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1 Introduction

Tissues in living organisms are made up of cells. These cells grow, divide and move.
Some cells produce chemicals and some move against or along a chemical gradient

(chemotaxis). In response to these chemicals, the cells can change shape. Studying

and analysing these behaviour of cells in tissues are the area of interest for biol-
ogist as well as physicist and mathematicians. They are interested in discovering
how cells move, proliferate and change their shapes. In tissue development, cell re-
arrangement is an important process driving epithelial morphogenesis in the many
development settings. Various mechanical models provide insight into the dynamics
of cells rearrangement within an epithelial sheet and numerical simulations carried
out in the models can reproduce the essential features of cell shape change and cell
rearrangement observed during normal development.

Boundary dynamics model such as Cellular Potts model and 2 or 3-D vertex dy-
namics model are usually used in studying the dynamics of cell rearrangement, de-
formation as well as proliferation. The idea behind these models are to describe cell
rearrangement by accounting for the balances of forces between neighbouring cells
within an epithelium. Cell rearrangement and cell shape changes i.e. deformation
occur when these forces are not in mechanical equilibrium.

In the Cellular Potts model which is then called the Glazier - Graner - Hogeweg

model (GGHM) as it was originally developed by Graner and Glazier, each cell is

represented by a number of grid points on a regular lattice. So when the cell moves,
it either loses or gain some grid points on the lattice. The model describes cell pat-

terns by the shape of their boundaries (many lattice points along boundaries). It

does not make an assumption about edge and face shapes. Curved faces and edges
could appear during simulations. The original implementation of GGHM was based
on the Monte Carlo algorithm. At each time step, the probability, p, to change the

state for all grid points are calculated using the Bolzmann function, p = −e−
∇E
T

where T is temperature and E is energy defined in such a way that it accounts
for the work done by different forces acting upon moving or deforming cells. For
each grid point, a neighbour is selected randomly and we calculate how the energy
of the system will change after changing the state of the grid point to that of its
neighbour. If change results in energy decrease, then we allow the change to occur.
Else, we calculate the probability of the change. i.e. p. The different forces taken
into account for the calculation of energy, E, are the adhesive forces between cells,

force associated with the incompressibility of cells (pressure) and forces developed

by chemotactically (against chemical gradient) moving cells. i.e.

E = Eadhesive + Epressure + Echemotaxis .
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This model is robust. Small variations in the values of model parameters do not
alter quantitatively the outcome of simulations.

As for the vertex model, before it was introduced, Weliky and Oster [1] wrote an arti-

cle about a mechanical model for cell rearrangement. In their paper, cells are treated
as 2-D polygons where mechanical forces are applied to the polygonal vertices. The
epithelial sheet is modelled by allowing adjacent cells to share common boundary

vertices (Figure 1). A single vertex may experience forces generated by more than

one cell. In addition to forces generated by cells, external vector forces can be applied
to particular common boundary vertices if necessary. This allows the model to simu-
late stretching and deformation of the cell sheet by forces extrinsic to the epithelium.

The total vector force acting on such a vertex is simply the sum of all forces from
the cells sharing this vertex plus the external forces. When vertex tensions and pres-
sures are in mechanical equilibrium, the vertex position will not change. However,
unbalanced forces can result in cell protrusion and subsequent cell rearrangement,
which occur when 2 vertices meet.

1

2 3

Figure 1: Adjacent cells sharing common junctional vertex.

For my paper, I will be describing the vertex dynamical model and it’s application to
the study of the dorsal-ventral organizer of the imaginal wing disc of the Drosophila.
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2 Original Vertex Model developed in [2] (3D-model)

In this section, I give an overview of the article by Nagai, Tanemura and Honda.

A cell aggregate, when subjected to mechanical deformation, relaxes as elastic mate-
rials on short-time scale and as viscous liquids on long time scale. In other words, a
cell deformed under the short-time influence of force will return to its original shape
but will not do so if the force is applied for a long period of time.

To investigate the cell shape, deformation and rearrangement of cells under the in-
fluence of external force in 3D multicellular aggregates, the 3D vertex model which
provides the vertex positions of cells and the shapes of cell surfaces in a cell aggregate
is developed. The model was confirmed to simulate behaviours of cells, minimizing
the cell interface areas. It also provides an additional insight into the role of cell
mechanical properties in the behaviour of viscoelastic tissues.

We consider a tissue consisting of many cells to be a 3D space tessellation, which
consists of convex polyhedra without gaps or overlaps. Since a topologically stable
random cellular structures are considered, a vertex in 3D space generally connects
to 4 neighbouring vertices by 4 edges. 3D space tessellation pattern consisting of
faces instead of edges are considered as we treat a cell aggregate as consisting of cell
membranes, not of atoms and bonds in amorphous materials.

In the 3D vertex model, we look at the interfaces between neighbouring cells and
volumes of polyhedral cells which are represented by vertices. These interfaces and
volumes have to be expressed by vertex coordinates. As such, we have that the
vertices obey the equation of motion:

η
dri
dt

= −∇iU , (1)

(i = 1, . . . , nv) .

i refers to the vertex where nv is the total number of vertices of the cell aggre-
gate.

The term on the left-hand side of equation (1) represents the viscous drag:

η : friction between the vertices. It is a positive constant based on the assumption
that the circumference around vertex i does not extremely differ from each
other. It comes from the energy dissipation associated with interface motion.

ri : a 3-dimensional position vector of vertex i. Therefore dri
dt is the velocity of the

vertex.
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The term on the right-hand side of equation (1) represents forces acting upon the
vertex:

∇i : vector differential operator

U : potential (free energy) which includes various terms related to cell surface area,

cell volume and potential energy due to external forces, expressed in terms of
vertex coordinates.

