_system,[x(t),y(t)],t=-1..1,x=-10..10,y=-10..10,
color=magnitude,arrows=curve, initial_conditions, linecolor=black);

end proc;

DetermineTheSolution procedure:

In the procedure DetermineTheSolution we input the coefficients of the system

dx

dt
= ax(t) + by(t),

dy

dt
= cx(t) + dy(t)

and the programme gives the two eigenvalues of the Jacobian matrix of the coeffi-
cients and the kind of the solution of the system, which depends from the kind of
the eigenvalues (all the cases described in section 1.1).

> with(LinearAlgebra):
> #-------------------------------------------------------------------
#Name:DetermineTheSolution:=proc(A::realcons,B::realcons,

C::realcons,D::realcons)
#Arguments:
# A - Coefficient of function x in the first ode.
# B - Coefficient of function y in the first ode.
# C - Coefficient of function x in the second ode.
# D - Coefficient of function y in the second ode.
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# Output:
# A list with the two eigenvalues and the kind of solution of the
differential system
#---------------------------------------------------------------------
DetermineTheSolution:=proc(A::realcons,B::realcons,C::realcons,D::realcons)

#Declare the variables
local R1,R2,I1,I2,J,l,ode_system;
l:=list[];

#The form of the system with the input parameters
ode_system:=[diff(x(t),t)=A*x(t)+B*y(t), diff(y(t),t)=C*x(t)+D*y(t)];

#The Jacobian matrix to find the eigenvalues
J:=Matrix([[A,B],[C,D]]);
l:=Eigenvalues(J,output=’list’);

#Get the real and imaginary parts of the eigenvalues
R1 := evalf(Re(l[1]));
R2 := evalf(Re(l[2]));
I1 := evalf(Im(l[1]));
I2 := evalf(Im(l[2]));
print(l);

#the kind of eigenvalues determine the kind of solutions
if I1=0 and I2=0 then #Non-Complex

if (R1>0) and (R2>0) then
print("2 Real And Distinct positive Eigenvalues :

Solution = UNSTABLE NODE");
elif (R1<=0) and (R2<=0) then
print("2 Real And Distinct negative Eigenvalues:
Solution = STABLE NODE");
elif (R1>0 and R2<0) or (R1<0 and R2>0) then

print("2 Real Distinct Eigenvalues with different signs:
Solution = SADDLE POINT");
end if;

elif I1<>0 or I2<>0 then #Complex
if R1=0 and R2=0 then
print("2 Complex Eigenvalues with Real Parts=0:
Solution = CENTRE");
elif R1>0 and R2>0 then
print("2 Complex Eigenvalues with Real Parts >0:
Solution = UNSTABLE SPIRAL");

elif R1<0 and Re2<0 then
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print("2 Complex Eigenvalues with Real Parts < 0:
Solution = STABLE SPIRAL");
end if;

else
print("2 Real Non-Distinct Eigenvalues: Solution=NODE");

end if;
end proc;

GeneralSolutionDifferentialSystem procedure:

With the procedure GeneralSolutionDifferentialSystem, we can input the coefficients
of the linear differential system (1.3), (1.4), from the section 1.1, and the values of
the initial contitions at t = 0 and the programme output the general solution of this
system.

> with(DEtools):
> #------------------------------------------------------
#Name:GeneralSolutionDifferentialSystem:=proc(A::ralcons,B::realcons,
C::realcons,D::realcons,i::realcons,j::realcons)
# Arguments:
# A - Coefficient of function x in the first ode.
# B - Coefficient of function y in the first ode.
# C - Coefficient of function x in the second ode.
# D - Coefficient of function y in the second ode.
# i - Value of function x if the time t=0.
# j - Value of function y if the time t=0.
# Output:
# The general solution of the ode system for the input
# coefficients with the input values of initial contitions.
#-------------------------------------------------------
GeneralSolusionDifferentialSystem:=proc(A::realcons,B::realcons,
C::realcons,D::realcons,i::realcons,j::realcons)
# Declare the variables

local ode_system,initial_contitions,general_solution;

# Setup the ode system and the initial contitions given the parameters
passed

ode_system:={diff(x(t),t)=A*x(t)+B*y(t), diff(y(t),t)=C*x(t)+D*y(t)};
initial_contitions:={x(0)=i,y(0)=j};

