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1 Introduction

Embryonic development has always been an area of extreme interest to biologist.
Important cellular events occurring during embryonic development, such as cell dif-
ferentiation, proliferation and migration of cells are amongst the areas which has
been or being analysed by biologist. They look for appropriate tools to systemat-
ically analyse their experimental data. For instance, in cell differentiation, on the
basis of the vast amount of experimental observations, it was concluded that the cells
differentiate according to their location in the embryo and the positional information
is provided by the so-called “morphogen gradient”. This term refers to the substance
which is present and non-uniformly distributed in the embryo and cells, composing
the embryo and differentiates according to its dynamics and local concentration.

The word “gradient” is a mathematical term to denote a vector representing the
rate of change over space in biology. It refers to the inhomogeneous distribution of
the substance. This term was suggested by the biologist, Wolpert. As for the term
“morphogen”, it was named by the Mathematician, Turing, who studied formation
of the chemical concentration profiles in mathematical models. Mathematical for-
mulation of basic principles is indeed essential in driving morphogenesis.

In migration of cells, a comprehensive analysis of cell migration or movement pat-
terns associated with the geometry of developing tissues have been made. However,
little is known about mechanics of migration and rearrangement of cells in embry-
onic tissues. Probably the most common mechanism used by nature is chemotaxis
when the migration of cell is driven by the gradient of a substance which is, in this
case, called a chemotactic agent.

So what is chemotaxis?

Chemotaxis is a phenomenon whereby somatic cells, bacteria and other single-cell
organisms direct their movements according to certain chemicals in their environ-
ment. History of chemotaxis research is indeed well known. Migration of cells was
detected from the early days of the development of microscopy but erudite descrip-
tion of chemotaxis was first made by TW. Engelmann and W.F. Pfeffer in bacteria
and H.S.Jennings in ciliates. The significance of chemotaxis in biology and clinical

pathology was widely accepted in the 1930s [13].

Chemotaxis is important for bacteria to find food (for example glucose) by swim-

ming towards the highest concentration of food molecules, or to flee from poisons

(for example phenol). In multicellular organism, chemotaxis is critical to early de-

velopment (for example the movement of sperm towards the egg during fertilization)

and subsequent phases of development (for example the migration of neurons and

lymphocytes) as well as in normal function. In addition, it has been recognized

2



that mechanisms that allow chemotaxis in animals can be subverted during cancer
metastasis.

In bacterial chemotaxis, all of the genes and proteins involved have been identi-
fied and isolated, making this the most completely understood form of motile cell

behaviour [10]. In the presence of a chemical gradient, bacteria will chemotax, or

direct their overall motion based on the gradient. If the bacterium senses that it is
moving in the correct direction, i.e. towards attractant or away from repellent, it
will keep swimming in a straight line for a longer time before tumbling. If it is in the
wrong direction, it will tumble sooner and try a new direction at random. Alternation
between swimming and tumbling is influenced by the presence of chemoattractants
and chemorepellents in the medium and forms the basis of the chemotactic response.
In other words, bacteria like the E.Coli use temporal sensing to decide whether their
situation is improving or not. In this way, it finds the location with the highest

concentration of attractant (usually the source) quite well. Even under very high

concentrations, it can still distinguish very small differences in concentration. Flee-
ing from a repellent works with the same efficiency. This purposeful random walk
is a result of simply choosing between two methods of random movement; namely
tumbling and straight swimming. In fact, chemotactic responses such as “forget-
ting direction” and “choosing movements” resemble the decision making abilities of

higher life-forms with brains that process sensory data [9].

Figure 1: Correlation of swimming behaviour and flagellar rotation in
E.Coli.

In eukaryotic chemotaxis, the mechanism employ is quite different from that in
bacteria. However, sensing of chemical gradients is still a crucial step in the pro-
cess. Due to their size, prokaryotes cannot detect effective concentration gradients,
therefore these cells scan and evaluate their environment by a constant swimming
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(consecutive steps of straight swims and tumbles). In contrast to prokaryotes, the

size of eukaryotes cells allows the possibility of detecting gradients, which results in
a dynamic and polarized distribution of receptors. Induction of these receptors by
chemoattractants or chemorepellents results in migration towards or away from the

chemotactic substance [13]. Study of eukaryotic cell migration and chemotaxis are

processes which are fundamental to cell growth, survival and death.

Chemotaxis, in particular, is essential during embryonic development, immune cell
function and cancer metastasis. It has high significance in the early phases of embryo-

genesis as development of germ layers is guided by gradients of signal molecules [2].

Chemotaxis does not exist independently. It is very much assisted by mathematical
techniques. The use of mathematical techniques for classification and understanding
of the ever-growing amount of experimental data and possible help in designing new
experiments is now more profound than ever. Recently, mathematical modelling
plays an uprising role in biological studies in general and in particular, in develop-
mental biology. Mathematical modelling in developmental biology has an important
role in helping us discover biophysical mechanics driving the development. It is a
unique tool which allows a rigorous check of hypotheses concerning these mecha-
nisms as they emerge from the experimental observations.

Several mathematical models of chemotaxis was developed depending (among which)

on the type of

(a) migration (for examples the basic differences of bacterial swimming, movement

of unicellular eukaryotes with cilia/flagellum and amoeboid migration),

(b) assay systems applied to evaluate chemotaxis (to see incubation times, develop-

ment and stability of concentration gradients) and

(c) other environmental effects possessing direct or indirect influence on the migra-

tion (lighting, temperature, magnetic fields, etc.)

Other publications written in genetics, biochemistry, cell physiology, pathology and
clinical sciences could also incorporate data about migration or especially the chemo-
taxis of cells. A curiosity of migration research is that among several works inves-

tigating taxes (for examples thermotaxis, geotaxis and phototaxis), chemotaxis re-

search shows a significantly high ratio, which point to the underlined importance of

chemotaxis research both in biology and medicine [13].

For chemotaxis, a mathematical description for it requires a model to describe the
cells ability to sense a gradient of ambient chemoattractant and its interaction with
a physical model of cell migration. It is also now appreciated that it is important
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to model the feedback from the evolving cell shape and the intra and extra cell sig-
nalling pathways which lead to directed cell motion. The computational challenge

therefore involves the solution of partial differential equations (PDEs) on evolving

surfaces where the computed solution state is used to derive movement and changes
in cell shape.

Further chemotaxis uses a non-linear model. Contrary to linear models, which have
a limited range of possible solutions, non-linear models can be used to reproduce
virtually any kind of known dynamics in concentration fields of morphogens. This is
especially true if more than one morphogen is considered. The model is represented

by a so called reaction-diffusion equations (It is used to derive the equation for the

flux of cells whose motion is affected by variations in the ambient concentration of

certain chemicals) [7].

An individual cell path can result in an average cell flux which is proportional to the

macroscopic chemical gradient. We let b(x) denote the density of cells centred at x

and we will find J(x), the net flux of cells per unit time in the direction of increasing

x. The dependence of cell density b(x, t) on position and time is described by the

differential equation

∂b

∂t
= −∇ · J,

where the vector flux J would be given by

J = −µ∇b+ χ∇c.

The first term is the diffusion term, describing the non-chemotactic, random motion
of cells, and the second term describes the chemotactic response.

The diffusion or ‘motility coefficient’, µ, is given by

µ(c) ≡ ∆2

∆t
= f(c)∆2,

where ∆t ≡ 1
f(c) is the average time interval between steps. Similarly, χ, the chemo-

tactic coefficient, is given by

χ(c) = (α− 1)f ′(c)∆2,

so that
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χ(c) = (α− 1)µ′(c).

Chemotaxis has been used in the detailed study of the developing population of Dic-

tyostelium discoideum (Dd) amoebae. This biological object cooperates and show

striking social behaviour when they are deprived of food. The starving cells then
communicate by means of chemical signal to synchronise their otherwise random and
unorganised movement.

The molecular machinery for cell motility is currently best understood in Dd. This
is because it is an organism which spends most of its life as a chemotactic amoeboid
phagocyte but which also uses chemotaxis to form a multicellular organism during
subsequent stages of development. In this process of transformation, there is both

production of and a chemotactic response to cyclic adenosine 3′ - monophosphate

(cAMP); the result is aggregation [8].

Aggregation of Dd amoebae is an example of a phenomenon whereby the wave of
excitation can change the properties of excitable media and cause the formation of
spatial patterns. The monolayer of the starving amoebae is an excitable medium
which conducts excitation waves of the intracellular mediator i.e. the cAMP. Since
cAMP is a chemotactic attractant for the amoebae, the waves of cAMP cause motion
of the amoebae. As a result of this motion amoebae are organized into streams which
usually form branching radial multicellular structures. There are two major types of
cAMP sources forming aggregates: a point source and a spiral wave. Figure 2 shows
streams which were induced by a spiral wave of cAMP.

Figure 2: View of aggregative structure formed by a starving population
of Dictyostelium discoideum.

The process of aggregation of Dd amoebae was numerically studied in a continuous
model and thus the reaction-diffusion model was proposed for the simulation of the
process. The model is based on FitzHugh-Nagumo-type equations for cAMP waves
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and a continuity equation for amoebae motion. The process of aggregation induced
was simulated by a periodic point source and by spiral wave. It was shown that
aggregation pattern is formed as a result of front instabilities due to dependence of
wave velocity on density of amoebae. This instability can also result in formation of
wave breaks and generation of spiral waves.

For calculations, the following model was used:

∂r

∂t
=

(g − r)
τ

,

∂g

∂t
= Dg∆g + cα(f(g)−Krr), (1)

∂c

∂t
= Dc∆c−∇(cV (r)∆g).

The first two equations are a FitzHigh-Nagumo model which describes the propaga-
tion of cAMP waves. g represents the extracellular concentration of cAMP and r,

the recovery process. Instead of ordinary cubic function, f(g), in the 2nd equation,

the piecewise linear function is used instead:

f(g) =


−Sg if g ≤ 0,

Kg(g − a) if 0 < g < 1,
−S(g − 1) if g ≥ 0.

(S is infinite, f(g) is only defined on the interval 0 < g < 1). It was suggested that

in normal conditions, the production and decay of cAMP are proportional to the cell

density, cα(α = 1).

The 3rd equation in (1) describes the chemotactic motion of amoebae. c is the

local concentration of amoebae, and V (r) is their motility. In the model (as r ≥ 0),

V reaches its maximum at r = 0 and decreases to 0, with increasing r. Biologically,

this means that cells move if they are not refractory (i.e. not able to respond to

additional stimulation).