∇iU : potential/driving force, which is minus the gradient of the potential U .

Aside: Equation (1) is derived from the Navier-Stokes equation [10]:

F = ma = −µ∇V1 + ffriction + finterface + fpressure + · · ·

where µ∇V1 represent the viscosity and f is force. Although we have cells around the
fluid, it is the cells, not the fluid that are moving. Therefore µ∇V1 = 0. Furthermore
we neglect inertia. i.e. ma = 0.

We then replace each of the force by the minus of the gradient of the potential,
except for friction. We have ffriction = −ηVi.

ηVi = −∇Uinterface −∇Upressure + · · ·

⇒ η dridt = −∇iU .

U will take into account all forces. We will consider two of them, represented by Us
which accounts for the surface tension and Uv which accounts for incompressibility.
Us is given by the equation:

Us = σ
∑
f

Sf + σ0

∑
m

Sm , (2)

(f = 1, 2, . . . , nf ; m = 1, 2, . . . , nm) ,

where

Sf : surface area of polygon f facing adjacent cells

σ : interface energy per unit area

Sm : surface area of polygon m facing the external culture medium

σ0 : surface energy per unit area
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nf , nm : number of polygons facing an adjacent cell and external culture medium respectively.

Sf and σ represent the interface energy between neighbouring cells while Sm and σ0

represent the surface energy between cells and the external culture medium. Sf and

Sm can be computed by the triangulation of polygons. In cell aggregates without

external culture medium (i.e. with periodic boundary conditions), equation (2) will

not have the 2nd term, σ0
∑

m Sm.

Uv which gives the cell volume constraint is given by the equation

Uv = κ
∑
α

(Vα − Vstd)2 , (3)

(α = 1, 2, . . . , n) ,

where

κ : positive constant

n : total number of cells

Vα : volume of cell α

Vstd : volume of relaxed cells, defined as the average volume of all cells.

Equations (2) and (3) are transformed using new dimensionless quantities r′i,

∇′i(= ∂
∂r′i

), S′f , S
′
m, V

′
α and V ′std as follows:

ri = r′iR0,∇i = ∇′i/R0, Sf = S′fR
2
0, Sm = S′mR

2
0, Vα = V ′αR

3
0, Vstd = V ′stdR

3
0. (4)

After the transformation using equation (4), we get the equation of motion for

the cell aggregate (without centrifugation), to be

dr′i
dt′

= −∇′i

{∑
f

S′f + σ0

∑
m

S′m + κ′
∑
α

(V ′α − V ′std)2

}
,

(5)

where

t′ = tσ/η, σ′0 = σ0/σ, κ
′ = R4

0κ/σ .
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and omitting the primes (′), we get

dri
dt

= −∇i

{∑
f

Sf + σ0

∑
m

Sm + κ
∑
α

(Vα − 1)2

}
. (6)

If we would like to describe the experiment of flattening a cell aggregate under
centrifugal force or gravity, we will then have 2 additional terms, Uz and Ufloor. Re-
fer to Appendix A.1 for details on these 2 terms.

Further, equation (1) expresses completely dissipative vertex motion under the po-

tential U . Differentiation of the potential U with respect to time gives the inequality

dU

dt
=
∑
i

dri
dt
∇iU = −η

∑
i

(
dri
dt

)2 ≤ 0. (7)

This inequality indicates that U decreases during motion. For example, if U is the
total surface area of cell boundaries, the vertices move to reduce the total surface

area. Also, equation (7) is deterministic. The vertices follow the gradient of the

position-dependent energy, so the cells passively change their shape to satisfy equa-

tion (7).

We also define the degree of flatness of a polyhedron in the z-direction with the
following equation ∑

i

{
(xi − xG)2 + (yi − yG)2

}∑
i(zi − zG)2

, (8)

where (xG, yG, zG) is the center of mass of the polyhedron and summations are over

all polyhedron vertices. Flatness is sensitive to the shape of the polyhedron, because

for flatter polyhedra, the denominator of equation (8) becomes small. Flatness does

not diverge since polyhedra cells always have finite volumes in the simulations.

In addition to the equations of motion, the model also involves an elementary pro-
cess of reconnection of neighbouring vertices. Vertex dynamics including vertex
reconnection is important as it can reduce the interface energy of cells. Also, if no

reconnection is involve, then the evolving pattern according to equation (1) preserves

its initial topology, which is not the case of interest.
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When the length of an edge connecting two neighbouring vertices is short (say, less

than a critical δ), the neighbours reconnect and the neighbour relationships of the

vertices changes. The steps to perform the reconnection are as follows:

Step 1 : All edge lengths are calculated and an ascending list for the length of edges
shorter than the critical length δ are made.

Step 2 : (i) Edges ij are picked sequentially from the list of short edges.

(ii) If the vertex i or j connects to edges that have already reconnected,
then the edge is skipped.

(iii) Steps (i) and (ii) are then repeated for the next edge in the list.

(iv) Otherwise, the number of triangles the edge belongs to are counted.

In general, each edge belongs to 3 polygons. If none or one of the polygons are
triangles, we proceed with the reconnection. However, if 2 or more of the polygons
are triangles, we skip the edge and repeat Step 2. When all the edges in the list have
been reconnected, the step ends.

