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Introduction

This project is dedicated towards the mathematical modelling of dynamics of biochem-

ical reactions, with an emphasis on the Sonic Hedgehog signalling system. Within all

living organisms, biochemical reactions occur which affect and determine the outcome

of many biological processes. The aim of the project is to further understand how

we are able to model such biochemical reactions mathematically by considering two

simplified models of Michaelis-Menten kinetics. The reasoning behind mathematically

modelling such reactions is to develop an understanding of how they function, what

their purpose is and even possibly determine why a reaction may fail to operate in the

way it should. We will then see where we are able to simplify the more complicated

reactions in order to fit the Michaelis-Menten model and then focus on how we are able

to analyse the systems in depth.

We will also look into feedback loops within biological systems, an important fea-

ture to regulate reactant and product concentrations. Examples of such we will look

into are yeast glycolysis, mutual inhibition and mutual activation which will develop

our understanding of the techniques used to analyse said feedback loops. By under-

standing the mechanics behind a feedback loop, we will be able to determine under

what conditions a feedback loop may not work effectively, or correctly.

Using the knowledge gained from the previous examples, we will apply the tech-

niques to the Sonic Hedgehog signalling pathway; an integral signalling system which

will aid our understanding of how the spinal cord and brain are formed. By analysing

this system, we will aim to understand mathematically how mutations and disease are

caused within the system. We will also research whether the system will be stable

under specific conditions by using the developed techniques from previous chapters.

Lastly, we will look into how the system reacts to the presence of Fibroblast Growth

Factors (FGF) and look into whether these systems will change with an increase in

FGF concentration.
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Chapter 1

Michaelis-Menten Kinetics

1.1 Michaelis-Menten Equation

As every second passes by, biochemical reactions continually occur in all living organ-

isms, in every single living cell. These reactions involve proteins called enzymes, which

are biological catalysts. During such enzymatic reactions, these catalysts react selec-

tively with a substrate, which is then modified into an end product. An example of

such is the enzyme lactase, catalysing the substrate lactose that is digested to produce

glucose and galactose. Without an understanding of enzymatic reactions, we could not

conclude that lactose intolerance is due to a lactase deficiency. A basic enzymatic re-

action, proposed by biochemist Leonor Michaelis and physician Maud Menten (1913),

involves a substrate, S reacting with an enzyme, E to form a substrate-enzyme com-

plex, SE, which is then converted into a product, P and the enzyme, E. This can be

represented by:

S + E
k1


k−1

SE
k2⇀ P + E (1.1)

where rate constants k1, k−1 and k2 (the constants of proportionality), dictate the

rates at which these reactions occur. That is, S and E combine at a constant rate k1

to form SE. However, as this reaction is reversible (indicated by the double arrows),

the complex SE can break down into the former constituents. In addition, the complex

SE can produce P and E, at a constant rate of k2 which is not reversible (indicated by

the single arrow). Ths reaction is in fact reversible, however, products very rarely go

back to form reactants as the forward reaction is usually thermodynamically stable. To

paint a picture in our mind, imagine a cell with membrane receptors (enzymes), which

is surrounded by nutrient molecules (substrates) as shown in Figure 1.1. The idea is

that we want to transfer nutrients from outside the cell, through the cell membrane via

the receptors, and then into the cell. Due to the limited amount of receptors and limited

rate at which they can catalyse the reaction, saturation occurs. This is the maximal

rate at which the reaction can take place. From (1.1), one molecule of S combines with
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one molecule of E to produce one of SE. This then produces one molecule of P and one

molecule of E. We also need a way of defining the reactions in terms of concentrations

and this can be done with The Law of Mass Action.

Figure 1.1: The saturation mechanism for substrate uptake into cells can be described
by Michaelis-Menten Kinetics.

Definition 1.1.1. The Law of Mass Action: The rate of a reaction is proportional to

the product of the concentrations of the reactants.

Let lowercase letters denote the concentrations of the reactants in (1.1)

s = [S], e = [E], c = [SE], p = [P ] (1.2)

where [...] brackets denotes concentration. We must have initial conditions, which are

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0 (1.3)

This is due to the initial amount of enzymes and substrates at t = 0, hence there are

no enzyme complexes formed, nor any product. In order to mathematically model this

reaction, we can now apply The Law of Mass Action to (1.1) to obtain a system of non-

linear reaction equations. Using (1.2), we can write these equations in the following way:
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ds

dt
= −k1se+ k−1c (1.4a)

de

dt
= −k1se+ (k−1 + k2)c (1.4b)

dc

dt
= k1se− (k−1 + k2)c (1.4c)

dp

dt
= k2c (1.4d)

Let us analyse these equations. Combining(1.4b)(1.4c), we obtain the following equa-

tion:

de

dt
+
dc

dt
= 0 (1.5)

This is a very common feature of many enzymatic reactions. It tells us that e+ c is a

constant, which by relating to a biological viewpoint, the total amount of substrate-free

enzymes and enzyme-substrate complexes is constant. This is due to the fact that no

enzyme is destroyed during the process. If we consider the amount of initial enzymes,

e0, then due to our equation, over time this total amount will still remain as e0. Hence,

we can consider this as

e+ c = e0 (1.6)

Using (1.6) we may now simplify further the system of equations by eliminating e or c.

Arbitrarily we choose to eliminate e. As (1.4a), (1.4b) and (1.4c) are not dependent on

concentration p, we can exclude (1.4d) for now, which can later be solved once solutions

for other variables are known. Let e = e0–c and substitute into (1.4a), (1.4b) and (1.4c)

ds

dt
= −k1(e0 − c)s+ k−1c = −k1se0 + (k1s+ k−1)c (1.7a)

de

dt
= −k1(e0 − c)s+ (k−1 + k2)c = −k1se0 + (k1s+ k−1 + k2)c

=
d(e0 − c)

dt
= −dc

dt
(1.7b)

dc

dt
= k1(e0 − c)s− (k−1 + k2)c = k1se0 − (k1s+ k−1 + k2)c (1.7c)
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with initial conditions

s(0) = s0, c(0) = 0 (1.7d)

1.2 Quasi Steady State Assumption

In this section, we fixate on an assumption that will direct us to the Michaelis-Menten

rate law, and conclude the restrictions to which the assumption is not applicable. In

most cases, substrates are found to be in a much higher concentration than the con-

centration of enzymes. Thus, we are able to argue that the enzymes are working at

maximal capacity, so there is almost always a substrate occupying an enzyme. This

assumption implies the following equation:

dc

dt
≈ 0⇒ k1e0s− (k1s+ k−1 + k2)c = 0 (1.8a)

This is called the quasi steady state assumption, from which we can have an equation

for c in terms of s,

c =
k1e0s

k1s+ k−1 + k2
=

e0s

s+Km
(1.8b)

where Km =
k−1 + k2

k1

By substitution into (1.7a) we obtain the following:

ds

dt
= −k1e0s+

(
k1s+ k−1

)
e0s

s+Km

=

(
− k1

(
s+

k−1 + k2
k1

)
+ k1s+ k−1

)
e0s

s+Km

=

(
− k1

(
k−1 + k2

k1

)
+ k−1

)
e0s

s+Km

=

(
− k−1 − k2 + k−1

)
e0s

s+Km

=
−k2e0s
s+Km

= − Vmaxs

s+Km
(1.8c)

where Km is called the Michaelis constant and Vmax = k2e0. When using (1.8a), we
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can assume that the change in product is equal to the change substrate concentration.

That is:

dp

dt
= −ds

dt
⇒ dp

dt
=

Vmaxs

s+Km
(1.8d)

Using the result (1.8c), it is possible to illustrate what is happening in the reaction over

time. The graph of rate of product formation versus substrate concentration shows how

the michaelis-menten equation evolves. Let us say that we had a limited number of

enzymes and so for a smaller substrate concentration, the rate of product formation is

shown to be linear, increasing with a constant rate when s increases. This rate however

gradually slows down, as the substrate concentration becomes closer to that of the

enzyme concentration. When s becomes greater than e however, the rate of product

formation cannot increase anymore, hence we obtain Vmax, shown on Figure 1.2 below.

The approximate dynamics of the reaction is shown in (1.8c), known as the quasi steady

state assumption.

Figure 1.2: Graph of the rate of product formation, dp
dt versus substrate concentration,

s. The curve levels off towards a maximal rate Vmax as s increases. At a substrate
concentration level, K, the rate of production is exactly half of the maximal rate,
1
2Vmax.

This means that whenever we have type of reaction occuring, with an enzyme

catalysing the reaction of substrate into a prooduct, we are able to assume that the

ODEs that represent a specific system, may now be represented in a way similar to

(1.8c), which is a very important, time efficient tool to have.
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We may take the assumption that the enzyme has a concentration much lower than

the substrate concentration, so the substrate concentration does not change during the

initial transient stage of the reaction. Using the initial condition that s(0) = s0, we

may use (1.8c) by solving the differential equation implicitly.

s+Km

s
ds = k2e0dt

⇒
∫

(1 +
Km

s
)ds = −

∫
k2e0dt

⇒ s+Km ln s = −k2e0t+A

Where A is a constant. Using the initial condition, s(0) = s0,

⇒ s+Km ln s = −k2e0t+ s0 +Km ln s0 (1.8e)

We may now substitute this solution into (1.8b) to obtain an expression for the complex

c(t). However, due to the initial condition on c(0) = 0, the condition would not be

satisfied. To get past this problem, it is required to split the timescale in two: the

initial time scale near t = 0, while the second is the longer timescale, where there

is a significant change to the substrate concentration during which it’s possible to

approximate the enzyme-substrate complex concentration by (1.8b) using s(t) from

(1.8e).

