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Chapter 1

Introduction

Over the last century people have come accustomed to high levels of risk. In
the last century several major wars have swept across the globe; this would
have of lead to people wanting to reduce the element of risk (in life in general).
A method in reducing risk is insurance. Insurance companies have become
the norm in today’s society. It has even been made compulsory in certain
parts of life, for example car insurance. This type of insurance attempts to
reduce the risk of driving in a car. The main element of risk is a car crash,
the insuring body will cover all costs incurred on the the vehicle.

There are many types of insurance that are optional. Insurance firms have
taken advantage of every corner of daily life. As technology advances and
becomes more portable insurance companies have taken it upon themselves
to be the main method of reducing risk. A new form of insurance that has
been developed recently is mobile phone insurance, this form of insurance is
usually linked to devices people carry around with them on their person.

People have become so dependent on the idea of reducing the element
of risk that insurance companies now insure the ’concept of life’. Life in-
surance is an attempts to compensate the recently deceased family/relatives
with wealth in an attempt to remove the fear of lack finance the recently de-
cease provided. For insurance companies to consider life insurance mortality
dynamics will have to be taken into account. Without mortality dynamics
the insuring body can run the risk of under estimating the total amount to
insure a large group of clients.

When insurance companies tackle risk, they have to consider the two main
types of risk; individual and aggregate. The first type of risk refers to random
fluctuations around an expected value. This is down to the uncertainty of
an individual’s life. The other component is a systematic risk. This means
that the risk is systematically deviating from the expected life time, due to
unexpected mortality improvements [24]. The unexpected mortality has the
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most significant financial impact on insurance companies. With this in mind
it is understandably obvious that research in mortality has become more of
a priority in insuring bodies.

1.1 Gompertz Law of mortality data

The modeling of mortality over the past decades has attracted a growing body
of researches [4][5]. A key development in the modeling of mortality occurred
when Benjamin Gompertz published a paper in 1825 [3]. In his study he
describes the link between mortality and aging. Benjamin Gompertz uses a
exponential function for this link, it is more commonly known as Gompertz’s
Law. Mathematically Gompertz Law is expressed by;

mx = m0e
βx (1.1)

Where m0 represents the initial mortality at age 0. β reflects the rate of
demographic aging (or the change of mortality rate). x is the age of the
population and mx is the mortality relating to the specific age.

1.2 Deviations from Gompertz Law

The Gompertz function gives a good prediction (fitting) of mortality after
a specific age [3]. This become apparent when the mortality against age is
displayed on a graph.

By viewing mortality against age in a semi logarithmic scale, it becomes
clear that mortality is split into three key stages. The first stage is a sharp
decline in mortality between ages 0 to 10. This is down to the improvement
of the immune system in youngsters at this specific aged period.

The second stage is called the accidental hump and occurs approximately
around 12 to 30. The accidental hump can still affect the system even as late
as the late 30’s to early 40’s. This stage reflects the accidents young adults
have at this age. For females the accidental hump also takes into account
menstrual deaths (deaths when giving birth).

The final stage is simply aging. This stage is where Benjamin Gompertz
noticed the link between mortality and age. The increase in mortality is
fairly linear in a logarithmic scale, and suggests an exponential link between
morality and age after a specific age (approximately 40 plus). Pearson found
the dividing of mortality into stages by considering deaths as a random event

4



[6]. He found out that mortality can potentialy be divided into five different
stages. He used deaths from England (1871-1880) to show these stages.

Figure 1.1: Period data from Sweden 1915, set in a semi logarithmic scale (natural
log of mortality against age). Consisting of female mortality (blue circles), male
mortality (red squares) and total mortality (green diamonds).

For the insurance companies the Gompertz function is ideal. It has de-
mographic meaning for each parameter. It also has minimal number of free
parameters. The Gompertz function is ideal for getting the trend of mortal-
ity over a time period. Through the development of trends predictions can
be made for future time periods.