For the reconnection, we do not consider any flunctuations in cell movement coming
from thermal noise or from active cell motility through the consumption of metabolic
energy.

In a nutshell, the 3D vertex dynamics model explicitly showed that cell movement
in a 3D cell aggregate is possible. The cell movement belongs to slippage resulting
in rearrangement of neighbouring cells. Surface minimization by cells helps to drive
cell movement and influences the properties of the cell aggregate. The model also
provides vertex positions and boundary faces, and is convenient to visually present

polyhedral cell shapes. The model has a characteristic time scale η
σ which contains

2 material constants. The coefficient η (friction) and σ (interfacial tension) can be

determined independently by dynamics and static measurement, respectively. When
experiments provide these material constants, the vertex dynamics specify a time-
scale by which it can be tested.
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3 Modified Vertex Model developed in [3] (2D-model)

In this section, I give an overview of the article by Farhadifar, Röper, Aigouy, Eaton
and Jülicher.

An epithelia is made up of cells that are packed together, forming cell junctions
which come into contact with one another. It is important for the cells to regu-
late intercellular junctional networks for tissue formation and function. Junction
remodelling underlies many of the dramatic tissue reorganisation occurring during
development. This tissue rearrangement then allows the development of the spe-
cific packing geometries of the epithelia, which is a consequence of both the physical
properties of the cells and the disordering influence of proliferation.

For the 3D model in the previous section, we looked at the effect of pressure on
the rearrangement and deformation of cells. In the 2D model to be described in this
section, we will also be looking at how cellular properties and cell proliferation cause
the rearrangement of cells.

We are interested in studying the epithelial cell-packing in the larval wing disc of
the Drosophila. During the larval stage, tissue proliferates rapidly, causing a geo-
metric disorder induced by cell division in proliferating epithelia. There is molecular
machinery that reorganises epithelial contacts. The molecules alter the cell-packing
by changing force balances within the epithelium. The molecule E-Cadherin medi-
ates adhesion between adjacent cells but also organises a subcortical actin-myosin

cytoskeleton. In other words, it binds cells to other cells. (Actin-myosin are proteins

where the regulation of its contractility can alter the structure of the junctional net-

work and is thought to contribute to the morphogenic movements in epithelial cells).

Cells are represented as polygons with cell edges defined as straight lines connect-

ing vertices.(This is a good approximation for the wing disc epithelium). For a

cell-packing, getting a hexagonal packing is favoured because of its advantages. It
minimizes light scattering by plasma membranes and hexagonally packed hairs on the
surface of the Drosophila wing guide airflow during flight. Further, in the Drosophila
wing epithelium, cells convert from an irregular to hexagonal array shortly before
hair formation. However, less than half of the cells that proliferates were hexagonal.
Most cells are irregularly packed. As such, reorganization or remodelling of the ep-
ithelial contacts to form hexagonal array is important. We will discuss more on the
Drosophila wing in the next section. For this section, I will explain the details of the
2D model.

To understand remodelling, one must develop a physical description of the epithe-
lium that can account for rearrangement of the junctional network. During cell
proliferation and cell division, cells with different neighbour numbers are present in
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reproducible proportion. The redistribution of neighbours after cell division depends
on the physical properties of the cells. To illustrate packing geometries of apical junc-

tions based on the physical properties of cells (as it redistribute the neighbours), the

2D vertex model was developed which describes the forces that acts to displace the
vertices of the polygons.

In the model, cell packings correspond to stable and stationary network configu-
rations obtained by minimization of a potential function. This approach is used to
study the role of cell mechanics and cell division in determining network mechanics.

Further, we have Nc polygonal cells numbered by α = 1 . . . Nc and Nv vertices,
numbered i = 1 . . . Nv at which cell edges meet. The stable and stationary network
configuration obeys a force balance which implies that the net force Fi acting on
each vertex vanishes for all vertices. This means that the force at each vertex does
not dissipate. It is local and independent. Hence at each vertex, the force vanishes,
not transferred to another vertex. The forces considered can be represented by the

energy function E(Ri). Any stable and stationary configuration of the network then

corresponds to a local minimum of the energy function. We have the following ex-

pression for E(Ri):

E(Ri) =
∑
α

Kα

2
(Aα −A(0)

α )2 +
∑
<i.j>

Λijlij +
∑
α

Γα
2
L2
α . (9)

Here Fi = − ∂E
∂Ri

.

This vertex model is different from the ones used before because it only represents
the network of apical junctions and a quadratic perimeter energy is used.

E(Ri) is made up of 3 forces due to cell elasticity (pressure and incompressibility),

actin-myosin bundles (tension along edges) and adhesion molecule (perimeter

tension).

The 1st term of equation (9),
∑

α
Kα
2 (Aα −A(0)

α )2 describes area elasticity where

Kα : elastic coefficient

Aα : area of cell α

A
(0)
α : preferred area determined by cell height and volume.

Here, the cell volume is assumed to be constant. If the cross-sectional area of the
cell at the junctional levels is altered, there will be deformation of the cell in 3 di-
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mension. Actually, as this model is 2 dimensional, we do not consider the cell height.

We are looking at a single layer of the epithelia and the thickness (i.e. the height)

of the epithelia is ignored. However, the area elasticity term in the energy function
indirectly takes into account the cell height.