From an initially random distribution of amoebae, the formation of aggregation
pattern will occur. They will form the pattern of branching streams. Therefore a
necessary condition for stream formation is non-uniformity in the initial distribu-
tion of amoebae density. If a computation is done, but with an initially uniform
distribution of amoebae instead, streams will not be formed. Amoebae collect in
the stimulated area and form a circular spot with high density. This mechanism of
stream formation is associated with the fact that the velocity of the cAMP waves
depends on the local density of the amoebae.
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The reaction-diffusion model proposed describes fairly well the aggregation process
in natural population of Dd. The aggregation pattern obtained by numerical simu-

lation looks similar to the pattern in amoebae populations (Figure 2).

In addition, the technical features which makes Dd amoebae attractive as a model

includes [9]:

(a) the cells exist as a homogeneous population in culture,

(b) they can be induced by physiologic stimuli to undergo normal morphogenesis in

vitro thus permitting direct observation of the role of chemotaxis in organogen-
esis,

(c) cells can be grown in suspension culture to high density to generate kilogram

quantities of material for biochemical analysis,

(d) amoeboid cells are haploid and are readily manipulated by molecular genetic

techniques and

(e) the physiological response to chemotactic stimulation is synchronous in a cell

population and can, therefore, be correlated with biochemical measurements.

The movement of cells can also be affected by morphogen concentrations, for ex-
ample, by the chemotactic mechanism. These possibilities have recently been ex-

plored in studies combining mathematical modelling and experiments [4]. There are

instances where chemotaxis is favoured as compared to other mechanism. As an
example, experimental observations and interpretations of the mechanisms of cell
movement during gastrulation in the chick embryo are controversial: some indicate
that cells move by cellular intercalation mechanism while others point out to the
chemotactic mechanism. We feel that the general reasoning would be in favour of
chemotactic mechanism: the mechanism can explain the formation of compact group
of moving cells represented by the Hensen’s node or stem zone, while formation of
such groups due to cellular interaction is problematic, if not possible. This reasoning
can also be applied to other processes involving movement of compact group of cells,

for example, the movement of the Drosophila follicle cells [5].

The analysis of morphogen gradient dynamics which is associated with the mov-

ing group of cells was done in [4]. The simplest scenario to consider is when the

cells forming the moving group transcribe a gene which is not transcribed in the

surrounding tissue. Then this group of cells (which will be referred to as the domain

of transcription, DOT), can be represented mathematically by a segment of line (of

length a) which is also moving, say, to the right.
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If V represent the concentration of the transcribed mRNA, then , in the simplest

case, V = 1 inside the DOT and V = 0 outside the DOT. (mRNA is a molecule of

RNA that encodes a chemical ”blueprint” for a protein product. It is transcribed
from a DNA template and carries coding information to the sites of protein synthe-
sis. It is held at constant concentration within cells and do not permeate through

cell membranes). Furthermore, we assume that the protein, A, which is associated

with the transcribed gene and produced inside the DOT can diffuse into surround-

ing tissue and degrade. The concentration profile, U(x), of the protein is stationary

from the perspective of the moving DOT (i.e. in the moving frame of reference) and

satisfies the following equation:

D
d2U

dx2
− cdU

dx
+ k1V − k2U = 0; U(x = ±∞), (2)

where

V =


1 for 0 ≤ x ≤ a,
0 for x > a,

e−
k1
c
x for x < 0.

Here D is the protein’s diffusion coefficient, c is the speed of the DOT movement
and k1 and k2 define the production and decaying rates of the protein respectively.

The plot of equation (2) solution is shown in Figure 3A; it makes an asymmet-

ric gradient with maximum shifted back of the moving DOT and the long “tail”
following the DOT. The shape of the gradient indicates that the considered pro-
tein can explain the movement of DOT provided that the cells forming the DOT
are chemotactically repelled by this protein. Indeed, the concentration of protein is
lower on the front border of the DOT than on its back and if the protein acts as a
chemorepellent on cells composing the DOT, then the net repulsion could keep the
DOT moving to the right. This hypothesis was checked in simulations on Cellular

Potts model [1] which is recently one of the most popular models for simulation of

biological tissues.

Analysis of the chemotactic scenarios of cell movement indicates that they always
came in pairs. This means that if a certain movement pattern can be explained by
the chemotaxis, then it will have at least two explanations. For example, from above,
the DOT can move because the cells composing the DOT produce a self-repellent.
The counterpart explanation is the following: the DOT will show the same move-
ment pattern if the cells composing surrounding tissue produce a protein which acts
as chemoattractant to the cells forming the DOT. Besides, a movement pattern can
have more explanations if more cell types are involved.
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Chemotaxis indeed has mathematically been studied by many authors such as Keller
and Segel and it is the basis of this dissertation that I will be discussing about
chemotaxis; developing computational techniques to model migration of cells. I will
be looking at the movement of self repelling group of cells. The detailed analysis
of the interplay of morphogen gradient and cell movement will be the focus of my
dissertation and will be discussed in the preceding sections.

Figure 3: Group of self-repelling cells moving in (A) continuous 1-D model
and (B) individual cell-based 2D model (Cellular Potts model).
In A, the solid red line denotes the concentration of A-mRNA while the dashed

red line denotes the concentration of protein A. A-mRNA is produced in the

DOT (it has a preset size and moves to the right with speed c. B shows three

consecutive images from the simulation of primitive streak regression. Initially

the group of red cells (DOT) form a square tissue. They then move (to the right),

proliferate and differentiate, i.e. red cell transforms into the green cell when the

level of protein A at any point inside the red cell gets above the threshold value.

Green cells do not move or produce A-mRNA and for simplicity, it was assumed

that they also do not proliferate.
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2 Basic Model (1-D)

A group of cells that are producing chemicals and reacting to it is considered in
this model. A 1-variable reaction-diffusion system is used and the solutions aris-
ing from solving this system will be non-linear and describes the chemotaxis function.

As mentioned in the introduction, we will call a group of cells which transcribe

a gene a domain of transcription (DOT). A DOT can be isolated or located

in the tissue; surrounded by other cells which do not transcribe a considered gene.
To simplify and ease our problem, we will represent the DOT by a line segment of

width a (we use the range −a
2 ≤ x ≤ a

2 ). The DOT is then characterized by the

translation of the gene and production of an extracellular diffusing protein, that acts
as the chemotactic chemical. The description of this model is different from the one
mentioned in the introduction.

2.1 Equation for concentration of morphogens

We have an equation describing the dynamics of the concentration of corresponding

protein denoted by U . If the DOT is moving, the concentration profile of U (in a

frame of reference moving with the DOT) is given by the equation

∂U

∂t
= D

d2U

dx2
− k1U + P (x, t). (3)

where

P (x, t) =

{
1, |x− ct| < a

2 ,
0, otherwise

and

D : diffusion constant,

k1 : rate of protein decay,

P : production term.

This equation is derived using the wave equation,

U̇(x, t) = D
∂2U

∂x2
− k1U + P (x, t),

where x ∈ (−∞,∞), t ∈ [0,∞).

11



We introduce coordinate ξ relative to wave. i.e.

ξ = x− ct.

which then gives us the travelling wave solution

U(x, t) = U(x− ct) = U(ξ).

Its derivative with respect to t is

∂U

∂t

∣∣∣∣
ξ

=
dU

dξ

∂ξ

∂t
= −cdU

dξ

and with respect to x is

∂U

∂x

∣∣∣∣
ξ

=
dU

dξ

∂ξ

∂x
=
dU

dξ
.

⇒ ∂2U

∂x2
=
d2U

dξ2
.

Substituting these derivatives then leads to the ODE for x in terms of ξ. i.e.

D
d2U

dξ2
+ c

dU

dξ
− k1U + P (ξ) = 0,

where

P (ξ) =

{
k2 if |ξ| < −a

2 ,
0 if |ξ| > a

2 .

This gives us the equation in (3).

Since we are in a moving frame of reference, returning back to our notation in
x, we will then have

D
d2U

dx2
+ c

dU

dx
− k1U + P (x, t) = 0, (4)

where

P (x, t) =

{
k2 if |x| < −a

2 ,
0 if |x| > a

2

and
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k2 : rate of protein production.

(We take a, D, k1 and k2 ∈ R+).

2.1.1 Finding the solution

Green’s function is used to solve the non-linear differential equation in (4) [11].

Auxiliary equation:

Dλ2 + cλ− k1 = 0,

⇒ λ =
−c±

√
c2 + 4k1D

2D
.

We denote the solutions as:

λ1 =
−c+

√
c2 + 4k1D

2D
, λ2 =

−c−
√
c2 + 4k1D

2D
. (5)

Dividing (4) throughout by D:

d2U

dx2
+

c

D

dU

dx
− k1
D
U +

k2
D
V = 0. (6)

Let U = e−
c

2D
xw. Then

U ′ = − c

2D
e−

c
2D
xw + e−

c
2D
xw,

U ′′ =
( c

2D

)2
e−

c
2D
xw − c

D
e−

c
2D
xw′ + e−

c
2D
xw′′.

Substituting into (6) and simplifying by dividing throughout by e−
c

2D
x , we obtain

w′′ − w
( c2

4D2
+
k1
D

)
= −k2

D
e
c

2D
xV. (7)

Green’s function for (7) is:

G(x, y) =
1

2χ
e−χ|x−y| , χ =

√
c2 + 4k1D

2D
.
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G′(x, y) = −χsign(x− y)
1

2χ
e−χ|x−y| = sign(x− y)χG(x, y),

G′′(x, y) = −χ2G(x− y)− χδ(x− y)G(x, y).

Substituting into (7):

G′′(x, y)−
( c2

4D2
+
k1
D

)
G(x− y) = δ(x− y).

We can then write

w(x) =

∫ ∞
−∞

G(x, y)
(k2
D
e
c

2D
xV
)
dy

or

U(x) =

∫ ∞
−∞

G(x, y)
(k2
D
e
c

2D
ye−

c
2D
xV
)
dy

=

∫ ∞
−∞

G(x, y)
(k2
D
e
c(y−x)

2D V
)
dy

⇒ U(x) =

∫ ∞
−∞

1

2χ
e−χ|x−y|

k2
D
e
c(y−x)

2D dy

=

∫ ∞
−∞

k2√
c2 + 4k1D

e
−
√
c2+4k1D

2D
|x−y|+ c(y−x)

2D V dy

=
k2√

c2 + 4k1D

∫ ∞
−∞

e
−
√
c2+4k1D

2D
|x−y|+ c(y−x)

2D V dy

=
k2√

c2 + 4k1D
(I1 + I2).