1.3 Models that incorporate Gompertz Law

Many models have incorporated the Gompertz function. The most noticeable
model is the Makeham model [4].

mx = α +m0e
βx (1.2)

The single difference is that this model includes a constant α. This con-
stant has a greater effect depending on the species it is modeling mortality
on. For example, for wild birds the α constant has a greater impact com-
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pared to a human population, the Gompertz function has a greater impact
[27].

The addition of the parameter alpha has a certain act on the nature of
the model. Firstly it increases the initial starting point at age 0. The second
affect is that it makes the demographic slope be more gradual at early ages.
This gives it the affect of a gradually increasing in gradient until it converts to
the Gompertz function. When the Makeham model converts to the Gompertz
function the parameter alpha has little affect to the overall model. From
observing figure (1.2) it is clear to see the effect the alpha parameter has
on the Makeham model. The initial increase of the parameter alpha from
0 to 0.0001 the model reveals a sharp jump from the initial mortality. As
the alpha parameter continues to increase by 0.0001 the jumps between the
previous model become small.

Figure 1.2: Period data from Sweden 2000. Set in a semi logarithmic scale, the
natural logarithm of mortality against age. The Makeham model has been fitted
with constant initial mortality and beta. The alpha parameter is increasing from 0
to 0.0012 by a factor of 0.0001.

Another model that incorporates the Gompertz Law is the Heligman
Pollard Model [5] [24] [25]. This model attempts to fit the probability of
dying over the probability of surviving. The model can be adapted to fit the
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force of mortality. Through observations and analysis in the pre-dissertations
“Modelling Mortality Dynamics in Human Populations” mortality data and
probability data have key similarities making the Heligman Pollard Model
able to comparable against mortality data. Gompertz Law is within the third
term of the Heligman Pollard model;

qx
px

= A(x+B)C +De−E(lnx−lnF )2 +GHx

Each term of the Heligman Pollard Model models each part of the mor-
tality data. The first term models the data over the ages of 0 to 12 also
referred to as the young age model. The Second term is takes into considera-
tion the accidental hump and the final term fits the aging aspect of mortality
dynamics.

Figure 1.3: Cohort data from Sweden 1900 capped at the age 90. Set in a semi
logarithmic scale, natural logarithm of probability of dying against age.

There are many other models that incorporate the Gompertz Law, but
for this dissertation they won’t be considered.
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1.4 Heterogeneous Population described by

Gompertz Law

In this stage we introduce another model of mortality which corporate the
Gompertz Law and the Heterogeneity of human populations. Therefore for
simplicity we refer to it in this dissertation by the name “Heterogeneous
Gompertz model” [10]. This model has a simple idea, to break the pop-
ulation into sub-populations[8]. Each sub-population is then amenable to
Gompertz function modeling over a specific point of mortality. This model
suggests that the simple Gompertz function is the homogeneous version of
the Heterogeneous Gompertz model. The Heterogeneous Gompertz model
has several advantages over the simple Homogeneous Gompertz function; as
each sub-population models a specific period of mortality (for example age 0
to age 5) the model can take form of the overall mortality.

Insurance companies will be more incline to want the information of a
person’s entire career life. If the assumption that people who pursue a career
start in their early 20s (due to higher education), then the mortality at the
age of 20+ can now be considered. By observing figure (1.1) it is clear that the
accidental hump still affects the mortality of the population. This shows that
the simple Homogeneous Gompertz function will be inadequate, because it
will not take into account any affect the accidental hump has on the mortality.
Also the Makeham model (equation 1.2) will be inefficient as this is only the
Gompertz equation with an constant term added to it [4]. The Heterogeneous
Gompertz model on the other hand will be ideal for it can take into account
the tail end of the accidental hump. This is important because it will give a
better level of accuracy. With the analysis tool of the Bayesian Information
Criterion [16], the Heterogeneous Gompertz model can now determine the
number of sub-populations [7][8][9]. As each sub-population will increase
the number of k parameters, the Bayesian Information Criteria will give the
higher sub-population models a high penalty. This will allow the number of
sub-populations to stay low and to avoid the possibility of over fitting the
data set.