# With Detools the programme output the general solution
of the ode system using the command dsove
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general_solution:=evalf(dsolve(ode_system union
initial_contitions,{x(t),y(t)}));

end proc;

Init-Step-Draw and Run procedures

1. This is a more complicated programme which used to draw the time-space plots
of the patterns (see figures 3.2 and 3.3). With the Init procedure we introduce
the parameters and initial conditions for the different figures. Moreover this
procedure set the image contents to black and initiate the pattern by stimu-
lating a small area in the middle of the medium. The Step procedure calculate
the diffusive terms for the PDEs and calculate u and v at point x. These calcu-
lations used for the numerical integration of partial differential equations as we
have seen in section 2.5. The Draw procedure output the state of the system
at time t, which is a column. Finally Run procedure calls repeatedly the Step
and Run procedures, and effectively the programme solving and drawing the
solution and output the time-space plots of the patterns.

> #------------------------------------------------------
# Reference all essential libraries here, and declare any global
# variables required for the simulation.
#------------------------------------------------------
# MediumWidth: #The width of the stimulation medium
# MediumHeigth: #The heigth of the stimulation medium
# OutputImage: #The image that will finaly hold the simulation
# U: #The current concentration for the U variable

(1D array)
# V: #The current concentration for the V variable

(1D array)
# hU: #THe current calculation state of U chemical
# hV: #The current calculation state of V chemical
# TimeStep::float:=0.0: #The temporal increment between simulation steps
# kU::float:=0.0:
# u0::float:=0.0:
# kV::float:=0.0:
# u1::float:=0.0:
# URestState::float:=0.0:#The chemical concentration before the simulatin

begins for U
# VRestState::float:=0.0:#The chemical concentration before the simulatin

begins for V
# UStimulus::float:=0.0: #A small increase in chemical concentration to

initiate the simulation
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# SpaceStep::float:=0.0: #The spatial increment for calculating chemicals
# RelaxTime::float:=0.0:
# Du::float:=0.0: #The diffusion coefficient for u chemical
# Dv::float:=0.0: #The diffusion coefficient for v chemical
#------------------------------------------------------------------

restart;
with(ImageTools):
With(LinearAlgebra):
> #-------------------------------------------------------------
#Name:Init:=proc(figure)
#Arguments:
#figure:The figure we wish to reproduce. For different
#values of parameters we take different kinds of patterns.
#Effect:
#This procedure must be called before run with an appropriate figure
choice, to ensure the parameters, initial contitions and data
structures are create\define correctly
#-------------------------------------------------------
Init:=proc(figure)

#First we make references to global variables so we can initialize them

global
kU,kV,u0,u1,TimeStep,SpaceStep,RelaxTime, URestState, VRestState,
UStimulus,UDiffusion, VDiffusion, Du, Dv,
OutputImage, MediumWidth, MediumHeight, U, hU, V, hV;

#Now we define some variables we will need for this procedure

local x::nonnegint,t::nonnegint,i::nonnegint;

#We except the user to call this procedure for a simulation type,
so we can initialize the parameters and initial contitions correctly

if figure = fig1a then
print("figureA: propagating wave");
TimeStep := 0.01;
u0 := 0.05;
u1 := 1.0;
kU := 4.5;
kV := 1.0;
URestState := 0.1;
VRestState := 0.1;
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UStimulus := 0.29;
MediumWidth := 400;
MediumHeight := 210;
SpaceStep := 0.16;
RelaxTime := 10.0;
UDiffusion := 1.0;
VDiffusion := 1.0;
Du := 1.0;
Dv := 1.0;
elif
figure = fig1b then
print("figureB: pulsating spot");
TimeStep := 0.02;
u0 := 0.05;
u1 := 1.0;
kU := 4.5;
kV := 1.0;
URestState := 0.1;
VRestState := 0.1;
UStimulus := 0.5;
MediumWidth := 200;
MediumHeight := 201;
SpaceStep := 0.16;
RelaxTime := 10.0;
UDiffusion := 1.0;
VDiffusion := 1.0;
Du := 1.0;
Dv := 3.2;
elif
figure = fig1c then
print("figureC: stationary spot");
TimeStep := 0.01;
u0 := 0.05;
u1 := 1.0;
kU := 4.5;
kV := 1.0;
URestState := 0.1;
VRestState := 0.1;
UStimulus := 0.5;
MediumWidth := 400;
MediumHeight := 600;
SpaceStep := 0.16;
RelaxTime := 10.0;
UDiffusion := 1.0;
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VDiffusion := 1.0;
Du := 1.0;
Dv := 5;
else
print("Unkown Initialization For Init(figure)!");
end if;