Denoting A = e
−
√
c2+4k1D

2D
|x−y|+ c(y−x)

2D V , we have

(a) for x < −a
2 :

I1 =

∫ −a
2

−∞
A dy = 0,

(since V = 0 for x < −a
2 )
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I2 =

∫ a
2

−a
2

A dy

=

∫ a
2

−a
2

e
−
√
c2+4k1D+c

2D
y+

√
c2+4k1D−c

2D
x dy.

Using (5), we obtain

I2 =

∫ a
2

−a
2

A dy

=

∫ a
2

−a
2

e−λ1y+λ1x dy

= eλ1x
∫ a

2

−a
2

e−λ1y dy

= −e
λ1x

λ1

(
e−

a
2
λ1 − e

a
2
λ1
)

⇒ U1 =
k2

λ1
√
c2 + 4k1D

(
e(x+

a
2
)λ1 − e(x−

a
2
)λ1
)
.

From (5),

λ1 − λ2 =

√
c2 + 4k1D

D
(8)

⇒ D(λ1 − λ2) =
√
c2 + 4k1D.

Hence

U1 = − k2λ1λ2
k1λ1(λ1 − λ2)

(
e(x+

a
2
)λ1 − e(x−

a
2
)λ1
)

=
k2λ2

k1(λ1 − λ2)

(
e(x−

a
2
)λ1 − e(x+

a
2
)λ1
)
.

(b) for −a
2 < x < a

2 :

I1 =

∫ −a
2

−∞
A dy = 0,
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(since V = 0 for x < −a
2 )

I2 =

∫ a
2

−a
2

A dy

=

∫ x

−a
2

e
−
√
c2+4k1D

2D
(x−y)+ c

2D
(y−x) dy +

∫ a
2

x
e
−
√
c2+4k1D

2D
(y−x)+ c

2D
(y−x) dy

=

∫ x

−a
2

e−λ2y+λ2x dy +

∫ a
2

x
e−λ1y+λ1x dy

=
eλ2x

λ2

(
e
a
2
λ2 − e−xλ2

)
− eλ1x

λ1

(
e−

a
2
λ1 − e−xλ1

)
.

Hence

U2 =
k2√

c2 + 4k1D

{ 1

λ2

(
e(x+

a
2
)λ2 − 1

)
− 1

λ1

(
e(x−

a
2
)λ1 − 1

)}
=

k2

λ2λ1
√
c2 + 4k1D

(
λ1e

(x+a
2
)λ2 − λ2e(x−

a
2
)λ1 − λ1 + λ2

)
=

k2
k1(λ1 − λ2)

(
λ2e

(x−a
2
)λ1 − λ1e(x+

a
2
)λ2 + λ1 − λ2

)
.

(c) for x > a
2 :

I1 =

∫ −a
2

−∞
A dy = 0,

(since V = 0 for x < −a
2 )

I2 =

∫ a
2

−a
2

A dy

=

∫ a
2

−a
2

e−
√
c2+4k1D+c

2D
(x−y)+ c

D
(y−x) dy

=

∫ a
2

−a
2

e−λ2y+λ2x dy

=
eλ2x

λ2

(
e
a
2
λ2 − e−

a
2
λ2
)
.
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Hence

U3 =
k2√

c2 + 4k1D

(
e(x+

a
2
)λ2 − e(x−

a
2
)λ2
)

=
k2λ1

k1(λ1 − λ2)

(
e(x−

a
2
)λ2 − e(x+

a
2
)λ2
)
.

Summarising,

U1 =
k2λ2

k1(λ1 − λ2)

(
e(x−

a
2
)λ1 − e(x+

a
2
)λ1
)
. (9)

U2 =
k2

k1(λ1 − λ2)

(
λ2e

(x−a
2
)λ1 − λ1e(x+

a
2
)λ2 + λ1 − λ2

)
. (10)

U3 =
k2λ1

k1(λ1 − λ2)

(
e(x−

a
2
)λ2 − e(x+

a
2
)λ2
)
. (11)

or

U =



k2λ2
k1(λ1−λ2)

(
e(x−

a
2
)λ1 − e(x+

a
2
)λ1
)

if x ≤ −a
2 ,

k2
k1(λ1−λ2)

(
λ2e

(x−a
2
)λ1 − λ1e(x+

a
2
)λ2 + λ1 − λ2

)
if − a

2 ≤ x ≤
a
2 ,

k2λ1
k1(λ1−λ2)

(
e(x−

a
2
)λ2 − e(x+

a
2
)λ2
)

if x ≥ a
2 .

In obtaining these unique solutions, the following 6 boundary conditions were taken

into account (the solutions must have continuous 1st derivative) :

U1

(
− a

2

)
= U2

(
− a

2

)
U2

(
a
2

)
= U3

(
a
2

)
dU1
dx

(
− a

2

)
= dU2

dx

(
− a

2

)
dU2
dx

(
a
2

)
= dU3

dx

(
a
2

)
U1(−∞) = 0 U3(∞) = 0

Further, the solutions obtained are not analytic since the function P in equation (4)

is not analytic. (To check that P is not analytic, we can find the 2nd derivative

and see if it exists. If U1 = U3, then it is continuous and the 2nd derivative exists.

Otherwise it is discontinuous). Here, we will see that the 2nd derivative does not

exist thus implying that P is not analytic. Hence the solutions are not analytic too

(computations for the 2nd derivative is omitted here) .
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2.1.2 Analysis of the concentration profile

Next, we look at what happen to the solutions for U when the parameter, c, is
varied since they depend on c, which is the speed. We will analyse for the case of

a stationary DOT (i.e. c = 0) and a moving DOT (i.e. c 6= 0). We then plot the

concentration profiles respectively .

(a) For c = 0, we have a symmetric normal distribution graph as shown in Figure 4.

Figure 4: Profile of U for the stationary DOT (c=0).

(b) For c 6= 0, the graph is shown in Figure 5.

Figure 5: Concentration profiles for A: c > 0 and B: c < 0 .
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2.1.3 Location of maximum concentration of U

We then analyse the location at which the concentration of U is maximal. We denote

it by xmax. From Figure 4, for the case c = 0, it is evident that xmax = 0 (or the

origin) since we have a symmetric distribution. However, for c 6= 0, to locate xmax,

we will solve dU2
dx = 0.

dU2

dx
=

d

dx

[ k2
k1(λ1 − λ2)

(
λ2e

(x−a
2
)λ1 − λ1e(x+

a
2
)λ2 + λ1 − λ2

)]
=

k2
k1(λ1 − λ2)

(
λ1λ2e

(x−a
2
)λ1 − λ1λ2e(x+

a
2
)λ2
)

=
k2λ1λ2

k1(λ1 − λ2)

(
e(x−

a
2
)λ1 − e(x+

a
2
)λ2
)
.

dU2
dx = 0 ⇒

e(x−
a
2
)λ1 = e(x+

a
2
)λ2

e(x−
a
2
)λ1−(x+a

2
)λ2 = 1(

x− a

2

)
λ1 −

(
x+

a

2

)
λ2 = 0

x(λ1 − λ2) =
a

2
(λ1 + λ2)

xmax =
a

2

(λ1 + λ2
λ1 − λ2

)
.

Substituting equation (8) and λ1 + λ2 = − c
d from equation (5) we get,

xmax = − ac

2
√
c2 + 4k1D

. (12)

Figure 6 shows how the location of the maximum concentration (xmax) changes with
c.

We see that for c > 0, xmax shifts to the left, as shown in Figure 5A and for c < 0,

xmax shifts to the right, as shown in Figure 5B. Equation (12) indicates that xmax

decreases (→ −a
2 ) when c increases (c > 0). Likewise for c < 0 (c→ −∞), xmax → a

2 .

xmax will not go beyond the range −a
2 ≤ x ≤

a
2 . This is because of the value of Umax

(the computation for Umax is omitted here) which is again due to the function P in

equation (4). In the region x < −a
2 and x > a

2 , P = 0 (no production). Therefore
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Figure 6: Location of the maximum of U versus speed, c.

D
d2U

dξ2
+ c

dU

dξ
− k1U = 0.

This implies that we will not have a maximum. Hence due to convection, xmax is

within
[
− a

2 ,
a
2

]
.

Further, we can also conclude that

c→∞⇒ Umax → 0.

Although we do not compute Umax, we can show that it indeed tends to 0 when

c→∞ by looking at U(−a
2 ). We have

∆U = U
(
− a

2

)
− U

(a
2

)
,

where

U
(
− a

2

)
=

k2λ2
k1(λ1 − λ2)

(
e−aλ1 − 1

)
. (13)

Using the Taylor’s series

c

√
1 +

4k1D

c2
= c

(
1 +

2k1D

c2

)
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and substituting into equation (5), we obtain

λ1 =
k1
c

, λ2 = − c

D
− k1

c
,

λ1 − λ2 =
c

D
+

2 k1
c

, e−aλ1 = 1− a k1
c
.

Now, if we substitute into equation (13) and simplifying, we obtain

U
(
− a

2

)
=
k2(ac

2k1 + ak21D)

k1c(2k1D + c2)
.

Applying L’Hôpital’s rule twice, we get

U
(
− a

2

)
=

2k2k1a

6k1c

and finally applying L’Hôpital’s one last time, we will get

U
(
− a

2

)
= 0.

U (−a
2 ) > U (a2 ) > 0. Since U (−a

2 ) → 0, this implies that U (a2 ) → 0. Hence

∆U → 0. Further,

Umax → U (−a
2

) and ∆U ≤ Umax.

Hence

Umax → 0.

2.1.4 Analysis of ∆U - the difference between concentration of the front
and back of moving segment

The line segment (i.e. the DOT) moves due to the chemotactic response to the

protein. In other words, chemotaxis is a motion due to the difference in the levels of
U . i.e.

∆U = U
(a

2

)
− U

(
− a

2

)
.

After substituting the values of U (a2 ) and U (−a
2 ) from the travelling solutions in

equation (9) and equation (11) respectively, we obtain
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∆U(c) =
k2

k1(λ1 − λ2)

[
λ1(1− eaλ2) + λ2(1− e−aλ1)

]
. (14)

Further, the analysis of ∆U gives us:

(a) ∆U = 0 when c = 0,

(b) when c → 0, ∆U → 0. Likewise, when c increases (c → ∞), ∆U → 0. This is

because looking at equation (5), we will have

{
λ1 → 0 as c→∞,
λ2 →∞ as c→∞,

and substituting into equation (14), we have ∆U → 0. This is further corrobo-

rated by Figure 7.

(c) ∆U > 0, ∀c > 0,

(d) ∆U(c) has only 1 maximum.

For (d), it is not in the scope of this dissertation to prove it.