For the 2nd term of E(Ri), Λij represents the line tensions at junctions between

individual cells. It describes forces resulting from cell-cell interactions along the
junctional regions of specific cell boundaries. For example, it can be influenced by
multiple mechanisms. It can be reduced by increasing cell-cell adhesion or reducing
actin-myosin contractility. lij is the length of the junction linking vertices i

and j and the sum over < ij > is over all bonds.

As the length of the cell boundary lij between 2 vertices i and j increases, this

term in the energy function decreases if Λij is negative and increases if Λij is positive.

The last term in the energy function is
∑

α
Γα
2 L

2
α. Here, we are looking at the con-

tractility of the actin-myosin which cause the perimeter of each cell to be reduced,

thus affecting the line tension Λij of the 2nd term. It also generates the coefficient

Γα which describes the dependence of contractile tension on cell perimeter Lα. This
contractility term involves the whole cell perimeter and is motivated by the fact that
the actin-myosin ring appears to span the cell.

When the 2nd and 3rd terms tend to 0, we go towards minimization of energy (which

is what we want). The 1st term will not be affected. If all the terms are 0, then all

cells will collapse. However this is impossible since A(0) is non-zero. Therefore the

1st term of equation (9) is indeed important (we assume volume is constant).

Next, an important feature of this model is that it is in the ground state or most

relaxed network configuration (also called global energy minimum). Although it is

not realistic, it is important for reference.

In Figure 2, the ground state exists as a function of the parameters, line tension

and contractility. It is determined by Γ̄ = Γ/KA(0), the normalised contractility

and Λ̄ = Λ/K(A(0))
3/2

, the normalised line tension. We normalised Λ and Γ so

that we can compare the 2nd and 3rd terms with the 1st term respectively. If Γ̄ is

small, then Γ < KA(0) (the area elasticity). The parameters (Λ̄ and Γ̄) are varied to

disturb the stable and stationary network configurations which are affected by the

local perturbations (cell division and slow changes in cell properties).
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Figure 2: Ground-State Diagram
Diagram of the ground states of the energy function E(Ri) as a function of the normalized line
tension Λ̄ and contractility Γ̄. In the gray region, the ground state is a hexagonal network.
In the blue region, the ground states are irregular soft networks and many configurations
coexist. In the striped region to the right, where Λ̄ is large, cell areas vanish and the model
breaks down. Green dots indicate the parameter values for the different cases.

In this ground state, we can have 2 regions of network: the hexagonal (gray region

of Figure 2) and soft network (blue region of Figure 2) where many configurations

coexist. The hexagonal network corresponds to Λ̄ < 0 where the cell boundaries ex-

pand while the soft network corresponds to Λ̄ > 0 where the cell boundaries shrink.

For the hexagonal network, we have regular packing of cells. It is also called the
single ground state. The constraint for this network is that all the edges of the
polygons are the same. As such, the cells are unable to move. Both bulk and shear

modulus are present and the cells are able to resist uniform compression (bulk mod-

ulus measures this). The cells also resist the shear force, allowing them to go back

to their positions. These compression/expansion and shearing requires work to be

done. This network is elastic and is analogous to the solid state.

On the other hand, the soft network has irregular packing of cells. In this net-
work, the area and perimeter of the cells are the same. It allows cells to move past
one another easily and can be sheared. Some cells will try to have a longer side than
the others. As many packing geometries have the same minimal energy, this ground
state is degenerate. As a result, the configuration can be sheared without any work
required and has a vanishing shear modulus. For the packing geometries, the area of

the cells are equal to the preferred area and their perimeter is given by L0 = −Λ/2Γ.

This region is analogous to the viscous or liquid state and can be easily remodeled.
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Steps to obtain the dimensionless/normalised form to equation (9)

E(Ri) =
∑
α

Kα

2
(Aα −A(0)

α )2 +
∑
<i.j>

Λijlij +
∑
α

Γα
2
L2
α

=
∑
α

Kα(A
(0)
α )2

2
(
Aα

A
(0)
α

− 1)2 +
∑
<i.j>

Λij(A
(0)
α )2

(A
(0)
α )

3
2

lij√
A

(0)
α

+
∑
α

Γα(A
(0)
α )2

2(A
(0)
α )

L2
α

A
(0)
α

.

(10)

Dividing throughout by Kα(A
(0)
α )2, we obtain the dimensionless equation

E(Ri)

Kα(A
(0)
α )2

=
∑
α

1

2
(
Aα

A
(0)
α

− 1)2 +
∑
<i.j>

Λij

Kα(A
(0)
α )

3
2

lij√
A

(0)
α

+
∑
α

Γα

Kα(A
(0)
α )

L2
α

2A
(0)
α

.

(11)

We then define

Λ̄ij =
Λij

Kα(A
(0)
α )

3
2

, Γ̄α =
Γα

KαA
(0)
α

. (12)

When cell proliferates, they divide, bringing about rearrangement of cells. A stan-
dard algorithm is used in dividing a randomly selected cell. The steps involve in the

algorithm are as follows: (refer to Figure 3 for pictorial description)

(1) Double the preferred area of cell.

(2) Divide the cells by introducing vertices generated by a new edge that is formed

at a random angle and passes through the cell center, defined as the average of
the vertex positions of the original cell.

(3) The 2 daughter cells are then assigned the parameter of the other cells, including

the preferred area A(0).