1.3 Nondimensionalisation

To proceed further, it is preferred to reduce the equations (1.7a) and (1.7c) together

with (1.7d) into dimensionless form. The reason to do this is because it reduces the

number of times we might have to solve the equation numerically. In addition to

this, it gives an insight into what might be small parameters that could be ignored or

approximated. Generally, it is done so that it is easier to analyse. Firstly, we introduce

dimensionless quantities;

τ = k1e0t, u(τ) =
s(t)

s0
, v(τ) =

c(t)

e0

λ =
k2
k1s0

,K =
k−1 + k2
k1s0

=
Km

s0
, ε =

e0
s0

(1.9)

where we claim ε << 1 due to the assumption that initial substrate concentration is

much greater than initial enzyme concentration. Note the time scale chosen. There

are actually two different time scales in which the reaction occurs. The first timescale
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chosen is the ‘long timescale’, occurring over the duration of the reaction after all en-

zyme active sites are initially filled with substrates. The second timescale is the ‘short

timescale’ where it covers the reaction occurring over the initial period when the sub-

strate reacts with the enzymes near t = 0. To identify which timescale is long or slow,

notice that ε << 1, which implies that s0 >> e0. Hence, for our two time scales τ

and τ̃, we see that τ >> τ̃ and so we can claim that τ is for the longer timescale.

Continuing with the ‘long timescale’, and by substitution into (1.7a)(1.7c) we obtain

the dimensionless system of equations for the quasi steady state approximation. From

τ = k1e0t we see that;

d

dt
=
dτ

dt

d

dτ
= k1e0

d

dτ
(1.10)

which we may substitute into (1.7a) and (1.7c). From (1.9), we can replace s(t) and

c(t) in (1.7a)(1.7c) with dimensionless quantities, and so becomes:

k1e0s0
du

dτ
= −k1e0s0u+ (k1s0u+ k−1)e0v

⇒ du

dτ
= −u+ (u+

k−1

k1s0
)v

⇒ du

dτ
= −u+ (u+K − λ)v (1.11a)

k1e
2
0

dv

dτ
= k1e0s0u− (k1s0u+ k−1 + k2)e0v

⇒ e0
s0

dv

dτ
= u− (u+

k−1 + k2
k1s0

)v

⇒ ε
dv

dτ
= u− (u+K)v (1.11b)

From our quasi state state assumption (1.8a), and comparing this to (1.11b), it is

equivalent to assume the LHS of equation (1.11b) is also small (approximately zero),

that is, ε << 1. Hence by this assumption, the given equations are:

du

dτ
= −u+ (u+K − λ)v (1.12a)

0 = u− (u+K)v (1.12b)
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This implies, by substitution and rearranging that;

v =
u

u+K
(1.13a)

⇒ du

dτ
=− u+ (u+K − λ)

u

u+K

=− u+ u− λu

u+K

⇒ du

dτ
=− λu

u+K
(1.13b)

From the original equation (1.1), the final steady states of u and v are both equal to

zero, due to the fact that over time, all substrates will convert to products, so there

are no substrates or substrate complexes left. By analysis of equation (1.13a), if u > 0

then du
dτ < 0 decreases over time. We can integrate (1.13b) to find an equation for the

relaxation time (long timescale), which is at the time u = 1
e

∫
u+K

u
du = −

∫
λdτ

⇒ u+K ln(u) = −λτ + C

using initial condition, u(0) = 1⇒ C = 1

⇒ u+K ln(u) = −λτ + 1

subtitute u = 1
e :

⇒ 1

e
−K = −λτRT + 1

⇒ τRT = (1− 1

e
+K)

1

λ
(1.14)

From this result, we can see that the relaxation time is inversely proportional to λ.

That is, from (1.9) as k2 increases (the rate of product formation), the long timescale

for the reaction decreases. Also, from (1.13a) we see that v will decrease as u decreases.

To conclude, for the timescale τ, substrate and substrate-enzyme complex concentra-

tions decrease over time. It is possible to increase the accuracy using a technique called

singular perturbation method [2].

For the second (short) timescale, by repeating the process done for the long timescale,

we choose the same dimensionless quantities as in (1.9), except instead of τ, we now
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have the equation:

τ̃ = k1s0t (1.15)

Following the method previously done before, we obtain a new set of equations

du

dτ̃
= −εu+ ε(u+K − λ)v (1.16a)

dv

dτ̃
= u− (u+K)v (1.16b)

As this is during the fast timescale, it would be appropriate to assume that this

timescale explains in greater detail how enzymes initially fill their active sites with

substrates (near t = 0). Using the quasi steady state assumption again, that ε << 1,

the RHS of (1.16a) may be neglected and so we obtain:

du

dτ
= 0⇒ u =

s(0)

s0
, as s(0) = s0 (1.17a)

Using the assumption above, for this timescale, u is constant, and so we can subtitute

this into(1.16b) and integrate. ∫
dv

1− (K + 1)v
=

∫
dτ̃

let w = 1− (K + 1)v

⇒
∫

dw

−(K + 1)w
=

∫
dτ̃

⇒ − ln(1− (K + 1)v)

K + 1
= τ̃ + C

Using initial conditions, v(0) = 0⇒ C = 0 and by rearranging

⇒ v =
1− e−τ̃(K+1)

K + 1
(1.17b)

Knowing that at τ̃ = 0, the enzymes are unoccupied as v(0) = 0, for which enzyme-

substrate complexes are then formed rapidly until a steady fixed maximal rate is

achieved. This in turn will decrease over time due to the loss of substrates outside

of the cell. It is possible to use both timescales τ and τ̃ to analyse what is happening
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during the fast transient stage of the reaction, and what is happening during the relax-

ation period (the longer timescale). Using the τ̃ timescale, we see that for the transient

stage of the reaction, as τ̃ increases, v tends towards a value of 1
K+1 , which is consistent

with the τ timescale, as we concluded that v = u
K+u where u(0) = 1.

From here, it is easier to look at the τ timescale, as it gives a more detailed view

of the relaxation period of the reaction. We mentioned that from (1.13a), v decreases

as u decreases at a rate given by (1.13b), until they both reach a steady state value of

zero. This can be shown by the phase portrait below in Figure 1.3:

Figure 1.3: Graph of dimensionless quantities of enzyme-substrate complex concentra-
tion and substrate concentration respectively,v versus u, showing the fast transition to
value of v = 1

1+K and then gradually at a slower rate towards zero.

As both timescales have been covered, we must combine the solutions using a tech-

nique called matched asymptotic analysis, which will not be seen in detail here. How-

ever, a figure of the substrate concentration as a function of time using these timescales

can be found in the book by Leah Edelstein-Keshet [1]. The results of this technique

however gives an insight into the complete image of events for both short and long

timescales together.
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Chapter 2

Cooperative Phenomena

2.1 Simple Derivation of Sigmoidal Kinetics

For a simple Michaelis-Menten kinetic reaction, the reaction rate increases proportional

to the substrate concentration, providing that the level of substrate concentration is

low to begin with (near s = 0). This is because the chance of a substrate encountering

an enzyme increases proportionally. However, the properties of this proportionality

changes when we introduce an enzymatic reaction that involves two substrates reacting

with the same enzyme:

2S + E
k1


k−1

SE
k2⇀ 2P + E (1.18)

Similarly to the singular substrate example, it is possible to analyse this in a similar

way, with a few minor changes. According to the law of mass action stated in the pre-

vious chapter, we conclude that for a reaction that requires two molecules of substrate

S to react with one molecule of enzyme E, it must do so at a rate of k1. Therefore, we

may express the equations of the reaction as follows:

ds

dt
= −k1s2e+ k−1c (1.19a)

de

dt
= −k1s2e+ (k−1 + k2)c (1.19b)

dc

dt
= k1s

2e− (k−1 + k2)c (1.19c)

dp

dt
= k2c (1.19d)

With initial conditions: s(0) = s0, c(0) = 0. Again, similarly to before we are able to

simplify the equations using (1.6) and so we obtain
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e = e0 − c⇒
ds

dt
= −k1(e0 − c)s+ k−1c = −k1se0 + (k1s+ k−1)c (1.20a)

dc

dt
= k1(e0 − c)s− (k−1 + k2)c = k1se0 − (k1s+ k−1 + k2)c (1.20b)

Observing the differences between this double substrate model and the single substrate

model, it’s clear that the equations (1.20a)(1.20b) are identical to (1.7a)(1.7b) with one

minor change, that s has been replaced with s2. From here, we are able to govern the

rate equation for the substrate concentration, s.

dc

dt
≈ 0

⇒ k1e0s
2 − (k1s

2 + k−1 + k2)c = 0

⇒ c(t) =
k1e0s(t)

2

k1s(t)2 + k−1 + k2
=

e0s(t)
2

s(t)2 +Km
(1.20c)

where Km = k−1+k2
k1

. Now by substitution into (1.20a), we obtain

ds

dt
= −k1

(
e0 −

e0s
2

s2 +Km

)
s2 + k−1

e0s
2

s2 +Km

= −k1s2e0 +

(
k1s

2 + k−1

)
e0s

2

s2 +Km

=

(
− k1

(
s2 +Km

)
+ k1s

2 + k−1

)
e0s

2

s2 +Km

=

(
− k1Km + k−1

)
e0s

2

s2 +Km

=

(
− k−1 − k2 + k−1

)
e0s

2

s2 +Km

=
−k2e0s2

s2 +Km
= − Vmaxs

2

Km + s2
(1.21)

where Vmax = k2e0, Km = k−1+k2
k1

.The result is unsurprising when compared to the

single substrate rate equation of s because we have only replaced s with s2. We use

(1.8d) to show that the change in product is equal to the negative change in substrate

concentration. It is possible to construct a graph of this rate equation similarly to

Figure 1.3. The difference between the two graphs is that we now produce a sigmoidal

graph, where
√
Km is the concentration required for half of the maximal rate.
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Figure 2.1: Graph of rate equation of reaction. Similar to Figure 1.2, yet the curve now
has a point of inflexion. As substrate concentration s increases, the rate of product
formation reaches Vmax. When substrate concentration reaches a value

√
Km, the rate

of product formation is exactly 1
2Vmax.

2.2 Cooperative Reactions with Intermediate Steps

We discussed the reaction between two molecules of substrate reacting with one molecule

of enzyme. However, the chances of three molecules colliding together are highly un-

likely, so we look towards a different approach to the reaction. It is more realistic for

one molecule of substrate to react with one molecule of enzyme. This will create one

molecule of the (substrate-enzyme) complex, where another molecule of substrate will

react with the complex. Products may be formed between these two steps, at rates

k2 and k4 respectively. Another feature of this type of cooperative reaction, called the

allosteric effect is when one substrate has bound with an enzyme at an active site. It

can affect the reactivity to other active sites on the same enzyme. Such an enzyme is

called an allosteric enzyme.