2.2 Motion due to chemotaxis

In chemotaxis, chemicals are produced either within a group of cells (internal) or

by the surrounding environment (external). The cells then move with constant, uni-

form velocity either against (repel) or with (attract) the chemical gradient. In this

section, I will be deriving conditions for this group of cells to move, given an applied
force, which is the chemotaxis.

c is the difference between the front and back segment. In obtaining the expres-
sion for c, there are two considerations, one factoring the size of the DOT, a, and
one which ignores a. We can derive c for both considerations by using the formula
for force, F = mass× acceleration.

Speed of motion is proportional to ∆U and for the existence of a wave solution,

acceleration = 0 since c is uniform velocity. i.e. dc
dt = 0. Let

Ffriction = −Kfriction · c,

where Kfriction is a constant. Then
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0 = ma =
∑

F = Ffriction + Fchemotaxis.

⇒ Ffriction = −Fchemotaxis.

We can define chemotaxis as

(a) dFchemotaxis = Kchemotaxis dU .

We assume every single cell produces force and the force is proportional to the
chemicals on both side. We will then have

Fchemotaxis = Kchemotaxis

∫ a
2

−a
2

dU

Fchemotaxis = Kchemotaxis ·∆U
−Ffriction = Kchemotaxis ·∆U
Kfriction · c = Kchemotaxis ·∆U

c =
Kchemotaxis

Kfriction
·∆U

c = c0 ·∆U

c = c0

[
U
(a

2

)
− U

(
− a

2

)]
. (15)

c0 is the ratio Kchemotaxis
Kfriction

. It is the strength of the chemotaxis or equivalently, it

is the sensitivity of the group of cells to the chemical gradient.

Therefore, substituting equation (14), we have

c =
k2c0

k1(λ1 − λ2)

[
λ1(1− eaλ2) + λ2(1− e−aλ1)

]
. (16)

(b) Fchemotaxis = Kchemotaxis∇̄U .

We assume the total force is proportional to the average gradient. We will
then have
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Fchemotaxis = Kchemotaxis ·
1

a

∫ a
2

−a
2

dU

dx
dx

Fchemotaxis =
Kchemotaxis

a
·∆U

−Ffriction =
Kchemotaxis

a
·∆U

Kfriction · c =
Kchemotaxis

a
·∆U

c =
Kchemotaxis

a ·Kfriction
·∆U

c =
c0
a
·∆U.

Substituting equation (14), we obtain

c =
k2c0

ak1(λ1 − λ2)

[
λ1(1− eaλ2) + λ2(1− e−aλ1)

]
. (17)

For consistency, in this dissertation, the calculations and results are based on equa-

tion (16). i.e. we do not consider the size of the DOT, a, in the denominator.

However, for comparison, in section 3.3 of my paper, I will show the computations

and results using equation (17) as well.

Now, equation (16) defines the speed of chemotactically moving segment, which

is given by the points of intersection of two lines y = c and y = f(c) where f(c) is

the RHS of equation (16). It is the function responsible for motion and gives the

definition of the chemotaxis function. It is a non-linear function since λ1 and λ2 are
both functions of c. Further it is also implicit in c.

There is at least one solution when the RHS = 0 (i.e. c = 0), which corresponds

to the stationary segment. Travelling solutions then corresponds to c 6= 0. Such

solutions definitely exist if f ′(c) > 1 for c = 0.

For c = 0,

λ1|c=0 =

√
k1
D

, λ2|c=0 = −
√
k1
D

,
dλ1
dc

∣∣∣∣
c=0

= − 1

2D
,

dλ2
dc

∣∣∣∣
c=0

= − 1

2D
.

(18)
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f(c) =
k2c0

k1(λ1 − λ2)

[
λ1(1− eaλ2) + λ2(1− e−aλ1)

]
.

Therefore

f ′(c) =
k2c0
k1

d

dc

[λ1(1− eaλ2)

λ1 − λ2
+
λ2(1− e−aλ1)

λ1 − λ2

]
=

k2c0
k1(λ1 − λ2)2

{
(λ1 − λ2)

[dλ1
dc

(1− eaλ2)− adλ2
dc

λ1e
aλ2
]
− λ1(1− eaλ2)

(dλ1
dc
− dλ2

dc

)

+ (λ1 − λ2)
[dλ2
dc

(1− e−aλ1) + a
dλ1
dc

λ2e
−aλ1 − λ2(1− e−aλ1)

(dλ1
dc
− dλ2

dc

)]}
.

Substituting (18), we then have

f ′(c) =
k2c0
k1

[
− 1

2D

(
1− e−a

√
k1
D

)
+

a

2D

√
k1
D
e−a

√
k1
D − 1

2D

(
1− e−a

√
k1
D

)
+

a

2D

√
k1
D
e−a

√
k1
D

]

=
k2c0
k1

(
1

2
√

k1
D

)[
− 1

D

(
1− e−a

√
k1
D

)
+
a

D

√
k1
D
e−a

√
k1
D

]

=
k2c0

2Dk1

√
k1
D

(
e−a

√
k1
D − 1 + a

√
k1
D
e−a

√
k1
D

)

=
k2c0

2k1
√
k1D

[
e−a

√
k1
D

(
a

√
k1
D

+ 1
)
− 1

]
.

Hence for a travelling solution to exist, we need

k2c0

2k1
√
k1D

[
e−a

√
k1
D

(
a

√
k1
D

+ 1
)
− 1

]
> 1. (19)

Figure 7 illustrates the travelling solutions for the chemotaxis function. As we can

see, solutions exist for f ′(c) > 1. (the points of intersections give the solutions).

These solutions occur in pairs with opposite sign which are interpreted as chemo-
attraction and chemo-repulsion. Further, we can expect that these solutions repre-
sent a group moving with constant and uniform speed.

To further analyse this plot and for a further possible point of discussion, for c
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positive, i.e. the region c ∈ [0,∞), how do we affirm there is exactly 1 maximum?

Why can’t there be more than 1? Or can we have no maximum at all? Can we have
instead of Figure 7, a diagram which looks like Figure 8?

One way to look at it, which is very tedious, is to find the 2nd derivative of f(c)

(very cumbersome!). If it is always negative, then we will have one maximum point.

Also, having multiple maximums may lead to different problems arising compared
to the absence of a maximum. However it is not in the scope of this paper for it to
be discussed.

Figure 7: Plot of f(c) vs c for different c0 using Maple. Red: c0 = −10,
Green: c0 = −7, Blue: c0 = −3. Travelling solutions exist for small c0 but
not otherwise.

Figure 8: Plot of f(c) vs c. Two other possibilities may occur, either
obtaining multiple maximum points (A) or no maximum point (B).
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3 Analysis of the basic model

In equation (16), we have 5 parameters, namely c0, a,D, k1, k2. I will investigate

how varying these model parameters will affect the velocity and thus analyse its
implications.

3.1 Varying k2 c0

k2 c0 is a product of k2 and c0. It then follows that the analysis for k2 and c0 respec-
tively will be the same as the analysis of k2 c0 as they are simply proportional.

From equation (16), we can see that the chemotaxis function is an odd function.

i.e. a function f(x) is odd if f(−x) = −f(x). Therefore we can expect two, instead

of one solution to exist, which are equal in magnitude but opposite in sign. These
solutions are represented by Figure 5A and Figure 5B, for attraction and repulsion
respectively.

To determine the magnitude of the solutions (i.e. the chemotactic response of the

group given as a velocity c) and if the group is attracted or repelled, we will look

at the magnitude and sign of k2c0, where c0 represents the sensitivity of chemotaxis
or the sensitivity of the group of cells to the chemical gradient. Travelling solutions
will exist regardless of the sign for k2c0 of sufficient magnitude. We will see how c
depends on k2c0. i.e. how the roots depend on k2c0. We shall investigate which c0
gives only 1 possible root (the stationary value) and which c0 gives 2 further roots,

giving a total of 3 roots. By rearranging equation (19) and making k2c0 the subject

of the formula, we can determine this condition.

Rearranging equation (19), we obtain:

k2 c0 >
2k1
√
k1D[

e−a
√
k1
D

(
a
√

k1
D + 1

)
− 1

] . (20)

Therefore, if equation (20) is satisfied, travelling solutions exist and the group of

cells is either attracted or repelled. We will have a total of 3 roots. Else, we will

have only 1 root (the stationary solution).

Presence of pitchfork bifurcation in the chemotaxis function

Pitchfork bifurcation occurs around non-hyperbolic equilibrium point for so-called
odd functions and generally occurs in systems with symmetry. Figure 9 shows a
pitchfork bifurcation.
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Figure 9: Pitchfork Bifurcation.

Here, concentration X is a function of λ, which measures the distance from equilib-
rium whereby at the bifurcation point λc, the branch becomes unstable and two new
solutions, b1 and b2 emerge. We can consider a cubic equation

d c

d t
= F (c, c0) = c(c2 + c0).

If c0 = 0, there will be 1 root. On the other hand, if c0 6= 0 , or more accurately,

c0 < 0, then there will be two further roots which merges continuously from the 1st

root. Further, in replacing the ordinary differential equation, F (c, c0) with its Taylor

series, pitchfork bifurcation takes place if

(1) ∂f
∂c = 0,

(2) ∂3f
∂c3
6= 0,

(3) ∂3f
∂c∂c0

6= 0.

Therefore, for our case, we have, at c = 0, a single stable stationary solution. Then
it bifurcates at a critical value of c∗, branching into two new solutions which are
equal in magnitude but opposite in sign. i.e. we obtain a pitchfork bifurcation. The
plot illustrating the presence of a pitchfork bifurcation in the chemotaxis function is
shown in Figure 10.

Looking back at the concentration profiles in Section 2.1.2, we see that when c > 0,
the cells are repelled and the profile move left-wise. Vice-versa, when c < 0, the cells
are attracted and the profile move right-wise. The positive solution, c1, indicated
in Figure 10 corresponds to repulsion of cells to the chemical while the negative

solution, c2, corresponds to attraction of cells towards the chemical gradient. (see

Figure 11A and Figure 11B).
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Figure 10: Plot of c vs k2 c0 using Maple. c→ −∞ when k2c0 → −∞.

Further, from Figure 10, we may expect that c → ∞ when c0 → ∞. How can we
prove this?

Theorem: Depending on the value of the parameter c0 , we can get the move-
ment with any speed c.

Corollary: When c0 →∞, c→∞.

Proof : From Figure 7, we see that, for every c0, we can find c. i.e. we have a

root for equation (16). We also have

c = c0 ·∆U.

Let’s consider the root c1, where c1 > 0. We can prove, for any c1, there is c0 such
that c1 = c0 ·∆U .

Assume ∆U(c1) = δ (δ > 0) and let c0 = c1
δ . Then

c0 ·∆U(c1) =
c1
δ
δ = c1.