#Given that above choice, we now create the data structures
for calculating the Fitz-Hugh-Nagumo equations

U:=Vector(MediumWidth,URestState,datatype=float);
V:=Vector(MediumWidth,VRestState,datatype=float);
hU:=Vector(MediumWidth,0.0,datatype=float);
hV:=Vector(MediumWidth,0.0,datatype=float);
OutputImage:= Create(MediumWidth,MediumHeight):

#Set the image contents to black

for x from 1 to MediumWidth do
for t from 1 to MediumHeight do

OutputImage[x,t]:=0;
end do;

end do;

#Initiate the pattern by simulating a small area in the middle of the medium

for i from MediumWidth/(2)-5 to MediumWidth/(2)+5 do
U[i]:=UStimulus;
hU[i]:=UStimulus;

end do;
end proc;

> #--------------------------------------------------------------------
#Name: Step:=proc()
#Arguments:
# None
#Effect:
#This scheme employs centered space differencing scheme
that systematically calculates the state of the system forward
in time. Thus this procedure is called many times to converge
on the solution, given initial parameters and contitions, by
solving the current state of the system at time t, to produce
the new state at time t+1
#--------------------------------------------------------------------
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Step:=proc()

#First we make references to global variables so we can initialize them

global
U,V,hU,hV,MediumWidth,TimeStep,SpaceStep,
RelaxTime,UDiffusion,VDiffusion,Du,Dv;

#Now define some variables we will need for this procedure

local
x::nonnegint:=0,t::nonnegint:=0,
curu::float:=0.0,curv::float:=0.0;

#Now solve the equations for the current time step by iterating
over the medium left to right

for x from 2 to MediumWidth-1 do
curu:=U[x];

curv:=V[x];

#Calculate the diffusive terms for the PDEs

UDiffusion := evalf((U[x+1]+U[x-1]-2.0*curu)/SpaceStep);
VDiffusion := evalf((V[x+1]+V[x-1]-2.0*curv)/SpaceStep);

#Now calculate the PDE with the above diffusive term at point x
hU[x]:=curu+TimeStep*(Du*UDiffusion-(kU*curu*(curu-u0)*(curu-u1)+kV*curv));

hV[x]:=curv+TimeStep*(Dv*VDiffusion+(curu-curv)/RelaxTime);

end do;

#Now set Boundary contitions for the medium

hU[1]:=hU[2];
hU[MediumWidth-1]:=hU[MediumWidth-2];
hV[1]:=hV[2];
hV[MediumWidth-1]:=hV[MediumWidth-2];

#Now uptade the medium for the next step

for x from 1 to MediumWidth do
U[x]:=hU[x];
V[x]:=hV[x];
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end do;
end proc;
> #-------------------------------------------------------------
#Name: Draw:=proc(t::nonnegint)
#Arguments:
# t-The current column of the t axis we drawing
#Effect:
# To draw the state of the system at time t, which is effectively
a column in the output image
#--------------------------------------------------------------

Draw:=proc(t::nonnegint)

#First we make references to global variables so we can initialize them

global U,V,OutputImage,MediumWidth;

#Now we define some variables we will need for this procedure

local x;

#Copy the current solution to the output image

for x from 1 to MediumWidth do
OutputImage[x,t]:=U[x];

end do;
end proc;
> #------------------------------------------------------------------
#Name: Run:=proc(endtime::float)
#Arguments:
# endtime: The time at which the simulation stop
#Effects:
# The main iteration for the simulation that repeatedly calls the
Step and Draw procedure, effectively solving and drawing the solution
#------------------------------------------------------------------

Run:=proc(endtime::float)