A great example of a cooperative reaction is the binding of oxygen to haemoglobin

in the blood. The oxygen-carrying protein has four binding sites for oxygen to react.

As one successfully reacts, the protein exhibits allosteric effects to which then further

oxygen molecules can react at a faster, more successful rate. Going back to the two

substrate case and putting it into perspective, the diagram below represents the two

separate reactions:

S + E
k1


k−1

E1
k2⇀ E + P (1.22a)
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S + E1
k3


k−3

E2
k4⇀ E1 + P (1.22b)

Let lowercase letters denote the concentrations of the reactants in (22a,b)

s = [S], e = [E], c1 = [E1], c2 = [E2], p = [P ] (1.23)

As there are two new variables, c1 and c2 which replace c, we now have a system of five

equations that we can interpret from the diagram of the reaction;

ds

dt
= −k1se+ (k−1 − k3s)c1 + k−3c2 (1.24a)

de

dt
= −k1se+ (k−1 + k2)c1 (1.24b)

dc1
dt

= k1se = (k−1 + k2 + k3s)c1 + (k−3 + k4)c2 (1.24c)

dc2
dt

= k3sc1 − (k−3 + k4)c2 (1.24d)

dp

dt
= k2c1 + k4c2 (1.24e)

with initial conditions: s(0) = s0, e(0) = e0, c1(0) = c2(0) = p(0) = 0.

The sum of the equations (1.24b) (1.24c) (1.24d) results in zero, hence with the

conservation of enzymes we have;

de

dt
+
dc1
dt

+
dc2
dt

= 0⇒ e+ c1 + c2 = e0 (1.25)

with e0 as a fixed constant. Using (1.25), we may eliminate e from equations (1.24a)

(1.24b) (1.24c) (1.24d) (1.24e). As before, we nondimensionalise this system of equa-

tions. Let ε << 1, so the dimensionless quantities chosen are

τ = k1e0t, u(τ) =
s(t)

s0
, v1(τ) =

c1(t)

e0
, v2(τ) =

c2
e0

a1 =
k−1

k1s0
, a2 =

k2
k1s0

, a3 =
k3
k1
, a4 =

k−3

k1s0
, a5 =

k4
k1s0

, ε =
e0
s0

(1.25)

with initial conditions;

u(0) = 1, v1(0) = v2(0) = 0
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and so we obtain:

du

dτ
= −u+ (u− a3u+ a1)v1 + (a4 + u)v2 (1.26a)

ε
dv1
dτ

= u− (u+ a3u+ a1 + a2)v1 + (a4 + a5 − u)v2 (1.26b)

ε
dv2
dτ

= a3uv1 − (a4 + a5)v2 (1.26c)

Using the quasi steady state assumption and the initial conditions, it will lead us to-

wards the rate equation. Let ε << 1, which implies that both LHS of (1.26b)(1.26c)

are equal to zero hence algebraic, so can be solved to obtain v1 and v2 in terms of u.

v2 =
a3uv1
a4 + a5

(1.27a)

By substitution into (1.26b), we obtain:

v1 =
u

u+ a1 + a2 + a3u2(a4 + a5)−1
(1.27b)

Substituting into (1.26a) and after many cancellations:

du

dτ
= −u a2 + a3a5u(a4 + a5)

−1

a1 + a2 + u+ a3u2(a4 + a5)−1

= −r(u) < 0 (1.28)

In dimensionless terms, using (1.25), the rate equation for the reaction, denoted by

R0(s0) becomes;

R0(s) =

∣∣∣∣dsdt
∣∣∣∣
t=0

= e0s
k2K

′
m + k4s

KmK
′
m +K ′ms+ s2

(1.29)

Km =
k2 + k−1

k1
,K

′
m =

k4 + k−3

k3

where Km and K
′
m are the Michaelis constants, which are equivalent to the Michaelis

constant in (1.8b).

This rate can look very similar to (1.21), and it is very possible to conclude which

expressions can be ignored to link the two together. Referring back to the mechanism,
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if a molecule of s combines with an enzyme and due to the allosteric effect the second

molecule, c2 complexes more readily so we are able to assume that the rate of which

this specific reaction occurs, k3, is very fast. Due to this, we neglect the intermediate

complex c1 as it is short lived. Another assumption to make is that in the numerator,

the term linear in s is removed if k2 = 0, which occurs if products are not formed during

the intermediate step. Combining both, this leads straight the model given by (1.21).

We see that they are very similar and both graphs show a Hills plot. When cooperative

behaviour is shown in enzymatic reactions, Hill plots are generally formed as most rate

equations for such reactions are of the form;

R0(s) =
Qsn

Km + sn
(1.30)

where n > 0 is generally an integer, and it labelled the Hill equation.

To create a Hill plot, a graph of ln[ R0
Q−R0

] against ln s0 is required, and so by solving

(1.30) for sn we obtain:

sn =
R0Km

Q−R0
⇒ n ln s = lnKm + ln

R0

Q−R0
(1.31)

The gradient of a Hill plot will give the value of n and will stay constant provided the

Hill equation describes the rate of reaction in question.
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Chapter 3

Positive and Negative Feedback
Systems

We know the importance of enzymatic reactions, but we must also know the impor-

tance of regulating them. Many products formed in such reactions act as an allosteric

activator, or inhibitor (positive or negative) for the reaction which forms an interme-

diate product. Thus, the reaction is aptly named as a feedback loop. It is important to

understand how to obtain a stable steady state for such circuits as both proteins may

become depleted or over produced over time. For example, let us have a system of two

proteins A and B.

Figure 3.1: (a): A double-negative feedback loop. From the circuit, we see that Protein
A acts as an inhibitor in the reaction to produce protein B. Protein B also acts as an
inhibitor, but for the production of protein A. It is possible to have a stable steady
state for A on and B off, or A off and B on. However it is impossible in situtations
with both A and B on, or both off. It is possible however, for trigger stimuli to affect
the feedback loop such as to switch the steady state between “A-on, B-off” and “A-off,
B-on”. (b): A positive feedback loop. Protein A activates protein B, and B activates
A in this circuit. It is possible to achieve a stable steady state if both A and B are off,
or both on. However, we cannot achieve this with one of A or B on whilst the other is
off. These two circuits can produce a self-sustaining pattern of protein activity. Figure
from text [7].
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Mathematically modelling such biological systems gives a greater insight into a re-

action. If succeeding in replicating a reaction, it shows that all interactions within

have been identified, whereas a negative result indicates a fault with qualitatively

understanding the mechanism in question. We may also find out which parameters

manipulate the outcome of results. For example, showing how much concentration

of a molecule is required for production of another, with increased presence of an in-

hibitor. It is possible to describe the dynamics of a biological system with a simple

ODE model, when stochastic effects are considered negligible and are useful for when

biological oscillators and switches are used.

3.1 Yeast Glycolytic Oscillations

A great example of a two variable system to inspect is the Bier et al. model of Yeast

glycolytic oscillations. We have a concentration of glucose, [G] outside of the yeast

cell, entering through at a rate vin, to which it then converts into [ATP ] at a rate

k1 by a process called glycolysis. While glycolysis converts ATP from glucose, it also

requires ATP to initiate the reaction (hence the dashed-line on 3.2). ATP then also

is consumed and converted into ADP, with concentration [ADP ] at a rate kp. Whilst

ATP is increased, there is an increase in ADP and also an increase in the formation of

ATP from Gin. Assumptions are made to simplify the model, such as that there are

many ATPases involved in the mechanism, however we can combine all together, and

so we just have one whole concentration of ATP. Another assumption is that glycolysis

is represented through a different amount of enzymes, and by assuming all other inter-

mediate steps occur quickly apart from the rate limiting step, phosphofructokinase, we

can consider the rate constant to just be k1.

Figure 3.2: Diagram depicting glycolysis and how ATP is used to catalyse the reaction
that produces ATP. Figure from [5]

We are interested here in the rate of which ATP changes, and the rate of which

glucose inside the cell changes. Let us consider a system of ODEs for the model above.
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We shall label both derivatives as f and h respectively,

dA

dt
= 2k1GA−

kpA

A+Km
= f (3.1a)

dG

dt
= vin − k1GA = h (3.1b)

where [ATP ] = A and [G] = G. Looking closely at (3.1a) we see that the positive term

represents the increase of [ATP] from the conversion of [G], and the negative term is

the decrease of [ATP] through conversion into [ADP]. Also note that the negative term

includes a michaelis constant, Km. For the model above, there are 3 default parameters:

vin = 0.36, k1 = 0.02, kp = 6 (3.1c)

However, when we change the values of other parameter, Km, we obtain some inter-

esting results. If we are to plot both [ATP] and [G] against time, using the default

parameters, we will consider two cases, notably when Km = 13 and Km = 20.

(a) Km = 13 (b) Km = 20

Figure 3.3: Plots of concentration of Glucose (black) and ATP (red) against time. (a)
Showing oscillatory behaviour, When ATP increases, Glucose is decreased, and vice
versa. (b) Showing damped oscillations, that over time both ATP and G each converge
to a steady state value.

We can see in Figure 3.3 how that for Km = 13, oscillations are shown, whereas for

Km = 20, damped oscillations are shown. However, this does not give a clear under-

standing of the qualitatively different behaviour between the two cases. By introducing

phase plane techniques, we are able to analyse our 2-dimensional example above for
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both values of Km. This involves plotting a graph of [G] against [ATP], but first we

must conclude where there are fixed points if any and determine their stability.