This implies that c1 is a root. If we increase the root c1, c0 will also increase.
Inversely, if c0 increases, so does c1. i.e.

c0 →∞⇒ c1 →∞.
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Figure 11: A: chemo-attraction, B: chemo-repulsion.

3.2 Varying k1

Next, we analyse the effect of varying k1, which is the rate of decay of the protein.

Similar to Figure 7, Figure 12 again shows the plot of c vs f(c). However, here, we

have the value of k1 varied. In Figure 12A, the red curve has a value of k1 = 0.045,
while the blue curve has a value of k1 = 0.01. This implies that the higher the
rate of decay, travelling solutions ceased to exist. We further conclude that k1 plays
an important role in the speed of the DOT migration, c. We shall investigate the
relationship between k1 and c and show it in terms of a graph.

Furthermore, from Figure 12A, we can see that the chemotaxis function, f(c, k1),

tends to a certain common value as k1 decreases. Hence, I will also be investigating,

which value f(c, k1) tends to when k1 → 0 (or k1 becomes small) as shown in Fig-

ure 12B . We let k1 = ε and apply Taylor’s series.

Using the Taylor’s expansion

√
1 +

4εD

c2
= 1 +

2εD

c2
+O

(
ε2
)
.

and substituting into equation (5), we obtain

λ1 =
ε

c
, λ2 = − c

D
− ε

c
, λ1 + λ2 = − c

D
,

λ1 − λ2 =
c

D
+

2 ε

c
, e−aλ1 = 1− a ε

c
.
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Now, if we substitute into equation (16), we obtain

c =
k2c0

ε(λ1 − λ2)

[ ε
c
(1− eaλ2) +

(
− c

D
− ε

c

)(a ε
c

)]
=

k2c0
k1(λ1 − λ2)

[ ε
c
− ε

c
eaλ2 − a ε

D
− a ε2

c2

]
.

Then, using

eaλ2 = e−
a ε
c e−

a c
D ,

and omitting the quadratic term, we obtain

c =
k2c0

ε(λ1 − λ2)

[ ε
c
− ε

c
e−

a ε
c e−

a c
D − a ε

D

]
.

With a bit of manipulation, we then get

c =
k2c0

ε(λ1 − λ2)

[
ε
ce

a c
D − ε

ce
−a ε

c − a ε
D e

a c
D

e
a c
D

]
.

Applying the Taylor’s expansion

e
a c
D = 1 +

a c

D
,

we obtain

c =
k2c0

ε(λ1 − λ2)

[(
1 + a c

D

)(
ε
c −

a ε
D

)
− ε

c

(
1− a ε

c

)
1 + a c

D

]

=
k2c0D

ε(λ1 − λ2)

(
−

a2 ε c
D2

D + a c

)

=
k2 c0 cD

2

ε(c2 + 2 εD)

(
−

a2 ε c
D2

D + a c

)
.

By cancellation and ignoring the term 2 εD, we finally have
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c∗ = − k2c0a
2

D + ac
, (21)

which gives us a quadratic equation in c. i.e.

cD + c2a+ k2c0a
2 = 0.

Now, for example, substituting the following values: c0 = −10, k2 = 0.0015, a = 10
and D = 0.5, we will get

0.5c+ 10c2 − 1.5 = 0

10c2 + 0.5c− 1.5 = 0

⇒ c∗ =
−0.5±

√
60.25

20

= 0.36,−0.41.

This implies that for k1 → 0, c = f(c) saturates to a value of 0.36 and −0.41. This

is indeed corroborated by Figure 12B.

Figure 12: Plot of f(c) vs c for different k1 using Maple. A: Red: k1 = 0.045,
Green: k1 = 0.02, Blue: k1 = 0.01. Travelling solutions exist for k1 small
but not otherwise. B: Plot of c vs k1 using Maple. The plot indicates
that c→ 0.4 when k1 → 0. The bifurcation value of k1 is k∗1 = 0.04.

We are also interested to find out the point where the solution bifurcates. We denote
the point as k∗1 and let c = ε.
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First, we assume λ1 a, λ2 a � 1. We use the Taylor’s expansion

√
ε2 + 4 k1D = 2

√
k1D

√
1 +

ε2

4 k1D
,

= 2
√
k1D

(
1 +

ε2

8 k1D

)
.

Substituting into equation (5),

λ1 = − ε

2D
+

√
k1
D

, λ2 = − ε

2D
−
√
k1
D

, λ1 − λ2 = 2

√
k1
D
.

We also use 2nd order approximation for the exponents. i.e.

e−aλ1 = 1− a λ1 +
(a λ1)

2

2
,

eaλ2 = 1 + a λ2 +
(a λ2)

2

2
,

Using equation (16), our computations are as follows:

ε =
k2c0

k1(λ1 − λ2)

[
λ1

(
1− 1− a λ2 −

(a λ2)
2

2

)
+ λ2

(
1− 1 + a λ1 −

(a λ1)
2

2

)]
=

k2c0
k1(λ1 − λ2)

[
λ1

(
− a λ2 −

(a λ2)
2

2

)
+ λ2

(
a λ1 −

(a λ1)
2

2

)]
=

k2c0
k1(λ1 − λ2)

[
− a2

2
λ1 λ2(λ1 + λ2)

]
=

k2c0

2k1

√
k1
D

[
− a2

2

(
− ε

D

)(
− ε

2D
+

√
k1
D

)(
− ε

2D
−
√
k1
D

)]

=
k2c0

2k1

√
k1
D

[a2 ε
2D

( ε2

4D2
− k1
D

)]
.

Ignoring the quadratic term, we then have

ε =
k2c0

2k1

√
k1
D

(
− a2 k1 ε

2D2

)
.
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Simplifying

4D2

√
k1
D

= −k2 c0 a2

⇒ k∗1 =
k22 c

2
0 a

4

16D3
. (22)

Now, using the values: D = 0.5, c0 = −10, k1 = 0.00075 and k2 = 0.0015, we get
k∗1 = 1.125. With this value of k∗1, substituting in λ1 a, we have

λ1 a =

√
k1
D
a = 15,

which is not small as assumed. So we arrived at a contradiction.

Now, let’s assume λ1 a, λ2 a � 1. We then have

e−aλ1 → e−∞ = 0 , eaλ2 → e−∞ = 0.

So these give us

c =
k2c0

ak1(λ1 − λ2)
(λ1 + λ2)

=
k2 c0

2 a k1

√
k1
D

(
− c

D

)
2 a k1

√
k1D = −k2 c0

⇒ k∗1 =

(
k22 c

2
0

4 a2D

) 1
3

.

Substituting the same values as before, we obtain

k∗1 = 0.01.

It then follows that

λ1 a =

√
k1
D
a = 1.4.

If we are to look at Figure 12B, we see that k∗1 ≈ 0.04. Although 0.01 and 0.04 has

the same order of magnitude, but λ1 a = 1.4 is not big enough (which is what we

34



assumed).

These results shows that there is no accuracy between the results obtained ana-
lytically and numerically since we arrived at a contradiction. Therefore, we will
need to rely on the results obtained numerically i.e. the plot instead of analytically.
Hence, our conclusion is that the bifurcation point is k∗1 = 0.04.

3.3 Varying a

The choice of a, i.e. the width of the DOT also affects the existence of travelling

solutions. To see the implications of varying a, we shall consider both equations (16)

and (17). i.e. the chemotaxis function with and without a in the denominator.

From Figure 13, we see that travelling solutions exist when the width a is big but
not otherwise.

Figure 13: Plot of f(c) vs c for different a using Maple. Red: a = 10,
Green: a = 5, Blue: a = 2.5. Travelling solutions exist for large a but not
otherwise.

First, we shall look at the significance of varying a using equation (17) and Figure 14

shows how c changes with a. To find out the expression for the 2 values of a∗ when
c→ 0, we again use Taylor’s approximation.

For a small, i.e. a→ 0, we will let c = ε. The steps are similar to finding k∗1.

We use the following approximations for our computations.
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√
c2 + 4 k1D = 2

√
k1D

√
1 +

c2

4 k1D
,

= 2
√
k1D

(
1 +

c2

8 k1D

)
.

Therefore, substituting into equation (5),

λ1 = − c

2D
+

√
k1
D

, λ2 = − c

2D
−
√
k1
D

, λ1 − λ2 = 2

√
k1
D
.

We use 2nd order approximation for the exponents. i.e.

e−aλ1 = 1− a λ1 +
(a λ1)

2

2
,

eaλ2 = 1 + a λ2 +
(a λ2)

2

2
,

Using equation (16), our computations are as follows:

c =
k2c0

ak1(λ1 − λ2)

[
λ1

(
1− 1− a λ2 −

(a λ2)
2

2

)
+ λ2

(
1− 1 + a λ1 −

(a λ1)
2

2

)]
=

k2c0
ak1(λ1 − λ2)

[
λ1

(
− a λ2 −

(a λ2)
2

2

)
+ λ2

(
a λ1 −

(a λ1)
2

2

)]
=

k2c0
ak1(λ1 − λ2)

[
− a2

2
λ1 λ2(λ1 + λ2)

]
=

k2c0

2ak1

√
k1
D

[
− a2

2

(
− c

D

)(
− c

2D
+

√
k1
D

)(
− c

2D
−
√
k1
D

)]

=
k2c0

2ak1

√
k1
D

[a2 c
2D

( c2

4D2
− k1
D

)]
.

Ignoring the quadratic term, since c2 = ε2 is very small, we then have

c =
k2c0

2ak1

√
k1
D

(
− a2 k1 c

2D2

)
.
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Simplifying

1 = − k2 c0 a

4D
√
k1D

⇒ a∗ = −4D
√
k1D

k2 c0
. (23)

Now, substituting the values used previously, i.e. D = 0.5, c0 = −10, k1 = 0.00075
and k2 = 0.0015, we have, when c→ 0 and a→ 0,

a∗ = 2.58,

which is the value approximately shown in Figure 14A.

Figure 14: Plot of c vs a for equation (17) using Maple. A: 0 ≤ a ≤ 100,
B: 0 ≤ a ≤ 600. There are two values of a when c→ 0.

For a big, i.e. a→∞, we will then have

e−aλ1 → e−∞ = 0 , eaλ2 → e−∞ = 0.

So this gives us

c =
k2c0

ak1(λ1 − λ2)
(λ1 + λ2)

=
k2 c0

2 a k1

√
k1
D

(
− c

D

)
2 a k1

√
k1D = −k2 c0

⇒ a∗ = − k2 c0

2 k1
√
k1D

. (24)

Substituting values, we have, when c→ 0 and a→∞,
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a∗ = 516.4,

which is indeed the value approximately shown in Figure 14B.