(4) Resulting configuration is then again relaxed to the nearest stable state. During

relaxation, edges might shrink or vanish if this leads to a further lowering of the
energy. This can be followed by T1 or T2 transition.
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Figure 3: Cell Division in Vertex Model

For T1 process, the bond length between two 3-way vertices first shrinks to zero and
subsequently expands in the opposite direction. This causes local changes in neigh-

bour numbers of surrounding cells (cells which initially have no common boundary

now do have it). Topology of the network is changed. For a T2 process, if the area

of a triangle drops to zero, then it is replaced by a vertex. i.e. the cell is eliminated
from the epithelium.

Figure 4: T1 and T2 process

After cells divide and relaxed, the network obtained may or may not be hexago-
nal. As mentioned earlier, hexagonal network has its advantages. To have a higher
chance of obtaining such a network, we need to control the strength of fluctuations in

adhesion and contractility of individual cell boundaries. For equation (9), we assume

l
(0)
ij and L

2 (0)
α are zero. If they are non-zero, equation (9) will be

E(Ri) =
∑
α

Kα

2
(Aα −A(0)

α )2 +
∑
<i.j>

Λij(lij − l(0)
ij ) +

∑
α

Γα
2

(L2
α − L2 (0)

α ),

giving us more options to obtain a hexagonal network when we vary the parameters

Γ̄ and Λ̄.
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Proliferation is then simulated numerically to generate different network morpholo-

gies/structures that depend on physical parameters. These network differ in:

(1) polygon class distribution,

(2) cell area variation,

(3) rate of T1 and T2 transition during network growth.

Figure 5: A: Energy per cell normalized by the reference elastic energy K(A(0))2 as
a function of cell number Nc in simulations of network growth for the 3 cases, I, II, III,
indicated in Figure 2. The generation number and energy of the corresponding hexagonal
network are indicated. B: (i), (ii), (iii) are examples of stationary network patterns generated
by repeated cell division for Cases I, II, III. Colour codes are used for the different polygon
class.

Refering to Figure 5, for Case I indicated in the gray region of Figure 2, the energy

per cell ( E
NCK(A(0))2

) increases with increasing cell number (NC) and then fluctuates

around a constant value greater than the ground state value of the hexagonal lat-

tice. For this case, Γ̄ = 0.04 and Λ̄ = 0.12. Case II (Γ̄ = 0.1 and Λ̄ = 0.0) is similar

to Case I but the stationary network contains a smaller fraction of hexagonal cells

compared to Case I. For Case III (Γ̄ = 0.1 and Λ̄ = −0.85), energy does not increase

when the cells divide. Cells does not depend on neighbour number. In Case III of
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Figure 5A, the small energy difference between ground state and simulation is due
to numerical errors.

In a nutshell, to investigate the contributions of cell mechanics, adhesion and cor-
tical contractility to the development of specific packing geometries, the 2D vertex
model was developed for the junctional network. Configurations of the junctional
network observed in tissues corresponds to network configurations for which forces
are balanced. The model takes into account area elasticity of cells, line tension, con-
tractility as well as perimeter of the cell. The important feature of this network is
that it has 2 different types of relaxed network configurations which corresponds to
global minima of energy function; the regular hexagonal network and irregular soft
network. Further, varying the parameter values in the simulations shows that cell
proliferation and physical properties of cells cause the rearrangement and packing
disorder of the cells.
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4 Further extension of the 2D Vertex Model developed
in [4]

In this section, I give an overview of the article by Xandri, Sagués, Casademunt and
Buceta.

4.1 The Biology: Drosophila Wing Epithelium

In the wing imaginal disc, a selector gene called apterous supply cells with a dorsal

(front) character. This gene grant some properties that determine cellular interac-

tions that in turn restrict their locations. e.g. affinity and adhesion. Thus cells
under control of selector genes cannot intermingle freely and their positions become
restricted to regions within the primordium: the so called compartments. The
concept of compartment implies the existence of non-trivial boundaries that control
cell migration.

Cellular population becomes specified by the boundary defining the so called or-
ganizer. An organizer acts in practice as the coordinate axis of a reference system.

The organizer grows in one dimension since its thickness (width) remains constant,

as opposed to the whole disc that grows isotropically in 2 dimensions. Many aspects

of the Dorsal-Ventral (DV) organizer of the wing imaginal disc still remain puzzling.

In particular, how this pattern can be progressively and robustly scaled as cell pro-

liferation advances remains a riddle. Due to this, an in silico framework (performed

on computer via computer simulation) that sheds light into the dynamics that shape

the DV organizer for being an effective source of positional information and a cellular
lineage controller is used. This approach introduces a realistic and novel description
of the cellular dynamics of the DV organizer and neighbouring compartments, lead-
ing to a series of quantitative predictions that can be experimentally tested.

In the wing imaginal disc, the DV organizer (Figure 6) is located at both sides of the

boundary. This has important implications with respect to the organizers character-
istics and their role. The boundary is formed at the interface of two compartments.
The DV boundary develops embedded within the DV organizer population and the
entity that keeps cells segregated from opposite compartments is the organizer itself
rather than the boundary. In other words, the dorsal and ventral cell populations
are kept segregated by a cellular structure, namely the DV organizer. Using a fluid
simile, we can say that in a 2 fluids mixture, it would be comparable to a fluid film
that intercalates between them.

Further it has been suggested that the symmetrical image of the DV organizer is
necessary from a morphological point of view since the dorsal and ventral compart-
ments lead, upon development, to the specular dorsal and ventral surfaces of the
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Figure 6: The DV Organizer of the wing imaginal disc.
The DV organizer develops symmetrically with respect to the D and V compartments and
acting as a fence prevents cells at the compartments bulk from mixing. The width of the
DV organizer population is typically restricted to two cells. The DV boundary (blue dashed
line) develops at the middle of the DV organizer and confer distinct mechanical properties
to cells.

wing blade in the adult organism. On the other hand, the DV organizer and neigh-
bouring cells give rise to the wing margin.