This is possible by determining the points at which both derivatives, (3.1a) and

(3.1b) are equal to zero and also by using our set of default parameters and for the

different values of Km = 13 and Km = 20. Such fixed points, A∗ and G∗ can be

calculated using the selected parameter values:

(A∗, G∗) = (
2vinKm

kp − 2vin
,
kp − 2vin
2k1Km

)

⇒ (A∗, G∗)(Km=13) = (
39

22
,
132

12
) (3.2a)

(A∗, G∗)(Km=20) = (
30

11
,
33

5
) (3.2b)

What is unclear at this moment is whether the fixed point is stable or unstable, which

can be calculated numerically. This can be determined in a more mathematical rigorous

approach by using a Jacobian matrix and analysing the eigenvalues produced at that

specific fixed point. Let us consider our two derivatives f and h. By computing the

Jacobian matrix, we obtain:

J =

[ ∂f
∂A

∂f
∂G

∂h
∂A

∂h
∂G

]
=

[
2k1G+

−kp(A+Km)+kpA
(A+Km)2

2k1A

−k1G −k1A

]
(3.3a)

Now by inputting our fixed points, we obtain:

J(Km=13) =

[
0.0487384614 0.07090909092
−0.2030769230 −0.03545454546

]
(3.3b)

J(Km=20) =

[
0.0316800001 0.1090909091
−0.1320000000 −0.5454545454

]
(3.3c)

By using a software such as maple, we are able to find the eigenvalues for both cases of

Km values and evaluate them to determine the stability of the fixed points (3.2a) and

(3.2b). The eigenvalues that were found are the following:

E1 = 0.664195797000000 + 0.112373859930719i

E2 = 0.664195797000000− 0.112373859930719i (3.4a)

for the fixed point (3.2a) and,

E3 = −0.114327272200000 + 0.111987913384576i

E4 = −0.114327272200000− 0.111987913384576i (3.4b)
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for the fixed point (3.2b).

As we can see, both sets of eigenvalues are complex conjugates. Using our un-

derstanding of stability theory, we may use the following statement to determine the

stability of the fixed points:

Definition 3.1.1. Stability of a Steady State: In a continuous model, a steady state

will be stable provided that the eigenvalues determined from the Jacobian matrix are

both negative (if real) or have negative real parts (if complex). That is,

Re(λi) < 0 for all i.

For (3.4a), the real parts of both eigenvalues are positive, and so does not fit the

criteria of a stable point hence is unstable. However for (3.4b), both real parts of the

eigenvalues are negative when Km = 20, which fits with our criteria of a stable point.

There are many type of stable points however, and so it may prove useful to determine

which of these it is. Using the following diagram, we can assort our point into their

own individual type.

Figure 3.4: The steady state value can be assigned to many types, determined by their
corresponding eigenvalues. Where T is the Trace of the Jacobian matrix, ∆ is the
determinant and T 2 − 4∆ is the discriminant.

Comparing to the diagram, our steady state value of Km = 20 corresponds to

a “stable focus”, as it has complex conjugate parts as well as both real parts being
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negative. Whereas, for Km = 13, we have an “unstable focus”. Acknowledging the

results from our stability analysis is a vital part in the overall picture, to which now we

are able to construct a phase portrait. This is to show that with small perturbations

from the system, it will always tend to the limit cycle and stable fixed point for our

respective Km values. It is also useful to plot a phase portrait as we are able to see in

which direction the system is moving, governed by the two equations (3.1a) and (3.1b),

at which any point is determined by a vector defined by the derivatives with respect to

time.

We are able to go a step further and determine which regions the direction changes

by plotting nullclines, of G against ATP. These nullclines in question are the set of

all points at which (3.1a) and (3.1b) are individually equal to zero. Considering both

equations, by inspection it is easier to make G the subject of both equations, due to the

saturating term in (3.1a). Plotting both curves against each other will contrast to the

fixed points within the system, which will be the point at which both curves intersect.

dA

dt
= 2k1GA−

kpA

A+Km
= f = 0

⇒ G =
kp

2k1(A+Km)
(3.5a)

dG

dt
= vin − k1GA = h = 0

⇒ G =
vin
k1A

(3.5b)

(a) Km = 13 (b) Km = 20

Figure 3.5: Phase portraits of the system (3.1a-b) including G (blue) and ATP (red)
nullclines with concentration of glucose, G against concentration of ATP, A for both
values of Km = 13 and Km = 20. (a) Stable limit cycle. (b) Spiral converging towards
stable fixed point.
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Consider now the default parameters and both values of Km, the plots of which are

shown above. As seen from Figure 3.5, the nullclines for both (a) and (b) intersect at

the respective fixed point values (3.2a) and (3.2b). The ATP nullcline (red) for both

cases does not differ as it does not depend on Km. Notice that for value of Km = 13,

we have a limit cycle which shows the change of oscillatory behaviour for both [G]

and [ATP]. Also for Km = 20, we see a converging spiral shape, showing the damped

oscillations which eventually converge to a fixed point, which we proved to be stable.

Also from Figure 3.5, we see that for Km = 13 the direction of the stable limit cycle

oscillates in a clockwise motion. For Km = 20, the direction of the spiral converges to

the stable fixed point in clockwise motion. We are able to see this from the trajectory

from initial conditions for each value of Km.

For Km = 13, the reason for obtaining a stable limit cycle is due to the Poincaré-

Bendixson Theorem, that as time tends towards infinity, the trajectory of the system

matches the trajectory of the stable limit cycle as time tends towards infinity (p.327-

330) [1]. The limit cycle may correspond to the idea that the system overshoots the

production of Glucose and ATP, and tries to balance the system, ultimately ending with

this oscillatory behaviour. However with Km = 20, we see that the system successfully

balances itself to the stable steady state values for Glucose and ATP.

3.2 Bistability: Mutual Activation and Mutual Inhibition

A bistable system may be defined as a system that can switch between two alternative

stable steady-states. Such bistability, under certain circumstances, will convert a tran-

sient trigger stimulus into an irreversible response. The qualities required for bistability

include positive feedback, double-negative feedback, autocatalysis, or the equivalent.

However, bistability of a system is not guarenteed by such feedback. A bistable system

must also mathematically include three fixed points, two of which need to be stable

and one unstable. Both sides of such a feedback loop must be properly balanced for the

circuit to be bistable; if either is too strong or too weak, the circuit will be monostable

rather than bistable. Thus, feedback is required for bistability, but does not guarantee

it.

Bistable circuits show a certain degree of hysterisis, the time-based dependence of

a circuit’s output on current and past inputs such as, if it began in it’s off or on state.

However, bistability does not guarantee irreversability due to hysterisis, meaning it

shows difficulty in switching from one state to the other, rather than to maintain the

system in its flipped state. This irreversibility is shown when we have a sufficiently

strong feedback system, and will stay in its flipped state even after the stimulus trigger

is removed.
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(a) Mutual activation (b) Mutual inhibition

Figure 3.6: (a) Model of how a stimulus, S triggers a response, R which catalyses the
phosphorylation of enzyme, E. This then catalyses the synthesis of R, so that as R
increases, there is an increase in phosphorylation of E. (b) Model of how a stimulus,
S triggers a response, R which catalyses the phosphorylation of enzyme, E to become
Ep. This then leads to the degradation of R. Figure from [4].

By understanding what it means mathematically for a circuit to be bistable, we will

be able to conclude which parameters need to be set at specific levels of concentrations.

Looking further into two examples, mutual activation and mutual inhibition, we are

able to use the same type of analysis used for the Bier et al. model mentioned in the

last section to determine such bistability. Referring to an example of mutual activation

from [4], as seen in figure 3.3 above, we are able to model the reaction as a system of

ODEs. Note that,

[E]T − [E] = [E]P (3.5)

where ET is the concentration of enzyme total, E the total concentration of de-

phosphorylated enzyme and EP the total concentration of phosphorylated enzyme.

By rearranging to reduce the amount of variables then substituting into our ODE sys-

tem, we obtain;

dR

dt
= k1R(ET − E) + k1RS − k2RR = f1 (3.6a)

dE

dt
= −k2E

E

E +Km2E
+ k1E

ET − E
ET − E +Km1E

= h1 (3.6b)

where k1R is the rate of synthesis of R, k2R the rate of conversion of R, k1E the rate

of phosphorylation of E, k2E the rate of de-phosphorylation of EP , and Km1E , Km2E
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are the michaelis constants of the reaction. As both mutual activation and mutual

inhibition examples are analysed using the same method of stability analysis, we will

only delve further into bistability analysis for the mutual inhibition model.

Another very similar example from [4] is that of mutual inhibition, the model of

which is shown as an ODE system below:

dR

dt
= k0R + k1RS − (k2R + k3RE)R = f2 (3.7a)

dE

dt
= −k2ER

E

E +Km2E
+ k1E

ET − E
ET − E +Km1E

= h2 (3.7b)

The set parameter values to make numerical calculations and graphs are the following:

k0R = 0, k1R = 0.05 k2R = 0.1, k3R = 0.5, k1E = 1, k2E = 0.2, K1mE = 0.05,

Km2E = 0.05, ET = 1. By plotting nullclines we are able to conclude where three

intersections will occur, which will be the three fixed points required. This can be

achieved by setting the RHS of both (3.7a) and (3.7b) equal to zero and rearranging

for R as it is easier to obtain than E.

R =
k0R + k1RS

k2R + k3RE
(3.8a)

R =

k1E(ET − E)

(ET − E) +Km1E

k2EE

E +Km2E

(3.8b)

By inspection of Figure 3.7, we see that for S = 10, there is only one intersection

between the null clines. The level of stimulus is too high for bistability, and so we

obtain a monostable scenario. Also, for S = 2, there is one intersection, so to conclude

for both values of S stated, it is impossible to obtain bistability. However, there are

clearly three intersection between the null clines for value S = 6, and hence we have

three fixed points which is our mathematical basis of bistability.
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Figure 3.7: Plot of concentration of response, R against concentration of enzyme, E.
For value of S = 6, there are three equilibria points, indicating a basis for bistability.