Now, we shall see the difference if we are to consider equation (16) instead. As

shown above, for a→∞, we have both the exponents in equation (16) tending to 0.

Hence we will have no a to work with. i.e. we will have no solution for a∗. So what
then is the implication? Figure 15 shows the plot of c vs a using equation (16). We

can see that as a increases, c will increase as well and saturates to a value close to
20.

Figure 15: Plot of c vs a for equation (16) using Maple. A: 0 ≤ a ≤ 100,
B: 0 ≤ a ≤ 106. c saturates to a value close to 20 as a→∞.

We shall find out what is a∗ for a small and c∗ for a→∞.

For a→ 0, equation (23) will now be:

1 = − k2 c0 a
2

4D
√
k1D

⇒ a∗ =

√
−4D

√
k1D

k2 c0
. (25)

Substituting values, we have, when a→ 0,

a∗ = 1.6,

as approximately shown in Figure 15A.

Now, for a → ∞, e−aλ1 → e−∞ = 0 and eaλ2 → e−∞ = 0, giving us, same as
before,
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c =
k2c0

ak1(λ1 − λ2)
(λ1 + λ2).

The Taylor’s expansion

√
1 +

4 k1D

c2
= 1 +

2 k1D

c2
+O

(
ε2
)

gives us

λ1 =
k1
c

, λ2 = − c

D
− k1

c
, λ1 + λ2 = − c

D
, λ1 − λ2 =

c

D
+

2 k1
c
.

We then have

c =
k2 c0

k1
(
c
D + 2 k1

c

)(− c

D

)
k1D

( c
D

+
2 k1
c

)
= −k2 c0

c2 + 2 k1D = −k2 c0 c
k1

c2 +
k2 c0
k1

c+ 2 k1D = 0.

Solving the quadratic equation in c and using the same values as before give us

c2 − 20 c+ 0.00075 = 0.

We then obtain

c∗ = 19.9

which is the value that is indeed corroborated by Figure 15B.

3.4 Varying D

If there is no diffusion i.e. D = 0 , our concentration profile will simply be rectan-

gular, as shown in Figure 16. We have c = c0 ·∆U . Using equation (4), for D → 0,

we will have
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Figure 16: Concentration profile of ∆U for D = 0. i.e. there is no diffusion.

∆U =
k2
k1

⇒ c∗ = c0 ·
k2
k1
. (26)

Substituting the same values again, i.e. c0 = −10, k1 = 0.00075 and k2 = 0.0015,
we then have

c∗ = 20.

If we are to compute this value analytically, we will obtain the same answer. We let
D = ε to represent D small. In this case, Taylor’s approximations give us

λ1 = −k1
c

, λ2 = −c
ε
− k1

c
, λ1 − λ2 = 2

k1
c
− c

ε
.

Since ε � 1, c
ε is big. So we can ignore the term k1

c in λ2 and λ1 − λ2. We have

instead

λ1 = −k1
c

, λ2 = −c
ε

, λ1 − λ2 = −c
ε
.

and for the exponents

e−aλ1 = 1− a k1
c

, eaλ2 = e−
a c
ε = 0.

Using equation (16), our computations will then be
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c =
k2c0

k1
(
c
ε

)[k1
c

(1− 0)− c

ε

(
1− a k1

c

)]
=

k2c0

k1
(
c
ε

)[− c

ε

(
1− a k1

c

)]
=

k2c0
k1c

(ak1 − c).

We have a quadratic equation in c. i.e.

c2k1 = k2c0(ak1 − c)

⇒ c2k1 + k2c0c− k1k2c0a = 0. (27)

Substituting values, we obtain the solutions for c∗,

c∗ = 19.9,

which is approximately what we obtain using equation (26).

However, this value is not depicted in Figure 19, which has c∗ ≈ 0.4.

When D = 0, we have

c
dU

dx
− k1U + k2 = 0. (28)

We can solve this equation to find U , followed by ∆U and finally finding c∗.

Dividing equation (28) by c:

dU

dx
− k1

c
U = −k2

c
.

The integrating factor (IF) is then:

IF = e−
∫ k1

c
dx = e−

k1
c
x.

⇒ U = e
k1
c
x

∫
−k2
c
e−

k1
c
dx

= −k2
c
e
k1
c
x
(
− c

k1
e−

k1
c
x + const

)
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U(0) = 0 ⇒

const =
c

k1
.

Therefore, we have

U = −k2
c
e
k1
c
x
(
− c

k1
e−

k1
c
x +

c

k1

)
=

k2
k1

(
1− e

k1
c
x
)
. (29)

We also have U(a2 ) = 0. Hence

∆U = U
(a

2

)
− U

(
− a

2

)
= −k2

k1

(
1− e

a k1
2 c
)
.

Using

c = c0 ·∆U,

we then obtain

c = −k2 c0
k1

(
1− e

a k1
2 c
)
.

Assuming a k1
2 c � 1 and using the Taylor’s expansion

e−
a k1
2 c = 1− a k1

2 c
,

we have

c = −k2 c0
k1

(a k1
2 c

)
⇒ c2 = −k2 c0 a

2

and finally, substituting values, we have,

c∗ = ±0.27,
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which is roughly the value shown in Figure 19. So what is the implication of this
result?

Here, we have used the value of a = 10, which is not sufficiently big. Hence, if
we plot the U profile, we will see, as shown in Figure 17, the maximum is simply
less than 0.04 and not the maximum possible, which is 2. Thus, the choice of a is
indeed important. If a is not sufficiently large, our U profile will not saturate to the

ratio of k2
k1

.

Figure 17: Concentration profile for D = 0.

Figure 18: Plot of f(c) vs c for different D using Maple. Red: D = 1,
Green: D = 2, Blue: D = 6. Travelling solutions exist for small D but not
otherwise.
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On the other hand, if D 6= 0 and varying its value, similar as for the other param-
eters, will either yield a travelling solutions or otherwise. From Figure 18, we can
clearly see that travelling solutions exist when D is small but not when big.

The workings to find D∗, i.e. the value of D when c = 0 (or the bifurcation point)

will be similar to finding k∗1. Using the first line of equation (22) and rearranging it

to solve for D, we obtain

4D2

√
k1
D

= −k2 c0 a2

16D4 k1
D

= k22 c
2
0 a

4

D3 =
k22 c

2
0 a

4

16 k1

⇒ D∗ =
(k22 c20 a4

16 k1

) 1
3
. (30)

Substituting values, we obtain the solution for D∗, i.e.

D∗ = 5.5. (31)

(This value is supported by Figure 19).

Figure 19: Plot of c vs D using Maple. The plot indicates that c→ 0.4 as
D → 0. Further, the bifurcation value of D is D∗ = 5.5, which corresponds
to the analytical estimate in equation (31).
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3.5 Stability analysis of the solutions

For our model (4) and (15), we can analyse if the travelling wave solutions are stable

analytically. A system is stable, if, after a tiny change or perturbation to the system,
it returns to its original position after relaxation. Else, if it moves away from the
original position, it is unstable. Analysing the stability of the solutions allow us to
determine if the group maintain consistent uniform motion or will c→ 0. To derive
these stability conditions, we make use of Taylor’s series approximation.

We will express the time derivative of c = f(c) as

dc

dt
= g(c), (32)

where g(c) = f ′(c).

By solving g(c) = 0, we are able to solve equation (32). Since we assume that
dc
dt is defined by the difference c− f(c), we can let g(c) = G

(
c− f(c)

)
.

Therefore

g(c) = G
(
c− f(c)

)
= 0.

We then take 1st order approximation. i.e.

G
(
c− f(c)

)
u G

(
0
)

+G′
(
0
)(
c− f(c)

)
.

If c = f(c), then travelling wave solutions exist. This then implies dc
dt = 0. Hence

G
(
0
)

= 0. We can then write equation (32) as

dc

dt
= G′

(
0
)(
c− f(c)

)
= −α

(
c− f(c)

)
, (33)

where - α = G′
(
0
)
.

Furthermore, it is reasonable to assume that c → f(c). Stability of the intersec-

tion points of c = f(c) or of the travelling solutions is given by the condition that

c → f(c) ⇒ ċ → 0. We shall now analyse α and the behaviour of c− f(c). We can

have 2 cases. i.e.

45



c < f(c)⇒ dc

dt
> 0⇒ α > 0 (34)

or

c > f(c)⇒ dc

dt
< 0⇒ α > 0. (35)

By taking a linear stability analysis of a known equilibrium point, say c∗, we can

further interpret the above results. If c∗ is a root, then c∗ = f(c∗). We shall

substitute c = c∗ + ε into equation (33), where |ε| � 1 is a small perturbation from

c∗. i.e.

d(c∗ + ε)

dt
= −α

(
c∗ + ε− f(c∗ + ε)

)
⇒ dε

dt
= −α

(
c∗ + ε− f(c∗ + ε)

)
.

Taking 1st order approximation of f(c∗ + ε), we have

f(c∗ + ε) u −α
(
c∗ + ε− f(c∗)− εf ′(c∗)−O(ε2)

)
.

The non-linear term is negligible. Thus, using c∗ = f(c∗), we then have

dε

dt
= −αε

(
1− f ′(c∗)

)
.

We can solve for ε by the method of separation of variables. i.e.

∫
dε

dt
=

∫
−αε

(
1− f ′(c∗)

)
dt∫

dε

ε
= −α

∫ (
1− f ′(c∗)

)
dt

lnε = −α
((

1− f ′(c∗)
)
t+ const

)
⇒ ε(t) = Ae

−α
((

1−f ′(c∗)
)
t

)
.

For t = 0, ε(0) = A. Hence
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ε(t) = ε(0)e
−α
((

1−f ′(c∗)
)
t

)
. (36)

The perturbation ε(t) will grow unbounded for an unstable c∗ or will tend to zero

for a stable c∗. The sign of f ′(c∗) determines which is the case. For α > 0 as shown

previously, the conditions are:

f ′(c∗) > 1⇒ ε(t)→ ±∞ (37)

for unstable equilibria and

f ′(c∗) < 1⇒ ε(t)→ 0 (38)

for stable equilibria.
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4 Statement of the problem in 2-D medium

In the previous sections, we looked at a 1-D model. i.e. we consider a group of cells
moving along a line segment of width a. Now, we shall look briefly at the case where

a 2D model is used. Instead of a line segment, we consider a circle of radius R (≡ a
2 ).