In the DV case, the gene expression signature of the organizer (Notch activity)

is necessary and sufficient for establishing a lineage barrier regardless of the identity

of the cell populations. As a consequence, ectopic/displaced activation of the Notch

at either dorsal or ventral compartment recreates a functional organizer and, con-
versely, if Notch signal is blocked, then compartment cells can freely mix. Therefore
Notch receptor and its signalling pathway are indispensable elements for the estab-
lishment and maintenance of the DV organizer.

Mechanical effects play a central role in the function of the DV organizer. Both
actin and myosin accumulate at the junctions of the DV border and their roles are
as discussed previously. Further actomyosin based barriers are effective inhibitors of
cell mixing in other developmental stages of the Drosophila. This in turns help to
keep the straightness and fence-like features of the DV organizer. Other studies also
indicate that the consideration of dynamical and morphological factors related with
the cell cycle is also required for understanding the stability and robustness of the
DV organizer.

4.2 Description of Model

In this section, we are studying the dynamics and stability of the DV organizer
of the wing imaginal disc of Drosophila as cell proliferation advances by looking at
distinctive mechanical properties of cells, differences in cell cycle duration and a well
defined cleavage criterion.
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The two questions we can ask are: Since cells do not mix, how does the DV organizer
robustly deal with the cellular growth in order to prevent cell mixing? Further, how
can the organizer be conveniently scaled as the tissue grows since the increase in cell
number of the wing imaginal disc is approximately 1000-fold? The vertex model will
help us to answer these questions. The model will provide the sufficient ingredients
that supply the DV organizer with its features of functionality and robustness during
the course of development as cell proliferation advances.

For the cleavage criterion, the angle of division is measured using as a reference
an axis perpendicular to the DV boundary such that a null angle corresponds to
cells that cleave orthogonally to the DV boundary. The cleavage direction is set per-
pendicular to the longest axis of symmetry. This is the Hertwig rule. Cells of the
DV organizer follows a division pattern that is different from cells at the bulk of the
compartments, favouring the division plane to be perpendicular to the DV boundary.

As mentioned in Section 3, in this model, the dynamics of each cell vertex depends
on the applied forces that derive from mechanical considerations. e.g. cytoskeleton

activity. The energy function considered is similar to equation (9). However, there

is one additional term. We have instead

E(Ri) =
∑
α

Kα

2
(Aα −A(0)

α (t))2 +
∑
<i.j>

Λijlij +
∑
α

Γα
2
L2
α +

∑
<i.j>

λij
2
l2ij . (13)

Dimensionless equation is again used, as shown in equation (10) to (12). For the

additional term, we define the dimensionless form of λij to be λ̄ij =
λij

KαA
(0)
α

.

The explanations for the 1st to 3rd term are the same as before. For the 1st term
however, in addition to the explanation, Kα, which is the elastic energy of cell, is
proportional to the Young Modulus due to the difference between the actual cell area
Aα and the one that would have due to cytoskeleton structure in the absence of the

stresses associated to adhesion and cortical tension, A
(0)
α (t). The time dependence

of A
(0)
α (t) contains the information on the cell cycle and is what drives continuously

the system out of equilibrium.

The last 2 terms model further contributions from the mechanical tension associ-
ated to the contraction of the actin-myosin cortical ring. The 3rd term is as before.

For the 4th term,
∑

<i.j>
λij
2 l

2
ij , it is proportional to the squared edge length and

in this respect will imitate the mechanical role played by the actin cable at the DV
boundary. As for the T1 and T2 processes mentioned in the previous section, they

are implemented in the in silico experiments when lij < 10−1l∗ , where l∗ =

√
2A

(0)
α

3
√

3
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is a characteristic edge size defined as the length of a regular hexagonal cell with

area A
(0)
α . Further, the external boundary of tissue is set to be free to move with

the same dynamics but with a larger positive line tension, Λij , to keep the tissue

sufficiently compact, close to a circular shape.

For this paper, I will not be discussing the details of the simulations codes and
experiments carried out. I will, instead, state the results in order to answer the
questions stated above. The model looks into the wild-type background and the
mutant analysis of cells. It reproduces the dynamics and structure of a stable DV
organizer that agrees with the available experimental data such as cell division pat-
terns.

4.3 Results

4.3.1 Wild-type Background: Sufficient ingredients for keeping the struc-
ture and stability of the growing DV organizer

The initial conditions used in the model assumes a set of 400 regular hexagonal

cells with a 2-cells-wide stripe (the fence) specified as the DV organizer. The vertex

model includes ingredients that are sufficient to capture a repertoire of experimental
observations involving both compartments cells and the DV organizer cells in terms
of its structure, stability and dynamics.

Figure 7: Snapshots of developing in-silico wild-type Wing Disc.
As time evolves the DV organizer (red cells) grows straight maintaining a two-cells width
and restrict cells from the compartments bulk (white cells) from mixing.
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We see that as time evolves, the DV organizer grows straight, keeping a 2-cell wide

population and separating cells of opposite compartment (Figure 7). Further, since

the DV organizer is able to cope with the stochastic variability of the cleavage orien-
tation, this reveals its robustness to the scaling process as cell proliferation advances.