By constructing a Jacobian matrix at these fixed points, we are able to evaluate and

determine the stability of these three fixed points by analysing the respective eigenval-

ues. The equilibria of this system are found when (3.7a) and (3.7b) are both equal to

zero. By inputting the given parameters and by using a mathematical software such as

maple, we are able to numerically find such fixed points. They are as follows:

(R∗, E∗)1 = (13.13668170, 0.2836817308) (3.9a)

(R∗, E∗)2 = (5.256745294, 0.3706953318) (3.9b)

(R∗, E∗)3 = (2.606573006, 0.9509364951) (3.9c)

J(f2, h2) =

[ ∂f2
∂E

∂f2
∂R

∂h2
∂E

∂h2
∂R

]
=

=

 −k3RR −(k2R + k3RE)

−k2ER
(

1
E+Km2E

− E
(E+Km2E)2

)
+ k1E

(
(ET−E)

(ET−E+Km1E)2
− 1

(ET−E+Km1E)

)
−k2E

(
E

E+Km2E

) 
(3.10)

Similarly to our previous model with oscillatory behaviour, we can analyse the stability

of the jacobian by determining the eigenvalues at each individual Jacobian matrix,

corresponding to the fixed points found earlier. For (R∗, E∗)i with i = 1, 2, 3, the

corresponding Jacobian matrices with their eigenvalues are the following:
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J1 =

[
−21.43768081 −0.07239717852
−6.568340850 −0.1141840865

]

λ1 = −21.4599582566415

λ2 = −0.919066398584615 (3.11a)

J2 =

[
−0.4053701321 −0.1762298289
−2.628372647 −0.2853476659

]

λ3 = −1.02858580857282

λ4 = 0.337868010572825 (3.11b)

J3 =

[
−5.120998640 −0.1900093562
−1.303286503 −0.5754682476

]

λ5 = −5.17484004278428

λ6 = −0.521626844815719. (3.11c)

It is clear that every eigenvalue has no complex part, so there is no rotation. Using the

stability criteria Definition 3.1.1, we see that for (3.11a) and (3.11c) both eigenvalues

are negative, hence we have two stable points corrsponding to our fixed points (3.9a)

and (3.9c). In addition, for (3.11b) we see that one of the eigenvalues is positive and

so this corresponds to an unstable fixed point for (3.9b).

By determining that the system has two stable fixed points, separated by an un-

stable fixed point in between, we can now confirm that the system shows bistability, a

useful property in biological systems. An example of such is to regulate the concentra-

tions of proteins within a system.

Possibly all biochemical reactions involved in cell signalling are reversible, however,

many biological transitions are irreversible. For both cases (mutual activation or in-

hibition), positive feedback may create a discontinuous switch. This means that the

cellular response changes abruptly and irreversibly as signal concentration crosses a

threshold value of S.

Let us plot a bifurcation plot of the steady state value of R against the stimulus

concentration, S for both mutual activation and mutual inhibition examples.
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(a) Mutual activation
(b) Mutual inhibition

Figure 3.8: Bifurcation plots showing hysteresis for steady state values, R against
stimulus concentration S. (a): Example showing irreversibility, how after stimulus is
increased passed a critical value, concentration of R will remain high even after removal
of stimulus. In other words, activity of R will remain in the ’on’ state.(b): Bistable
switch, where R will go back to the ’off’ state after removal of sufficient S. Figures
from [6].

Inspecting Figure 3.8 for a low initial R value, as the stimulus concentration S

increases when it surpasses a thresholdl value of S the response value increases abruptly

towards a higher value. After the removal of S, the response stays at a high value,

implying the irreversible quality of the system. For S values between S = 0 and

S ≈ 11, the system is bistable as it has two steady state values for S. The steady state

response is an indicator of the behaviour of the system as a function of the stimulus.

At Scrit ≈ 11, the behaviour of the system changes irreversibly from low response to

high response (or vice versa). Such points of qualitative change in the behaviour of a

nonlinear system are called bifurcation points.

Considering also Figure 3.8B, for a low initial R value, as S increases past a value of

S ≈ 9, the response value increases abruptly towards a higher value. This also occurs

for a higher initial R value, but at a threshold value of S ≈ 4. However the difference

between this example is that after removal of sufficient stimulus S, the system will

return back towards a lower R value. For values of S between S ≈ 4 and S ≈ 9

the system is bistable as it has two stable steady state response values, which are

separated by an unstable steady state. This ’toggle switch’ (two-way discontinuous

switch) example is often referred as hysteresis.

Discontinuous responses appear to be one of the two switches: the one-way switch

(mutual activation example), and the toggle switch (mutual inhibition example). One-

way switches presumably are a key feature of developmental processes characterized by

the being unable to revert back during or after a developmental part of the process. Frog

oocyte maturation in response to progesterone is an example of such, as is Apoptosis

[4].
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Chapter 4

The Sonic Hedgehog (Shh)
Signalling System

4.1 Introduction to the Shh Pathway

Cells go through rigorous transformations via complex regulatory signals during devel-

opmental stages of life. Without the ability to correctly interpret such signals, they

cannot implement necessary functional decisions. Such information processing mecha-

nisms are important, to interpret extracellular information into intracellular decisions.

The fate of such cells are determined by the exposure to a concentration of an exter-

nal signal at specific key intermediate steps, to which they commit to a decision by

switching between two alternate behaviours in an all-or-none fashion. Such an exam-

ple is Apoptosis, the decision for a cell to die instead of surviving. It isn’t possible

for a cell to forty percent commit to die, hence the all-or-none switch behaviour. We

theoretically can find more information concerning cellular processing by analysing the

signalling mechanisms of such a morphogen (a substance that causes an organism to

develop its shape) named Sonic hedgehog.

In vertebrates, one of the three mammalian homologs of the Hedgehog family, Sonic

hedgehog (Shh), is a signaling factor that regulates cell functionality and their fate in

many biological systems. It has an important role to play in development by determin-

ing the pattern of spinal cord and limb bud tissue differentiation, and controls midbrain

and ventral forebrain neuronal differentiation. Among other functions, it is responsible

for feathers forming in correct places on chicks, and positioning human pinkies to be

our most posterior digits [9]. By forming a concentration gradient, Shh can pattern

tissue during development, seen in the neural tube and spinal cord, to which cells are

able to sense the position of themselves within the concentration gradient. They then

go on to transform into distinct cell phenotypes (observable characteristics or traits),

determined by this concentration gradient. Remarkably, Shh is capable of signalling up

to 20 cell diameters away from it’s source. It is key to note that Shh has the ability to

switch a cell between its alternate functional state at specific threshold concentrations

31



[11]. By quantitatively analysing the Shh gene regulatory network, an insight into its

properties that allow it to function as a switch, and to malfunction during disease is

found.

Figure 4.1: Image (A) of Shh concentration in the lumbar region of the spinal cord
of the embryo in (B), showing the notocord and floor plate (darker areas). Diagram
(C) depicting how Shh concentration (red) from the notocord and floor plate spreads
through the ventral neural tube, generating a ventral to dorsal concentration-gradient.
Diagram (D) showing the different neural progenitor domains. Labels of V0 to V3 are
four different classes of ventral interneurons, whereas MN indicates motor neurons.

The neural tube (precursor to development of the spinal cord and brain), formed

from the neural plate hosts many different cell phenotypes which are initially, mostly

identical. Before they develop into these cell phenotypes, they react to their position

along the rostro-caudal and dorsoventral axis (tail end of Figure C) within the neural

tube from the surrounding concentration of Shh. Shh concentration is secreted from the

notocord and floor plate, which then spreads through the ventral neural tube causing

this concentration-gradient mentioned earlier. This is the basis of the formation of a

variety of neurons and glial cells (cells that hold together and protect neurons), that

form a functional nervous system. Neuronal subtype specification is determined by

the concentration of Shh, which establish distinct levels of signalling in the responsive

cells. This regulates target genes and causes the different groups of neurons to express

different types of transcription factors. (e.g Nkx2.2, Olig2). The subdividing of the

ventral neuroepithelium into five different neural progenitor domains, which each gen-

erate distinct neuronal subtypes are caused by these transcriptional factors, as seen in

figure 4.1D.
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Figure 4.2: Schematic diagram of the Shh signaling system. Shh binds to Ptc, disabling
the Ptc repression on activity of Smo. Smo signaling inhibits the conversion of the
transciption factor factor Gli3 from an activator to a repressor. The accumulation of
Gli3 then activates the genes gli and ptc. Gli1 binds and activates its own promoter,
as well as the signal repressor Ptc [10].

This model for tissue patterning in Figure 4.2 was determined by Lai et al. [10]. In-

teracting with the transmembrane receptor Patched (Ptc), Shh is then able to transduce

it’s signal into the cells themselves. This allows the signalling of the transmembrane

protein Smoothened (Smo), to go forward and transduce a signal by activating mem-

bers of the Gli family of transcription factors. This results in the depletion in Shh

concentration from the extracellular space. However in the absense of Shh, Ptc re-

presses the signalling activity of Smo, which causes Gli3 to be cleaved and generates a

transcription factor Gli3R which represses the activity of Shh targets. With the activa-

tion of Smo, the rate of Gli3 cleavage is reduced and the resulting accumulation of Gli3

then activates the transcription of a number of Shh targets (ptc, shh, gli1 and gli2),

while gli3 is also repressed due to Shh signalling. Gli1 and Gli2 act as transcriptional

activators (which are lumped together to form the term Gli) and bind to the same sites

as Gli3, inducing positive feedback on their own expression and activate targets which

mediate the downstream cell regulatory effects of Shh signalling. However, the Shh

system also shows signs of negative feedback due to Gli transcriptionally activating the

signal repressor Ptc.