We will find the solutions for U . Further analysis will not be discussed here and can
be one of the areas to look into outside of this dissertation. We will consider the
simplest case, i.e. of a circular group of cells moving chemotactically and assume
that the circle moves along the horizontal x-axis. Our equation will be:

D
(∂2U
∂x2

+
∂2U

∂y2

)
+ c

∂U

∂x
− k1U + P (x, y) = 0, (39)

where

P (x, y) =

{
k2, x2 + y2 < R2,
0, otherwise.

In polar coordinates we will have

∂2U

∂x2
+
∂2U

∂y2
=

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2
∂2U

∂θ2
;

and

∂U

∂x
= cosθ

∂U

∂r
− sinθ

r

∂U

∂θ
.

Substituting into equation (39), we have

D
(∂2U
∂r2

+
1

r

∂U

∂r
+

1

r2
∂2U

∂θ2

)
+ c
(
cosθ

∂U

∂r
− sinθ

r

∂U

∂θ

)
− k1U + P (r) = 0.

Equation (39) is easily solved for c = 0 . In this case, due to symmetry, U(r, θ) =

U(r). i.e. it does not depends on the angle. The equation in polar coordinates will

now be

D
(∂2U
∂r2

+
1

r

∂U

∂r

)
− k1U + P (r) = 0, (40)

where
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P (r) =

{
k2, r < R,
0, r > R.

For the case c 6= 0, the computations are very tedious and cumbersome. We may
need a programming software to obtain the results. Now, for the case c = 0, to

obtained the solutions of U , we will use the Modified Bessel function [14]. A

modified Bessel equation is of the form

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2) y = 0

and I0 and K0 are the two linearly independent solutions. The solution is of the
form

y = AI0(x) +BK0(x).

We also have I0 → 0 when x→ 0 and K0 →∞ when x = 0.

We shall apply this Bessel function to our problem. Letting y = U , x = λ r and

dividing equation (40) by D, we obtain

∂2U

∂r2
+

1

r

∂U

∂r
− k1
D
U = −P (r)

D
. (41)

The solutions will be in the form

U(r) =

{
Uc1 + Up1 , r < R,
Uc2 + Up2 , r > R,

where

Uc = AI0(λ r) +BK0(λ r).

and

Up =

{ k2
k1
, r < R,

0, r > R.

In other words, our general solutions are

U(r) =

{
A1 I0(λ r) +B1K0(λ r) + k2

k1
, r < R,

A2 I0(λ r) +B2K0(λ r), r > R.
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Since K0(λ r) = 0 for r < R and I0(λ r) = 0 for r > R, these simplify our general

solutions to

U(r) =

{
AI0(λ r) + k2

k1
, r < R,

BK0(λ r), r > R.

We will then impose boundary conditions to solve for the coefficients, A and B. i.e.

U1(R) = U2(R) and U ′1(R) = U ′2(R),

which then give us

AI0(λR) +
k2
k1

= BK0(λR) (42)

and

AI ′0(λR) = BK ′0(λR). (43)

We have a continuous 1st derivative.

Since

I ′0 = λ I1 (λ r),

K ′0 = −λK1 (λ r),

equation (43) will then be

λA I1(λR) = −λBK1(λR).

⇒ A = −B · K1(λR)

I1(λR)
. (44)

Substituting into equation (42) , we have

−BK1I0
I1

+
k2
k1

= BK0

B
(
K0 +

K1I0
I1

)
=

k2
k1

B =
k2I1

k1(K0I1 +K1I0)
(45)

50



and now substituting into equation (44), we get

A =
k2I1K1

k1I1(K0I1 +K1I0)

=
k2K1

k1(K0I1 +K1I0)
. (46)

Thus, these give us the solution for U :

U(r) =


k2K1(λR)

k1[K0(λR)I1(λR)+K1(λR)I0(λR)] I0(λr) + k2
k1
, r < R,

k2I1(λR)
k1[K0(λR)I1(λR)+K1(λR)I0(λR)] K0(λr), r > R.

(47)

As mentioned above, we considered a circle for the model. If we are to use other

fixed shapes such as a square, we will require other functions (not modified Bessel

function) to solve for U .
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5 Discussion

In this dissertation, a model describing a group of biological cells, which move in

response to the concentration of a locally (internally) produced chemotactic agent

was derived. We assumed that the cells were homotypic (cells of the same type),

which is termed as a homogeneous group. The implication of the group being ho-
mogeneous, is that we assumed all cells in the group will respond equivalently to the
chemotactic agent and therefore the force and resulting velocity, c, will be uniform
over the group i.e. the group will move consistently given an applied force.

In order to describe the chemotactic agent, a reaction-diffusion system of linear
partial differential equation to model the reacting extracellular diffusing transcript,
denoted by U was used. Solving the equation gave the solutions for U for the regions,

|x| < a
2 and |x| > a

2 . We then plotted the U profiles for the cases c = 0, which gives

a symmetric distribution and c 6= 0, which gives an asymmetric distribution; the

group move left-wise for c < 0 (i.e. chemoattractant) and move right-wise for c > 0

(i.e. chemorepulsion).

We then looked at how the maximum concentration of U moves for different c and
concluded that xmax decreases when c increases and vice versa. Next, we defined and
derived the corresponding chemotaxis function, which is taken as the difference in
concentration between its left and right boundaries. We denoted it as ∆U . Defining
the chemotaxis function leads us to a non-linear dynamical system prescribed by an
implicit function. Further, we saw that there are two possible ways to derive the
function; one considering the size of the DOT, a, in the denominator of the function
and, one which does not. With our expression for ∆U , we have ∆U → 0 as c → 0
and c→∞. Likewise, the maximum concentration of U , i.e. Umax → 0 as c→∞.

After obtaining the chemotaxis function, we then analyse the effect of varying the
model parameters, namely, k1, k2, a, c0 and D and investigated how they effect the
velocity. We examined their implications both analytically and numerically. We
started off by defining c0 as the strength of the chemotaxis. For our function to
work, we need a strong c0 and saw that c0 < 0 corresponds to chemo-repulsion and
c0 > 0 corresponds to chemo-attraction. This is expected since our function is odd,
thus we will have two solutions which are equal in magnitude but opposite in sign

(corresponding to the attraction and repulsion of cells to the chemical respectively).

We also derived conditions on c0 and the other model parameters for travelling

solutions to exist. i.e. when f ′(c) > 1 where f(c) = c0 · ∆U . Our solutions are

fundamentally described by the Pitchfork bifurcation, whereby, we have, at c = 0,
a single stable stationary solution which then, at a critical value of the parameters
c0, k1, a and D, bifurcates into two travelling solutions equal in magnitude but op-
posite in sign.
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In almost all our computations, we used Taylor’s expansion for our approximation
and made certain assumptions necessary to arrive at our results. The values that we
used in all our computations and substitutions are k1 = 0.00075, k2 = 0.0015, a =
10, c0 = −10 and D = 0.5. For the analysis of the rate of decay, k1, we need a small
value of k1 for a travelling solution to exist. Further, the velocity, c, saturates to a
value close to 0.4 for k1 → 0. We then saw that the numerical and analytical result
in finding k∗1, i.e. the bifurcation point, differs. We obtained a numerical answer of

0.04 as opposed to the analytical result of 1.125 and 0.01 which leads us to a con-
tradiction based on the assumptions made to obtain the result. This then supports
our reliance on numerical instead of analytical result to conclude our analysis of k∗1.

On the other hand, we need a sufficiently large a for a travelling solution to exist.

In analysing a, we considered both equations (16) and (17) and arrived at different

conclusions. With a in the denominator, solutions ceased to exist for values of a
that is roughly less than 2.6 and greater than 517. If we use the equation without
a in the denominator instead, our result shows that c saturates to a value closed to
20 as a→∞.

Taking a in the denominator into consideration has a negative implication. If we are
to consider the case where the cells reacting to the chemicals are outside the DOT,
we will arrive at a contradiction. For the case x < −a

2 , we will have

c =
U (−∞)− U (−a

2 )

∞
= 0.

This result implies that there is no motion. Likewise for the case x > a
2 . However

if we are to use the Cellular Potts model instead, we will have a motion, thus a
contradiction.

The last model parameter we looked at was D. For the case D = 0, we anal-
ysed D → 0 and saw that the choice of a we used in our substitution does very much
effect the results obtain analytically and numerically. If a is not sufficiently large, we
saw that the maximum value of U is around 0.04, in contrast to the expected value

of 2, which is the ratio of k2
k1

. Since the value of a we used is consistent throughout,

which is 10, and considered not large, we obtained the result of 0.04. Hence, the size
of the DOT, a, plays a crucial role in obtaining the results.

For the case D 6= 0, a large D will not yield a travelling solution. Although bi-
ologist are not interested in analysing D, the diffusion coefficient, we did see that
varying this parameter indeed has an effect on the chemotaxis function or the veloc-
ity, c.
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All these computations, observations, analysis and conclusions are based on the
fact that the chemotactic agent is internally produced i.e. we looked at a homoge-
neous group of cells that is attracted or repelled by a diffusing chemotactic agent it
produces. If we are to consider an externally produced chemotactic agent, i.e. pro-
duced by the surrounding population of cells, rather than the group itself, we will see
that the analysis that follows will be the same and mirror that for an internally pro-

duced chemical. The analysis and results are obtained by Harrison NC et.al, 2012 [4].

The equation for the reaction-diffusion system is the same as in equation (4). i.e.

D
d2U

dx2
+ c

dU

dx
− k1U + k2 = 0.

Since the production term in the diffusion equation, k2, is now expressed outside the

group, i.e. |x| < a
2 and 0 within, i.e. |x| > a

2 , the general solutions now look like

U =



Aeλ1 x +Beλ2 x + k2
k1

if x < −a
2 ,

Ceλ1 x +Deλ2 x if − a
2 < x < a

2 ,

Eeλ1 x + Feλ2 x + k2
k1

if x > a
2 ,

(48)

and applying the same boundary and continuity conditions, we have the solutions of

equation (48), i.e. for a homogeneous group with an externally produced chemotactic

agent to be:

U =



k2
k1(λ1−λ2)

[
λ2

(
e(x−

a
2
)λ1 − e(x+

a
2
)λ1
)

+ λ1 − λ2
]

if x ≤ −a
2 ,

k2
k1(λ1−λ2)

[
λ1e

(x+a
2
)λ2 − λ2e(x−

a
2
)λ1
]

if |x| ≤ a
2 ,

k2
k1(λ1−λ2)

[
λ1

(
e(x−

a
2
)λ2 − e(x+

a
2
)λ2
)

+ λ1 − λ2
]

if x ≥ a
2 .