4.3.2 Mutant Analysis: Necessary ingredients for keeping the structure
and stability of the growing DV organizer

To check to what extent each of the components of the model is indeed required
to account for the observed phenomenology mentioned under wild-type background,
mutant analysis was carried out. Snapshot of the growth after 7000 dimensionless

time units (∼ 40 hours) was used.

To test the fence-like functionality of the DV organizer, the organizer cells are re-
moved completely and the result shows that cells at opposite compartments intermix,

generating finger-like pattern (Figure 8A). For the 1st mutant test, the line tension

Λij between all cells, both bulk and organizer cells are identical. However the differ-

ential values for both the line tension and contractility terms that account for the
actomyosin cable at the DV boundary is retained. The result then shows that DV

organizer is largely disrupted and its fence-like properties disappear (Figure 8B).

Figure 8: Mutant Analysis. A: In the absence of a DV organizer, cells of opposite
compartments intermix. B: The differential cell adhesion is removed in this simulation and
as a result the organizer cannot maintain its stability.

However, if we now have the opposite situation, i.e. maintain the affinities between
the organizer and bulk cells but eliminate actomyosin cable by suppressing its dis-
tinctive tensile term, the DV organizer is not wiped out as severely as in the previous
situation. However, the integrity of the organizer is noticeably weakened as it lacks
robustness. The DV boundary becomes less straight and threatens to be ruptured at
several points under prolonged proliferation. This shows that when actomyosin cable

is removed, the effectiveness of the compartment segregation is reduced (Figure 9C).
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Next, we know that orientation of cell divisions determines the shape of developing
tissues and organs. So further result shows that if the Hertwig rule is not imple-
mented with respect to the cleavage direction, the DV organizer cannot maintain its
stability and becomes easily disrupted. This implies the importance of the role of the

Hertwig rule in determining the shape of developing tissues and organs (Figure 9D).

Figure 9: Mutant Analysis. C: If the actomyosin cable is removed the width of the
organizer is reduced at many locations to one cell and is not robust to perturbations. D:
A criterion for cell cleavage is required for maintaining the stability of the boundary. In
the absence of the Hertwig rule (i.e. cells divide at random orientations), the DV organizer
easily breaks, causing cells between compartments to intermingle.

Further, the role played by the distinctive cell cycle durations between organizer and
bulk cells is also analysed. A distinctive regulation of the duration of the cell cycle is
needed at the DV organizer for maintaining its features and stability. We also need
that the cellular mechanical properties and the cleavage direction are coupled by the
Hertwig rule.

In addition, the in silico mutant analysis allows the exploration of the role played
by the differential affinity of cells at the compartments and the organizer of the
actomyosin cable that develops at the DV boundary. Differences in duration are

removed and all cells are considered to have the same (mean) lifetime regardless of

their lineage. The result shows that the DV boundary becomes very wiggly and the

DV organizer becomes wider. (this widening also prevent cells from maintaining its

Notch activity) (Figure 10E).

So by using the vertex model, we have shown that distinctive mechanical properties

of cells, the differences in cell cycle duration and a cleavage criterion (Hertwig rule)

are required for understanding the dynamics, structure and stability of a robust
growing DV organizer. Interplay between mechanical effects and the cell growth
leads to the functionality and robustness of the growing DV organizer. Further, to
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Figure 10: Mutant Analysis. E: The duration of the cell cycle is set to be the same
in the whole disc. This produces a wiggly boundary and a wide organizer.

sum up, the main differences between the vertex model mentioned in Section 3 as
compared to the one described in this section are:

(1) An extra energetic term to account for the asymmetry of actin-myosin expression

at different cell edges is included.

(2) The model includes a realistic, stochastic, dynamics of the cell cycle duration,

its relation to cell area growth and the implementation of the Hertwig rule with
cell-to-cell variability.

(3) Modelling allows for simultaneous cellular growth and a continuous time descrip-

tion that permits to conduct, among others, in silico experiments that provide
relevant biochemical information.

(4) Free boundary conditions that do not need to impose a rate for tissue growth is

used.
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5 Conclusion

The vertex model has been frequently used in conjunction with experimental obser-
vations to provide insight into the underlying factors that may drive cell rearrange-
ments. It is used to study the cellular interaction mechanism of rearrangement of
cells in developing tissues and was recently used for the analysis of the dorso-ventral
segmentation of the growing Drosophila wing.

The model can be modified to include interference by noise. In Figure 2, we have
global minimum of energy for the regular network and a local minimum of energy for
the soft irregular network. In the presence of noise, we can turn the soft network into
a global minimum network. The model can also be applied to other processes such
as the study of the dorsal closure mechanism and convergent extension mechanism
due to cellular intercalation.

Convergent extension is the process by which the tissue of an embryo is restructured

to converge (narrow) along one axis and extend (elongate) along a perpendicular

axis by cellular movement. This process plays a crucial role in shaping the body

plan during embryogenesis [7]. As for dorsal closure, it takes place midway through

Drosophila embryogenesis and is a complex morphogenic process. It is driven by
sequential signaling cascades and involves multiple forces which contribute to cell
movements and rearrangements as well as to changes in cell shape. During clo-
sure, lateral epidermal cells elongate along the dorsoventral axis and subsequently
spread dorsally to cover the embryonic dorsal surface. This process represents a well-
characterized model for cell sheet morphogenesis during development and wound

healing in systems that include vertebrates [6] [8] [9].