4.2 Shh Mathematical Model

Dynamic modelling of such a complex signalling and gene regulatory network can sub-

stantially increase our understanding of the model in ways in which may not be dis-

covered from a biological point of view. A simplified version of the system can be

represented by the set of four differential equations, shown below:
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dGli

dt
= vmax,GPromoter + rbas,GBasal − kdegGli (4.1a)

dGli3

dt
=
rg3b
Ptc
−Gli3

[
kdeg +

kg3rc
Kg3rc + Signal

]
(4.1b)

dGli3R

dt
= Gli3

[
kg3rc

Kg3rc + Signal

]
− kdegGli3R (4.1c)

dPtc

dt
= vmax,PPromoter + rbas,PBasal − kdeg,PPtc (4.1d)

where

Signal =
1 +

Shh

KShh

1 +
Shh(

KShh +
Ptc

KPtc

) (4.1e)

with the promoter and basal terms defined below

Promoter =
A1(B1 + C1)

D1 + E1 + F1
(4.1f)

where

A1 =(Gli3K1 +GliK2)

B1 =3e2K2
1K

2
2 + 3ceK1K2(Gli3K1 +GliK2 + 2eGli3RK1r)

C1 =c2(Gli32K2
1 +Gli2K2

2 + 3eGliGli3rK1K2r + 3e2Gli3R2K2
1r

2

+Gli3K1(2GliK2 + 3eGli3RK1r))

D1 =3cK1K2(Gli3K1 +Gli3RK2 +GliK2)
2

E1 =c2(Gli3K1 +Gli3RK1 +GliK2)
3

F1 =K2
1K

2
2 (3Gli3K1 + 3Gli3RK1 + (3Gli+K1)K2)

and

Basal =
A2 +B2 + C2

D2 + E2 + F2
(4.1e)

where

A2 =3cK1K2(Gli3K1 +GliK2 +Gli3RK1r)
2

B2 =c2(Gli3K1 +GliK2 +Gli3RK1r)
3

C2 =K12K
2
2 (3Gli3K1 + 3GliK2

D2 =3cK1K2(Gli3K1 +Gli3RK1 +GliK2)
2

E2 =c2(Gli3K1 +Gli3RK1 +GliK2)
3

F2 =K2
1K

2
2 (3Gli3K1 + 3Gli3RK1 + (3Gli+K1)K2)
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The derivation of both promoter and basal equation can be found in the supplementary

data of [10], where they assume quasi steady state binding between promoter and

transcription factors. In addition, they allowed for the possibility of cooperative protein

binding to the promoter, such that promoter with one or more factors bound had an

increased affinity for the next factor, the binding cooperativity factor c (allosteric effect,

mentioned in chapter 2). Sigmoidal graphs can be produced of both Promoter and

Basal against Gli (with Gli3 = 0) at varied concentrations of the inhibitor, Gli3R

Figure 4.3: The functions are ratios of polynomials, which vary between values of 0
and 1, describing the inducible and basal activities of the gli and ptc promoters varying
with the concentrations of the three transcription factors that bind them - Gli3, Gli3R
and Gli. Note that G3R refers to Gli3R concentration. Figures from [10]

Referring to (4.1a), we see that there are two promoting terms to the equation, fol-

lowed by the degradation ofGli at a rate of kdeg. The promoting term, vmax,GPromoter,

is due to the transcriptional activation of the gene Gli, whereas rbas,GBasal is due to

the basic rate of transcriptional activation of Gli. (4.1b) has an increasing term that is

inversely proportional to the level of Ptc concentration which can be explained by the

resulting activation of Smo reducing the rate of Gli3 cleavage. The degrational term

is due to normal Gli3 degradation, as well as the conversion of Gli3 to Gli3R. (4.1c)

includes the increasing time due to Gli3 to Gli3R conversion, as well as a degradational

term of Gli3R at rate kdeg. Finally, (4.1d) shows the increase of Ptc due to the pro-

moter transcriptional rate as well as the low, basal rate of transcriptional activation.

It also shows a degradation of Ptc at a rate kdeg,P .

The parameters used for the model were somewhat simplified, such as the degrada-

tion rates for all Gli proteins to be the same. A detailed list of the parameters can be

seen in 4.4 below, with a description of what each parameter represents.
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Figure 4.4: Table of all parameter values and what they represent within the schematic.
Table taken from [10]

4.3 Derivation of Signal

Using our knowledge of the Shh system, we see that Shh and Ptc reversibly react at a

dissociation constant, KShh and so we are able represent this as follows:

Shh+ Ptc
KShh←→ Shh ∗ Ptc (4.2a)

We assume that on the gene transcription and protein synthesis time scale, a steady

state value is achieved due to the rapid binding between Shh and Ptc, which may be

described using a Scatchard relationship:

[Shh ∗ Ptc] =
[Shh][PtcTotal]

KShh + [Shh]
(4.2b)

Due to binding of Shh to Ptc, the inhibition of Smo signaling from Ptc stops. ”Signal”

is defined as the fraction of uninhibited Smo concentration (amount no longer inhibited

by Ptc) over the total amount of Smo concentration. Again, a Scatchard relationship

model can be made of the Smo−Ptc interaction, and the expression for inhibited Smo

is expressed as follows:

[Smo ∗ Ptc] =
[Ptcfree][SmoTotal]

KPtc + [Ptcfree]
(4.2c)

where [Smo ∗ Ptc] is the concentration of Smo inhibited by Ptc, [Ptcfree] the concen-

tration of Ptc not inhibited by Shh, [SmoTotal] the concentration of total Smo and

KPtc is the half maximal concentration of Ptc required to inhibit Smo activity.
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As Signal is defined in such a way, and defining [Smofree] as the concentration of

uninhibited Smo, we may mathematically model this as

Signal =
[Smofree]

[SmoTotal]
=

[SmoTotal]− [Smo ∗ Ptc]
[SmoTotal]

(4.2d)

By substitution of (4.2b) and (4.2c) into (4.2d), we obtain the end expression for Signal:

Signal =
[Smofree]

[SmoTotal]
=

1 +
Shh

KShh

1 +
Ptc

KPtc
+

Shh

KShh

(4.2e)

where for simplicity, Smo is set to a constant value, as there are no reports that Smo

is transcriptionally regulated by Shh signaling.

4.4 Shh as a Bistable Switch

The system network comprises of a positive feedback loop, contained within a negative

feedback loop. Simpler models of autoregulatory transcription factor systems show

bistability, so we are able to demonstrate that the Shh system functions as a bistable

genetic switch, which relates to its ability to switch the fate of a cell at precise thresholds

of Shh concentrations.

Gli is considered to be the most important output of the system, as Gli1 and Gli2

are considered to be integral parts of cellular responses due to the Shh signal occur,

and so it is used to analyse the signalling system for bistability. It is also noted that

the Shh concentration is given as a ratio to the Shh dissociation binding constant,

KShh. This is due to a range of equilibrium dissociation binding constants found for

the binding of Shh to Ptc, varying from values of 0.5nM to 2nM. A plot of Gli against

time can be seen below:

Figure 4.5: Gli as a function of time (hours) at a concentration of Shh equal to 0.1
and 15 times the Shh binding dissociation constant to Ptc, KShh. At 15 times KShh,
the Gli curve is initially low until t ≈ 0.5. Figure from [10].
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As depicted in Figure 4.5, Gli concentrations are initially low for both levels ofKShh,

until time reaches an approximate value of 0.5. At this time for a Shh concentration 15

times the KShh constant, Gli production abruptly increases and reaches a new steady

state value, which is approximately 24nM . However, for a low value of 0.1 times KShh,

Gli remains at a low steady state value of approximately 1nM . This gives some evidence

towards the switch-like behaviour of Shh. This is due to higher concentration levels

above the threshold concentration exhibiting positive feedback, to which the ”On” state

of the system is achieved. This is explained by Shh-stimulated Gli production until

Gli positively activates it’s own production. This compares to low values showing an

”Off” state, experienced by Gli transcription naturally occuring at a low value.

To look further into the behavioural properties of the switch, similarly to Figure

3.8 we can plot a bifurcation of how Gli changes as a function of the Shh/KShh con-

centration ratio.

Figure 4.6: Gli as a function of Shh, showing hysteresis. The value of Gli can switch
between two possible steady states dependent on Shh increasing or decreasing. Figure
from [10].

As we can see from the above figure, there are two cases to consider. For Shh

increasing from a lower value, Gli concentration increases gradually until Shh concen-

tration reaches a threshold value of Shh/KShh ≈ 15. This then causes the dramatic

increase of Gli concentration to a value of approximately 22.5 from a value of approx-

imately 6, causing the system to be ”On”. The second case is due to a decrease in

Shh/KShh concentration from a high value to a low value. As depicted, the system

stays within this ”On” state until a very low threshold concentration of Shh/KShh is

reached, much nearer to the value of zero. To conclude, this means that there are two

points at which switching occurs, depending on if Shh/KShh is increasing or decreas-

ing. In between these points, it’s possible to obtain two steady state values of Gli

(dark lines), with an unstable steady state value shown between these Gli concentra-

tions (grey line).

38



4.5 Bifurcation Analysis of Disease Causes Within the
Shh Network

Observations of the Shh network show that mutations within the system, or gene ampli-

fication are a causation to disease. Examples of such are the gene amplification of gli1,

Gli3 truncations, mutations leading to the fixation of a constant rate of Smo activation

and Ptc mutations. This can cause the function to deteriorate even to a complete stop,

which can be linked to the formation of cancer [12]. Bifurcation analysis was carried out

for these examples to determine how sensitive these specific parameters are in breaking

the switch of the system into an irreversible state.

4.5.1 Gene Amplification of gli1

The gene amplification of gli1 would cause an increase in the constant vmax,G, so it

is possible that we can mathematically represent this action with a bifurcation plot of

Vmax,G as a function of Shh/KShh concentration.

Figure 4.7: Bifurcation of gli promoter strength denoted by Vmax.G affecting the switch
points of the system with varied Shh/KShh. Two curves (light and dark) represent the
two steady state values, where the dashed line is the value of Vmax,G used in figure 4.6.
Figure from [10].

The dashed line in figure 4.7 shows the value of Vmax,G = 0.24nM/min used in

the calculation of figure 4.6, to which the system is in its “Off” state for a low initial

concentration, until it increases to a threshold value of Shh/KShh ≈ 15 where the

system switches to an “On” state (high Gli concentration). As the concentration of

Shh/KShh begins to decrease, it must reach another threshold point to be able to

switch to it’s “Off” state again. This is when the dashed line intersects with the lighter

curve, which is at Shh/KShh ≈ 2.5.

However, if the value of Vmax,G increases (due to gli1 amplification) above the

threshold value of approximately 0.25nM/min, problems occur. When Shh/KShh is

increased to a value, which would cross the dark line, the system would turn to its “On”

state. However, no matter how much there is a decrease in Shh/KShh concentration,
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the system will always stay in it’s “On” state, creating an irreversible switch as opposed

to a bistable one. The ramification that can ensue is that the system could be stuck in

a state, which attempts to causes mitosis to occur repeatedly, which may initiate cell

mutation into cancer.