#First we make references to global variables so we can
initialize them

global TimeStep;

32



#Now define some variables we will need for this procedure

local t::float:=0.0, step::integer:=0, vb::integer:=1;

#Iterate the Step function until the endtime has been reached

while t<=endtime do
Step();
if step mod 50 =0 then
Draw(vb);
vb:=vb+1;
end if;

#Increace time by prescrived step

t:=t+TimeStep;
step:=step+1;
end do;
end proc;

> Init(fig1a);
Run(200.0);
Preview(OutputImage);

2. The next procedure is very similar with the previous Init-Step-Draw-Run pro-
cedure with some changes. We use the next procedure to draw the u-profile
(figure 3.1), for the patterns at the time t in the middle of stimulation. The
difference from the previous procedure is that the Run procedure stop at time
t = EndTimeStep/2, where is the middle of stimulation and using the com-
mand

> with(plots):

the programme output the plot of u concentration profile against x.

> restart;
with(plots):
with(ImageTools):
with(LinearAlgebra):
> Init:=proc(figure)

local x::nonnegint,t::nonnegint,i::nonnegint,
HalfMediumWidth::nonnegint;
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global kV,kU,u0,u1,gDrawStep,gEndTimeStep,gTimeStep,
gSpaceStep,gRelaxTime,gURestState,gVRestState,
gUStimulus,gUDiffusion,gVDiffusion,gUDiffusionCoeff,
gVDiffusionCoeff,gOutputImage,gMediumWidth,
gMediumHeight, gU, ghU, gV, ghV;

if figure = fig1a then
print("Initializing For Fig1A");
gDrawStep := 50;
gSpaceStep := 0.16;
gEndTimeStep := 100;
gTimeStep := 0.1;
kV := 1.0;
u0 := 0.5;
kU := 4.5;
u1 := 1.0;
gURestState := 0.1;
gVRestState := 0.1;
gUStimulus := 0.29;
gMediumWidth := 400;
gMediumHeight := 210;
gRelaxTime := 10.0;
gUDiffusionCoeff := 1.0;
gVDiffusionCoeff := 1.0
elif
figure = fig1b then
print("Initializing For Fig1B");
gDrawStep := 100;
gSpaceStep := 0.16;
gEndTimeStep := 400;
gTimeStep := 0.2;
kV := 1.0;
u0 := 0.5;
kU := 4.5;
u1 := 1.0;
gURestState := 0.1;
gVRestState := 0.1;
gUStimulus := 0.5;
gMediumWidth := 200;
gMediumHeight := 201;
gRelaxTime := 10.0;
gUDiffusionCoeff := 1.0;
gVDiffusionCoeff := 3.2
else
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print("Unkown Initialization For Init(figure)!")
end if;

gU:=Vector(gMediumWidth,gURestState,datatype=float);
gV:=Vector(gMediumWidth,gVRestState,datatype=float);
ghU:=Vector(gMediumWidth,0.0,datatype=float);
ghV:=Vector(gMediumWidth,0.0,datatype=float);
gOutputImage:=Create(gMediumWidth, gMediumHeight);

for x to gMediumWidth do
for t to gMediumHeight do
gOutputImage[x,t]:= 0;
end do;
end do;
HalfMediumWidth:=(1/2)*gMediumWidth;

for i from HalfMediumWidth-5 to HalfMediumWidth+5 do
gU[i]:=gUStimulus;
ghU[i]:=gUStimulus
end do;

end proc;
> Step := proc ()

local x::nonnegint,t::nonnegint,UDiffusion::float,
VDiffusion::float,curu::float,curv::float;

global gU,gV,ghU,ghV,gMediumWidth,gTimeStep,
gSpaceStep,gRelaxTime,gUDiffusionCoeff,
gVDiffusionCoeff;x::nonnegint:=0;t::nonnegint:=0;
UDiffusion::float:=0.0;VDiffusion::float:=0.0;
curu::float := 0.0; curv::float:= 0.0;