The vertex model has its advantages as well as disadvantages as compared with
the Cellular Potts model mentioned in the introduction. One of its many advan-
tages is that it uses a computational approach that takes into account the available
experimental data for setting a meaningful value of the parameters. This is not the
case for the Cellular Potts model.

However, if we would like a model to study the motion of cells by chemotaxis,
then Cellular Potts model is favourable. In fact, vertex model was never used. We
will need a mesh for putting the chemicals if we would like to use the model for
chemotaxis which is a disadvantage. Despite its disadvantages, the vertex model has
proven to be successful in many studies to analyse the behaviour of cells. As such, I
will continue to work with this model in my summer dissertation and my focus will
be on cellular intercalation.

24



References

[1] Weliky M, Oster G (1990) The mechanical basis of cell rearrangement. I. Ep-

ithelial morphogenesis during Fundulus ebipoly. Development 109: 373 – 386.

[2] Honda H, Tanemura M, Nagai T (2004) A three-dimensional vertex dynamics

cell model of space-filling polyhedra simulating cell behaviour in a cell aggregate.
J Theor Biol 226: 439 – 453.
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A Appendix

A.1 Flattening a cell aggregate under centrifugal force

Exposing the cell aggregate to centrifugal force using equations Us, Uv, Uz and Ufloor

will flatten the cell aggregate. The force will cause the cells to rotate and spin,
making it flat. At first, the cells do not rearrange but subsequent application of
centrifugal force rearranges the cells although the shape of the whole cell aggregate
does not change.

Once the force is removed (Figure 11), the cells will decrease their flatness, elon-

gate and gradually recover their original shape. Individual cells elongate vertically
without rearrangement and their shape depend, not only on the shape of the cell ag-
gregate, but also on the relaxation time. A cell aggregate relaxes as elastic material
on short-time scale and as viscous liquids on long-time scale. This is because, the
cell aggregate will go back to its original shape under the short time influence of the
centrifugal force but not so in the long period of time.

The equation for Uz is

Uz = ρ
∑
α

Vαzα , (14)

where Uz is the potential energy induced by centrifugation.

The explanation for the term on the right-hand side of equation (14) is as fol-

lows:

Body massm in a centrifugation tube will experience a centrifugal force F = mω2(R− z),
where ω is the angular velocity, R is the centrifugation radius at the bottom floor of
the tube and z is the distance of the body from the bottom floor.

When R ≫ z, F≈ mω2R = mgc.

(gc = ω2R is the centrifugal acceleration)

∴ centrifugation gives the body a potential energy, mgcz.

Hence, for a cell α with mass mα, the potential energy is mαgczα where zα is the
z-coordinate of the center of mass of the cell. If the mass density of the cells under
the centrifugal force is uniform, than the potential energy for cell α can be written

as ρVαzα. This gives us the potential energy for all cells to be that of equation (14).

i.e.

Uz = ρ
∑
α

Vαzα .
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Ufloor represent the hindrance of downward motion of cells along the z-axis by the
floor below the cell aggregate. In other words, Ufloor is the constraint from the floor.

Cell α moves without restriction when it is above the floor (i.e. z < 0), while it

produces a large potential energy when it crosses below the floor (i.e. z > 0). Since

we are working towards minimization of energy, it is important to have this con-
straint. However, instead of considering Ufloor, we can replace this term by imposing
a boundary condition instead. Nevertheless, Ufloor is given by the equation

Ufloor = wfloor

∑
α

1

1 + eazα
, (15)

where wfloor is the strength of the potential and a is the slope of the approximated

step function (an analytic function is used instead of a step function as we are finding

derivative thus we would like to look at a continuous function).

Figure 11: Sections through a cell aggregate during application and removal of
centrifugal force. The cell aggregate assumes its original shape after removal of
the force.

In analysing the importance of these potential energies, Us, Uv, Uz and Ufloor, Ufloor

can be replaced by a boundary condition. Uv is the volume constraint. Although the

cells becomes flat under the influence of force, the volume remains fixed (unchanged).

Therefore Uv doesn’t really play an important role in this model. However, Us and
Uz are two important potential energies which are dependent on each other since Uz
represent the pressure of the centrifugal force which effects Us, the interface energy.
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Equations (2), (3), (14) and (15) are transformed using new dimensionless quan-

tities r′i,∇′i(= ∂
∂r′i

), S′f , S
′
m, V

′
α, V

′
std and z′α as follows:

ri = r′iR0,∆i = ∆′i/R0, Sf = S′fR
2
0, Sm = S′mR

2
0, Vα = V ′αR

3
0, Vstd = V ′stdR

3
0, zα = z′αR0.

(16)

After the transformation using equation (16), we get the equation of motion for

the cell aggregate, with centrifugation, to be

dr′i
dt′

= −∇′i

{∑
f

S′f + σ0

∑
m

S′m + κ′
∑
α

(V ′α − V ′std)2

+ρ′
∑
α

V ′αz
′
α + w′floor

∑
α

1

1 + ea′z′α

}
,

where

t′ = tσ/η, σ′0 = σ0/σ, κ
′ = R4

0κ/σ, ρ
′ = R2

0ρ/σ,w
′
floor = R−2

0 wfloor/σ, a
′ = aR0

and omitting the primes (′), we get

dri
dt

= −∇i

{∑
f

Sf + σ0

∑
m

Sm + κ
∑
α

(Vα − 1)2 (17)

+ρ
∑
α

Vαzα + wfloor

∑
α

1

1 + eazα

}
.
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