4.5.2 Ptc and Smo Mutations

Mutations within Ptc can affect the inhibition it has on Smo, and it represented by

the parameter K−1
Ptc, with KPtc being the concentration of Ptc needed for half of the

maximal inhibition. Figure 4.4 was calculated at a value of K−1
Ptc = 12nM−1.

Figure 4.8: Bifurcation of Ptc potency to inhibit Smo activity, K−1
Ptc as a function of

Shh/KShh concentration. Exhibits bistability for only a small range of values of K−1
Ptc.

Figure from [10].

As we can see, for values of K−1
Ptc between approximately 10 and 20nM−1, as

Shh/KShh increases from a low initial value, the system will eventually turn “On”

when it intersects with a value of the dark curve. When the Shh/KShh value decreases

from this higher value, the system will again switch to its “Off” state when it intersects

with the lighter curve. Problems arise when K−1
Ptc decreases below this threshold point

of around 10nM−1, to which breaks the switch like behaviour forcing the system into an

irreversible state once it is turned “On”. This again, would initiate cell transformation

and cancer.

4.5.3 Gli3 Truncations

Through the mutation of Gli3 proteins, it has been clinically observed to have a link

with some cancers due to the protein being truncated. This can be mathematically

modelled as a change in the dissociation constant of Gli3 for Gli DNA binding site,

K2.
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Figure 4.9: Bifurcation of K2, the binding dissociation constant of Gli3 for its DNA
site. Minor changes in K2 values can cause an irreversible switch and hence is a highly
sensitive parameter. Figure from [10].

For example, as shown in figure 4.9, for lower initial levels of Shh/KShh the state

of the system is “Off” until it reaches a value of approximately 15 for when K2 ≈ 0.8.

This system will then switch “On” and will remain on until it intersects the curve close

to a Shh/KShh value of zero. However, even with a very slight increase of K2, the

system will remain in it’s “On” state once a high enough concentration of Shh/KShh

has been established.

Not all parameters are as sensitive to the system however, which is the case for the

basal rate of Ptc, rbas,P .

Figure 4.10: Basal rate of Ptc, rbas,P as a function of Shh/KShh. Even with a significant
change in rbas,P , bistability still arises as the system is able to switch between two state
with an increase/decrease of Shh/KShh concentration. Figure from [10].

From values of rbas,P between zero and approximately 11, the system exhibits hys-

teresis. For values above 11 however the system’s switch like behaviour will break and

stay in its “On” state.

A follow up study develops the model further by modelling the spatial and temporal

evolution of the Shh signal using partial derivatives [12].
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Chapter 5

Shh and Development of the
Spinal Cord

5.1 Spinal Cord Ventral Patterning

Another separate model was used to mathematically inspect the interaction between

Sonic Hedgehog concentration and the fibroblast growth factors (FGF) found at the

caudal end of the neural plate, exposing themselves to neural progenitors (differentiable

neurons) [13]. These FGF produce signals which act as inhibitors to differentiation,

causing a steady value of the amount of undifferentiated neural progenitors that are

necessary for a complete spinal cord seen in figure 5.1. FGF also inhibits the expression

of many transcriptional factors which give cells their identity, to which after the local

concentration of FGF around cells decreases enough, they cells can then mature and

express different transcriptional factors [14].

From this model, Shh binds to Patched1 (Ptch1), reducing the inhibition of Ptch1

on Smo. This promotes Smo activity, which in turn promotes the activator forms of

Gli transcription factors, while inhibiting the repressor forms. This cascade goes on to

activate downstream target genes responsible for cell identity. Many other additional

components are involved within intermediate steps of the process, but the basic core

components is what is important here. One feedback loop in particular is the transcrip-

tional activation of Ptch when signalling is active acts in two ways; to reduce signalling

response to specific Shh concentration and to control the gradient concentration of

extracellular Shh by isolation [15].

It has been experimentally shown that FGF activates Ptch2 activity, which inhibits

Shh signaling. Ptch2, a receptor of Shh works similarly to Ptch1. This receptor is

a part of a negative feedback loop, increasing the amount of Shh-dependent ventral

neural progenitor cells [16].
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Figure 5.1: Schematic of FGF influence on the Shh signal. Figure from [19].

The aim of this model was to investigate how FGF and Shh interact and its effect

on the Shh pathway, which is done by mathematically modelling the core Shh network

with a simplified three ODE system. Then, to analyse what effect each parameter has

on the pathway, especially with the negative feedback interaction. Finally, to include

FGF signalling into the mathematical model to determine its effect on the network in

greater detail. What is also of interest is to determine whether the stable steady states

have at least one stable value for all fixed values of ShhT greater than zero.

5.2 Revised Model of Core Shh Signalling System

The reason behind the revision of the model first discussed in previous studies [10], [11]

is to use only the essential elements of the Shh signalling pathway and to simplify other

interactions within as currently their mechanisms are not fully understood. Whereas

bistability was established in the more complex and detailed system, experimental re-

sults do not support bistability as a key feature of the system [17] and so the term that

provides such bistability was excluded. Here we are not considering temporal changes

of Shh concentration in space and time, but we are interested in the change of Smo,

Ptch and Ptch− Shh concentrations at a fixed Shh concentration value.

By inspection of our schematic in Figure 4.2, we are able to mathematically model

this system using methods seen in chapters 1 and 2. For simplicity, transcriptional

inhibition and activation effects are expressed through Hill equations.
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Figure 5.2: Schematic of the revised Shh signalling system. Shh binds to Ptch1,
releasing the inhibition of Ptch1 on Smo activity. Figure from [19].

dSmoA

dt
=vmaxSmo

kn11
kn11 + (Ptc1 + Ptc2)n1

− kdSmoASmoA (5.1a)

dPtch1Shh

dt
=kbP t1S(ShhT − Ptc1Shh)Ptc1− krP t1SPtc1Shh

− kdPt1SPtc1Shh (5.1b)

dPtc1

dt
=rbasp1 + ksPt1

SmoA
n2

SmoAn2 + kn22
− kdPt1Ptc1 + krP t1SPtc1Shh

− kbP t1SPtc1(ShhT − Ptc1Shh) (5.1c)

Note that in the first differential equation, the variable Ptch2 is set to be equal

to zero for the simpler ODE system, but will be implemented later when we include

FGF signalling. In addition, the Smo is assumed to be produced in an active form,

SmoA, causing the transcriptional activation of target genes. Assumptions are also

made that there is a fixed total amount of Shh, which interacts with Ptch receptors

in a reversible manner. To simplify the model so that transcription and translation

terms are combined, components of the system represent the proteins synthesised from

their corresponding mRNAs, and so a quasi-steady state assumption has been made

for mRNAs [18].

For the change of SmoA concentration, we have a production term at a rate of

vmaxSmo, the maximal rate of Smo synthesis, multiplied by a Hill function of k1 and

Ptch1. Also there is a decay term due to the degradation of SmoA at a rate kdSmoA.

Next, the change in Ptc1Shh concentration includes a productional term due to the
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activation from the amount of unbound Shh (seen as ShhT − Ptc1Shh) binding with

available Ptch1 to create a Ptch1Shh complex. The decay terms are due to the release

of Ptch1Shh back into its constituents at a rate krP t1S and due to the degradation

of Ptch1Shh at a rate kdPt1S. Finally, the third differential equation represents the

change in Ptch1, with promotional terms due to the basal rate of Ptch1 synthesis, the

release of Ptch1Shh and the Hill function of SmoA and kn22 . The decay terms come

from the degradation of Ptc1 and the formation of the Ptch1Shh complex at the rate

kbP t1S.

5.3 Parameter Values and their Effects

The table below includes a description and value of each parameter within the math-

ematical model, taken from [19], with initial conditions of [Shh] = 1; [Ptch1] = 1;

[PtchShh] = 0; [SmoA] = 1.0nM .

Parameter Value Description

vmaxSmo 0.24nM/min Maximum rate of Smo synthesis

k1 0.8nM Concentration of Ptch required to lower Smo to
half of it’s maximal activity

n1 2 -

kdSmoA 0.07min−1 Degradation rate constant for SmoA

kbPt1S 1.2min−1 Binding rate constant for Ptc1Shh

krPt1S 0.696min−1 Release rate constant for Ptc1Shh

kdPt1S 0.07min−1 Degradation rate constant for Ptc1Shh

rbasp1 0.0075nM/min Basal rate of Ptc1 synthesis

ksPt1 0.12nM/min Maximum rate of Ptc1 synthesis

n2 2 -

k2 0.2nM Concentration of SmoA required to increase
Ptch to half of it’s maximal level

kdPtc1 0.04min−1 Degradation rate constant for Ptc1

γ 1 -

Table 5.1: Table of parameters used to mathematically model the system taken from
[19].

By using the model and parameter values from the table above, a sensitivity analysis

can be made to determine which parameters hold the most influence of the response of

Smo activity to the presence of surrounding Shh concentration. Two specific cases are

the change of maximal production rates and degradation rates of Smo concentration,

while others did not alter the maximal Smo concentration reached significantly enough.
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(a) Change in vmaxSmo parameter (b) Change in kdSmoA parameter

Figure 5.3: Smo concentration as a function of a fixed ShhT concentration. (A): Change
in vmaxSmo affecting the maximal steady state value of Smo.(B): Change in kdSmoA.

As seen, from (A) we have an increase in maximal Smo concentration with an in-

crease of the parameter vmaxSmo, and decrease with a reduced value of the parameter.

Also a similar effect in (B), with a change in degradation rate kdSmoA. However, in-

crease from a lower value of kdSmoA has more of a profound effect on the steady state

value of SmoA compared to an increase from a higher value. Also by inspection, we

see that once the fixed ShhT concentration reaches a value of around 5nM , the change

in steady state values of SmoA does not change significantly, and actually begins to

reach a maximal value for the respective parameter values. This trait seems to link to

the saturated effect of extracellular ShhT concentration, so that no matter how much

more the concentration of ShhT is increased, the amount of Smo concentration will

remain at this maximal steady state value. The shape of the curves are also considered

to be sigmoidal, implying that the reaction is cooperative.