for x from 2 to gMediumWidth-1 do
curu := gU[x]; curv := gV[x];
UDiffusion:=evalf((gU[x+1]+gU[x-1]+(-1)*2.0*curu)/gSpaceStep);
VDiffusion:=evalf((gV[x+1]+gV[x-1]+(-1)*2.0*curv)/gSpaceStep);
ghU[x]:=curu+gTimeStep*(gUDiffusionCoeff*UDiffusion-
kU*curu*(curu-u0)*(curu-u1)-kV*curv);
ghV[x] := curv+gTimeStep*(gVDiffusionCoeff*VDiffusion+
(curu-curv)/gRelaxTime);
end do;

ghU[1] := ghU[2];
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ghU[gMediumWidth-1]:=ghU[gMediumWidth-2];
ghV[1] := ghV[2];
ghV[gMediumWidth-1]:=ghV[gMediumWidth-2];

for x to gMediumWidth do
gU[x] := ghU[x];
gV[x] := ghV[x];
end do;
end proc;
> Run := proc (figuretoplot)

local t::float,step::integer, vb::integer;

global gTimeStep,gEndTimeStep,gDrawStep;t::float:=0.0;
step::integer:=0;vb::integer:=1; Init(figuretoplot);

while t <= (1/2)*gEndTimeStep do
Step();
if step mod gDrawStep=0 then
Draw(vb);
vb := vb+1;
end if;

t := t+gTimeStep;
step := step+1;
end do;
end proc;

> Run(fig1a);
Preview(gOutputImage);
gPlot := [];
for x to gMediumWidth do
gPlot := [op(gPlot), [x, gU[x]]];
end do;
pointplot(gPlot, connect = true);

4.2 Simple work on Maple

Phase-portraits for one linear ordinary differential equation:

Using the package DEtools on Maple we can plot the phase-portraits of linear dif-
ferential equation (1.1) (see figure 1.1 in section 1.1. For example, for the fig-
ure 1.1A we have used the values a = −0.1, b = 2 and the initial conditions
x(0) = 30, x(0) = 10. For figure 1.1B the values a = 0.1, b = 2 and the initial
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conditions x(0) = −40, x(0) = 10.

> with(DEtools):
> OneLinearEquation := diff(x(t),t) = a*x(t)+b;
a:=-0.1; b:=2;

> ivs := [x(0)=30,x(0)=10];
> DEplot( OneLinearEquation, x(t), t=0..20,
ivs,linecolour=[black,black],title=A);

> with(DEtools):
> OneLinearEquation := diff(x(t),t) = a*x(t)+b;

a:=0.1; b:=2;
> ivs := [x(0) = -40, x(0) = 10];
> DEplot(OneLinearEquation, x(t), t=0..20,
ivs,linecolour=[black,black],title=B );

Plots of f(x) for nonlinear differential equations

Using the command with(plots) Maple can output the plots of functions f(x) for
a nonlinear equation ẋ = f(x). In particular for the figure 1.4 I used the function
f(x) = x(x− 1) for the Fisher equation and the function f(x) = −x(x− x0)(x− x1)
with x0 = 1, x1 = 3 for the Fitz-Hugh equation.

> with(plots):
> f:=x*(x-1);
> plot(f,x=-1..2);

> with(plots):
> f:=-x*(x-1)*(x-3);
> plot(f,x=-1..3.5);

FitzHughNullclines procedure

With the FitzHugNullcines procedure we input the constants a, b, c and the pro-
gramme output the plot of the nullclines for one nonlinear equation (1.25) and one
linear equation (1.26). We use the output plots of this procedure, in chapter 1 in
the example of section 1.3 to find the steady state point of the nullclines and to
determine the kind of the system.

> with(plots):
> #----------------------------------------------------
#Name:FitzHughNullcines:proc(A::realcons,B::realcons,

C::realcons)
#Arguments:
# A-Constant in the nonlinear function
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# B,C-Constants in the linear function
#Output:
# A plot of the nullclines of a system with one

nonlinear
(cubic form) and one linear equation
#(Fitz-Hugh-Nagumo nullclines)
#------------------------------------------------------
FitzHughNullclines:=proc(A::realcons,B::realcons,

C::realcons)

#Declare the variables
local nullclines;

#The form of the nullclines
nullclines:=[-x*(x-A)*(x-1)-y=0,B*(x-y)+C=0];

implicitplot(nullclines,x=-5..5,y=-5..5);
end proc;
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