Similarly, this system displays a symmetric distribution with respect to the group
in a stationary frame, with its maximum concentration located centrally within the
group. Further, for a travelling frame, the maximum concentration lags behind this
central position proportional to the velocity of the frame, c. The expression for the
location of the maximum concentration of U is identical as before, i.e.
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xmax = − ac

2
√
c2 + 4k1D

.

For the chemotaxis function, c, employing the same derivation as before, we then
have,

c = c0
[
U3(

a

2
)− U1(−

a

2
)
]

=
k2c0

k1(λ1 − λ2)

[
λ1(1− eaλ2) + λ2(1− e−aλ1)

]
,

which is identical to (16).

Therefore, we can conclude that while the production dynamics of the chemotac-
tic agent has changed from internal to external, the dynamical behaviour of the
group of cells in terms of travelling solutions are equivalent.

For further discussion, there are other areas in which this dissertation can be ex-
tended. The few possible areas to look into are:

(a) considering a model for an inhomogeneous migrating group. i.e. a group that is

composed of two types of cells, one that is attracted or repelled by the gradient
of a locally produced, diffusing chemotactic agent, and another type within the
same group that is not,

(b) considering a 2-variables model, whereby we take into account another variable,

say, V , where V describes the intracellular concentration of the non-diffusible
transcript called the A-mRNA. The equation for V acts as an activator to model
the concentration of A-mRNA. We will have

V =

{
1, inside DOT ,
0, outside DOT

and the equation is given by

dV

dx
= cV ′ − k3V,

where k3 is the rate of A-mRNA decay,
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(c) the proof underlying the existence of one maximum for the chemotaxis function

instead of multiple maximums,

(d) extending the analysis using 2-D model (as being discussed in the 1-D model).

Hence, there are indeed room to widen the scope of this dissertation in the future.
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A Maple codes

A.1 Plotting the concentration profile

lambda[1] := (-c+sqrt(c^2+4*k[1]*d))/(2*d);

lambda[2] := (-c-sqrt(c^2+4*k[1]*d))/(2*d);

U1 :=k[2]*lambda[2]*((exp(lambda[1]*(x-(a/2)))-

exp(lambda[1]*(x+(a/2)))))/(k[1]*(lambda[1]-lambda[2]));

U2:=(k[2]*(lambda[2]*exp(lambda[1]*(x-(a/2)))-

lambda[1]*exp(lambda[2]*(x+(a/2)))+(lambda[1]-

lambda[2])))/(k[1]*(lambda[1]-lambda[2]));

U3 :=k[2]*lambda[1]*((exp(lambda[2]*(x-(a/2)))-

exp(lambda[2]*(x+(a/2)))))/(k[1]*(lambda[1]-lambda[2]));

A.1.1 For c = 0 (stationary profile)

k[1] := 0.75e-3; k[2] := 2*k[1]; c := 0; d := .5; a := 50;

with(plots, implicitplot);

plot([piecewise(x <= -a/2, U1,

And(-a/2 <= x, x <= a/2), U2, x >= a/2, U3)],

x = -100 .. 100, y=0..1.3, labels=[x,U]);

A.1.2 For c > 0 (repulsion)

k[1] := 0.75e-3; k[2] := 2*k[1]; c := 0.015; d := .5; a := 50;

with(plots, implicitplot);

plot([piecewise(x <= -a/2, U1,

And(-a/2 <= x, x <= a/2), U2, x >= a/2, U3)],

x = -100 .. 100, y=0..1.3, labels=[x,U]);

A.1.3 For c < 0 (attraction)

k[1] := 0.75e-3; k[2] := 2*k[1]; c := -0.015; d := .5; a := 50;

with(plots, implicitplot);

plot([piecewise(x <= -a/2, U1,

And(-a/2 <= x, x <= a/2), U2, x >= a/2, U3)],

x = -100 .. 100, y=0..1.3, labels=[x,U]);
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A.1.4 For D = 0

k[1] := 0.75e-3; k[2] := 2*k[1]; c := 0.2; d := .0001; a := 10;

with(plots, implicitplot);

plot([piecewise(x <= -a/2, U1,

And(-a/2 <= x, x <= a/2), U2, x >= a/2, U3)],

x = 0 .. 6, y=0..0.05, labels=[x,U]);

A.2 Plotting the location of maximum concentration of U

x[max]:= -(c*a)/(2*sqrt(c^2+4*k[1]*d));

G:= subs(a=50, k[1]=0.75e-3, d=.5,x[max]);

plot(G,c=-0.2..0.2);

A.3 Plotting the chemotaxis function (f(c) vs c)

y2:=(k[2]*c0*(lambda[1]*(1-exp(a*lambda[2]))+

lambda[2]*(1-exp(-a*lambda[1]))))/(k[1]*(lambda[1]-lambda[2]));

A.3.1 Varying c0

with(plots):

f0(c):=c;

d1(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = .5,a= 10, c0=-10., y2):

d2(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = .5,a= 10, c0=-7., y2):

d3(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = .5,a= 10, c0=-3., y2):

plots[multiple](plot, [d1(c), c = -.1 .. .1, color=red, linestyle =1],

[d2(c), c=-.1.. .1, color=green, linestyle=1],

[d3(c), c = -.1 .. .1, color=blue, linestyle=1],

[f0(c),c=-.1.. .1,color=black], labels =[c,f(c)]);

A.3.2 Varying k1

with(plots):

f0(c):=c;

g1(c):=subs(k[1]= 45e-3, k[2]= 1.5e-3,d = .5,a= 10, c0=-10,y2):

g2(c):=subs(k[1]= 20e-3, k[2]= 1.5e-3,d = .5,a= 10,c0=-10, y2):
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g3(c):=subs(k[1]= 10e-3, k[2]= 1.5e-3,d = .5,a= 10,c0=-10, y2):

plots[multiple](plot, [g1(c), c = -.4 .. .4, color=red],[g2(c),

c=-.4.. .4, color=green],[g3(c), c = -.4 .. .4, color=blue],

f0(c),c=-.4.. .4,color=black], labels =[c,f(c)]);

A.3.3 Varying a

with(plots):

f0(c):=c;

f1(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = .5,a= 10, c0=-10., y2):

f2(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = .5,a= 5, c0=-10., y2):

f3(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = .5,a= 2.5, c0=-10., y2):

plots[multiple](plot, [f1(c), c = -.1 .. .1, color=red, linestyle =1],

[f2(c), c=-.1.. .1, color=green, linestyle=1],

[f3(c), c = -.1 .. .1, color=blue, linestyle=1],

[f0(c),c=-.1.. .1,color=black], labels =[c,f(c)]);

A.3.4 Varying D

with(plots):

f0(c):=c;

m1(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = 1,a= 10,c0=-10, y2):

m2(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = 2,a= 10, c0=-10,y2):

m3(c):=subs(k[1]= 0.75e-3, k[2]= 1.5e-3,d = 6,a= 10, c0=-10,y2):

plots[multiple](plot, [m1(c), c = -.4 .. .4, color=red],

[m2(c), c=-.4.. .4, color=green],

[m3(c), c = -.4 .. .4, color=blue],

[f0(c),c=-.4.. .4,color=black], labels =[c,f(c)]);

A.4 Plotting the velocity (c) against the model parameters

A.4.1 c vs c0

y2:=(k[2]*c0*(lambda[1]*(1-exp(a*lambda[2]))+

lambda[2]*(1-exp(-a*lambda[1]))))/(k[1]*(lambda[1]-lambda[2]));

BifPlot:=(eval(c*(c0/y2),[k[1]=0.00025,k[2]=0.0005,d=0.5,a=50]));

plot(BifPlot,c=-0.05..0.05,c0=-5..5);
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A.4.2 c vs k1

with(plots);

with(ExcelTools);

with*ArrayTools

V := [[0, 0]];

for A from 0.1e-2 by 0.1e-2 to 0.5e-1 do

sol := fsolve(c = eval(c0*k[2]*(lambda[1]*(1-exp(a*lambda[2]))

+lambda[2]*(1-exp(-a*lambda[1])))/(k[1]*(lambda[1]-lambda[2])),

[k[1] = A, k[2] = 0.15e-2, a = 10, c0 = -10, d = .5]), {c = 0 .. 5});

V := [op(V), [A, rhs(op(1, sol))]]

end do

pointplot(V);

V[2]

FileTools[Remove]("c_vs_k[1].xls");

Export(convert(V, Array), "c_vs_k[1].xls", "v", "B1")

A.4.3 c vs a

(i) With ‘a’ in the denominator:

with(plots);

with(ExcelTools);

with*ArrayTools

V := [[0, 0]];

for A from 3 by 10 to 600 do

sol := fsolve(c = eval(c0*k[2]*(lambda[1]*(1-exp(a*lambda[2]))

+lambda[2]*(1-exp(-a*lambda[1])))/(a*k[1]*(lambda[1]-lambda[2])),

[k[1] = 0.75e-3, k[2] = 0.15e-2, d = .5, c0 = -10, a = A]), {c = 0 .. .4});

V := [op(V), [A, rhs(op(1, sol))]]

end do

pointplot(V);

V[60];

FileTools[Remove]("c_vs_a_with_a_new.xls");

Export(convert(V, Array), "c_vs_a_with_a_new.xls", "v", "B1")
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(ii) Without ‘a’ in the denominator:

with(plots);

with(ExcelTools);

with*ArrayTools

V := [];

for A by 10000 to 1000000 do

sol := fsolve(c = eval(c0*k[2]*(lambda[1]*(1-exp(a*lambda[2]))

+lambda[2]*(1-exp(-a*lambda[1])))/(k[1]*(lambda[1]-lambda[2])),

[k[1] = 0.75e-3, k[2] = 0.15e-2, d = .5, c0 = -10, a = A]), {c = 0 .. 21});

V := [op(V), [A, rhs(op(1, sol))]]

end do;

pointplot(V);

FileTools[Remove]("c_vs_a_new.xls");

Export(convert(V, Array), "c_vs_a_new.xls", "v", "B1")

A.4.4 c vs D

with(plots);

with(ExcelTools);

with*ArrayTools

V := [[0, 0]];

for Dif from 0.1e-2 by .1 to 10 do

sol := fsolve(c = eval(c0*k[2]*(lambda[1]*(1-exp(a*lambda[2]))

+lambda[2]*(1-exp(-a*lambda[1])))/(k[1]*(lambda[1]-lambda[2])),

[k[1] = 0.75e-3, k[2] = 0.15e-2, a = 10, c0 = -10, d = Dif]), {c = 0 .. 1});

V := [op(V), [Dif, rhs(op(1, sol))]]

end do

pointplot(V);

V[6];

FileTools[Remove]("c_vs_d.xls");

Export(convert(V, Array), "c_vs_d.xls", "v", "B1")

* the data was exported to excel before plotting.
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