To check whether this system will remain in a steady state value under the default

parameter values given in Table 5.1, we will use the mathematical software Maple to

develop stability analysis for this three variable system, to determine whether there

will always be at least one steady state value. However, it has proven too difficult

to show analytically how the system will always contain one stable equilbrium point.

Even with assumptions that the variables in question and the parameter ShhT are

positive, it isn’t possible to analyse the eigenvalues of characteristic polynomial unless

the values are stated. Using the default parameter values we are able to at least anal-

yse the system for specific equilibria. Hence, we obtain the equilibrium points of the

system found by setting equations (5.1a-c) equal to zero. Note that six equilibria were

found, however four of which were complex points, and one had a negative value for
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the variable Ptc1 which is considered to be impossible to obtain in a biological sense

(can only have real, positive concentrations) and so only one fixed point is considered.

Therefore, by conducting a few tests for values of ShhT at 1, 5, 10, 20 and 30nM to

see if these fixed points found respective to the stated ShhT values, we show they are

indeed stable. The respective fixed points are as follows:

SmoA = 1.143042472, P tc1Shh = 0.6392713705, P tc1 = 1.131233264 (5.2a)

SmoA = 3.049618446, P tc1Shh = 1.532080006, P tc1 = 0.2820070067 (5.2b)

SmoA = 3.341109043, P tc1Shh = 1.685871696, P tc1 = 0.1294360708 (5.2c)

SmoA = 3.408512874, P tc1Shh = 1.754176460, P tc1 = 0.6137017080 (5.2d)

SmoA = 3.419955757, P tc1Shh = 1.775432208, P tc1 = 0.4015358420 (5.2e)

Now, to determine their stability again we will check the eigenvalues produced from

the 3x3 Jacobian matrix.

J =


−kdS 0 − Vm k1n1 (Ptc1+Ptc2 )n1n1

(k1n1+(Ptc1+Ptc2 )n1 )
2
(Ptc1+Ptc2 )

0 −kbP Ptc1 − kdP − kr kbP (ShhT − Ptc1Shh)

ks SmoAn2n2
SmoA (SmoAn2+k2n2 )

− ks (SmoAn2 )
2
n2

(SmoAn2+k2n2 )
2
SmoA

kbP Ptc1 + kr −kdP − kbP (ShhT − Ptc1Shh)


(5.3)

The respective eigenvalues for the equilibria points given in order are a follows:

λ1,1 =− 0.700199794085307 + 0.217104332133987i,

λ1,2 =− 0.700199794085307− 0.217104332133987i,

λ1,3 =− 2.55631431358294, (5.4a)

λ2,1 =− 0.700043280267235 + 0.334357803993192i,

λ2,2 =− 0.700043280267235− 0.334357803993192i,

λ2,3 =− 5.26590374494655, (5.4b)

λ3,1 =− 0.700010021392614 + 0.136097285387602i,

λ3,2 =− 0.700010021392614− 0.136097285387602i,

λ3,3 =− 10.8982752407215, (5.4c)
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λ4,1 =− 0.700002334159351 + 0.609855858830547i,

λ4,2 =− 0.700002334159351− 0.609855858830547i,

λ4,3 =− 22.7346319881681, (5.4d)

λ5,1 =− 0.700001009549898 + 0.391866965841520i,

λ5,2 =− 0.700001009549898− 0.391866965841520i,

λ5,3 =− 34.6836654490900 (5.4e)

As we can see, all real parts for all eigenvalues are negative and so all respective

fixed points are stable.

5.4 Model including FGF signalling

Moving on from the core Shh signalling system, we are now going to introduce FGF

signalling into the mathematical model. Exposure of FGF to cells when Shh signalling

is active has been experimentally shown to promote the activity of Ptch2, which can

alter the response of cells to Shh signalling. This is upregulated by Shh signalling,

hence is a part of a negative feedback loop within the system. By extending the system

of three ODEs to five ODEs, we are able to describe the dynamics of the five variables

in question, SmoA, Ptch1, Ptch1− Shh, Ptch2 and Ptch2− Shh.

Figure 5.4: Basic schematic diagram of Sonic hedgehog signalling system, now with
FGF incorporated into the model. Figure from [19].

The additional equations that add to (5.1a)(5.1b)(5.1c) are the following:
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dPtc2Shh

dt
=kbP t1S(ShhT − Ptc2Shh)Ptc2− krP t1SPtc2Shh

− kdPt1SPtc2Shh (5.1d)

dPtc2

dt
=rbasp1 + ksPt1(γ + FGF )

SmoA
n2

SmoAn2 + k2n2
− kdPt1Ptc2

+ krP t1SPtc2Shh− kbP t1SPtc2(ShhT − Ptc2Shh) (5.1e)

Here, we have for (5.1d) the production term due to free Shh outside of the cell com-

bining with Ptc2 to create Ptc2Shh at a rate of kbP t1S. The two decaying terms

are due to the conversion of Ptc2Shh back into Ptc2 and Shh at a rate krP t1S, and

the degradation of Ptc2Shh at a rate kdPt1S. For (5.1e), we have three production

terms, which are respectively due to the basal synthesis of Ptc2 at a rate rbasp1, the

promotion of Ptc2 concentration due to FGF signalling at a rate ksPt1 and the release

of Ptc2Shh into Ptc2 and Shh separately. The two respective decay terms are due to

the degradation of Ptc2 and the conversion of Ptc2 into the Ptc2Shh complex when

combined with Shh.

As stated previously that Ptc2 inhibits Smo activity, then we would like to see

what effect the increase in FGF concentration will have on the amount of Shh required

to promote Smo. By solving the system for SmoA steady state values at various fixed

ShhT concentrations, we are able to plot SmoA concentration as a function of ShhT :

Figure 5.5: Smo as a function of ShhT concentration with various fixed levels of FGF in
nM. All other parameter values were set to a default value, taken from the parameter
table. Figure from [19].

The response of SmoA to ShhT concentration is reduced with an increased presence
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of FGF concentration, which is more evident for mid range levels of ShhT concentra-

tion, rather than low or high ShhT concentrations. There is also a slight change in

the maximal steady state Smo concentration with an increase in FGF concentration.

However, it is only minor but appears to be expressed more so for higher levels of FGF.
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Chapter 6

Conclusion

In this project, we have studied the dynamics of biochemical reactions and the dynamics

of feedback loops within biological systems, applying to the Sonic Hedgehog signalling

system. We have developed the understanding of how Michaelis-Menten kinetics applied

to biochemical reactions, in both a single substrate and cooperative substrate sense,

indicating how simplifications can be made to obtain the simple sigmoidal case for

cooperative reactions. By using the quasi steady state assumption, we were able to

simplify the models to obtain an equation of the rate of production formation (1.8c),

otherwise known as the velocity of the reaction. By plotting this equation against

substrate concentration s, we were able to see mathematically that enzymes work at

a maximal rate after a specific threshold concentration of s, no matter the increase

of s. Also by nondimensionalisation, we were able to discover how the dynamics of a

reaction occurs during the initial transient time scale and the longer (relaxation) time

scale, which was then plotted as a phase portrait in Maple. We also established that

a Hill equation can be found for multi-substrate reactions, by simplifying the resulting

rate equation.

Furthermore, we have established an understanding of the dynamics of regulatory

feedback loops with an insight into yeast glycolysis, and further detail into a generic

example of mutual inhibition. By modelling the simplified system, we were able to

use default parameters given to create time plots of how concentrations of proteins

change. Specifically, we saw that with a change in the parameter Km, we obtained

oscillatory behaviour and damped oscillations for respective values of 13 and 20. We

then obtained fixed points of the system and by numerically analysing the resulting

Jacobians and eigenvalues using maple, we determined the stability of these points

using stability theory. The conclusion for the value Km = 13 was that we had unstable

spiral behaviour, but once a phase portrait was plotted we saw that a limit cycle existed

due to the Poincaré-Bendixon theorem. We concluded that this related to the system

“overshooting” the production of both proteins when they are respectively low, causing

this oscillatory behaviour. During the analysis of the mutual inhibition example, we
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established an understanding of how hysteresis can occur within a system, and solidying

that statement by analysing the three fixed points to obtain two stable and one unstable

point. Also by analysing the bifurcation plots for mutual inhibition, we saw how the

system would switch to it’s “on” state with an increase in signal concentration, and back

to its “off” state with a decrease in signal concentration. Similarly, we established that

for mutual activation that the system would be unable to turn “off” after a decrease

in signal concentration causing what is known as an irreversible switch.

This knowledge was then used to consider the effect on the Sonic Hedgehog sig-

nalling system, and concluded that it is possible to obtain an irreversible switch under

parameter changes from the Sonic Hedgehog signalling pathway model. Notable effects

were changes in parameters Vmax.G, K−1
Ptc and K2, highlighting the causation of gli1

over transcription, Patched and Smoothened protein mutations and Gli3 truncations

respectively which possibly lead towards disease such as cancer. Another simpler model

was taken into consideration to analyse the effects that FGF has on the system, and ex-

cluding bistability as it was experimentally found not to have a key role in the system.

Analysis of the stability of the simpler three variable model was determined to not be

possible numerically, and so for the specific range of Sonic Hedgehog concentrations

stated, the system was found to be stable. For the five variable model which included

FGF signalling, it was shown that FGF alters the total amount of Sonic Hedgehog

concentration required to activate SmoA production by increasing the threshold value.

This threshold value would also increase higher with an increase of FGF concentra-

tion, although only a slight decrease on the maximal SmoA value attained was shown.

Further research can be done, by considering spatio-temporal effects of Shh concentra-

tion within the Sonic Hedgehog signalling system to give a better insight into how the

system works.

From this study, we conclude that biochemical reactions can indeed be modelled

mathematically and used to explain abnormalities within a biological system (specif-

ically the Sonic Hedgehog signalling system) where others may not detect why they

appear. In addition, FGF does alter the Sonic Hedgehog signalling system by decreas-

ing the response of the Sonic Hedgehog signal which is useful for patterning of the

neural tube.
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