The Heterogeneous Gompertz model [10] is represented in the following
equation;

mx =

n∑
j=1

ρxj

(
mxj

(1 + (1− a)mxj)

)

1− (1− a)
n∑
j=1

ρxj

(
mxj

(1 + (1− a)mxj)

) (1.3)
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where mxj is the Gompertz function (equation 1.1) over the sub-population
j. a is the fraction of the age where the average number of deaths occur
within the year. As mortality is being considered a is typically set to half
(0.5). Finally ρxj is the fraction of the total population for a specific sub-
population;

ρxj =
Nxj

Nx

where Nxj is the size of the sub-population and Nx is the size of the total
population. By implementing the Gompertz function another parameter
has to be taken into account (βj). For each sub-population there are three
corresponding parameters. By increasing the number of sub-population the
number of parameters increases dramatically.

Due to the nature of the sub-population fractions, one of the free param-
eters can be removed. As the sum of the fractions of the sub-populations
equal to 1 one fraction can be removed.

ρx = 1−
(
ρx1 + ρx2 + · · ·+ ρx(j−1)

)
The Heterogeneous Gompertz model was firstly introduced in the paper

“A mathematical Model of Mortality Dynamics across the life span combining
heterogeneity and stochastic effects” [10]. Within the study the analysis
of number of a sub-population in fitting mortality data was contemplated.
To find the optimal number of sub-populations without over the fitting of
mortality data Bayesian Information Criterion was used.

Figure 1.4: Semi-Logarithmic scale, the logarithm of mortality against age. Fit-
ting data from Sweden Mortality data in the year 2007. Graph A is a 3 sub-
population Heterogeneous Gompertz model, Graph B is a 4 sub-population Het-
erogeneous Gompertz model and graph C is a 5 sub-population of Heterogeneous
Gompertz model.
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Through the analysis using the Bayesian Information Criterion the 4
sub-population Heterogeneous Gompertz model is the best fitting model for
mortality data. However it is difficult to deduce which sub-population cor-
responds to what stage of mortality data. The first sub-population model’s
the sharp decline in mortality data which is based on approximately age 0 to
10. The second sub-population model’s the accidental hump that starts ap-
proximately age 12 and finishes roughly at age 25. The third sub-population
reflects the aging aspect of mortality. Now the four sub-population improves
the fit of the young mortality giving a better fit. The fifth sub-population
points to the improvement of the fit at the end of the accidental hump. How-
ever the fifth sub-population starts to make the Heterogeneous Gompertz
model to over fit the mortality data.

1.5 Mortality dynamics as a Poisson Process

Gompertz Law has been used as a key method in modeling mortality after
the age of approximately 40, however Gompertz Law can also be derived by
the Poisson Process [11].

P (n, x) =
1

n!
(λx)ne−λx

The Poisson Process takes the Poisson distribution and applies it to the
idea of mortality. To do this the assumption that deaths can by caused be
illness and disease. It is noted that probability of death by illness or diseases
are randomly independent so illness or disease are not caused by a prior
illness or disease and they do not influence an illness or disease.

There are two different types of the Poisson Process, the homogeneous
and the non-homogeneous [12]. The homogeneous Poisson Process is one of
the most well known processes. This process focuses on the rate of parameter
λ, also known as intensity parameter. The non-homogeneous Poisson Process
takes the idea that the rate parameter is changing in respect to time. So the
generalized rate parameter can be expressed as a function λ(f). For this
dissertation the Homogeneous Poisson Process will be taken as a method to
derive the Gompertz Law and also express additional possible functions that
could fit the mortality data.

1.6 Analysis of mortality data

The analysis of data is an important stage of statistical mathematics. There
are many methods for statistical analysis, many are base on assumptions
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over the overall data set. These assumptions consist of using the probability
density functions as a method to form statistical analysis. Many of these
methods of analysis are called hypothesis test [13] and contain the main
common forms;

• z-test statistic: This test uses the normal distribution to form an anal-
ysis.

• t-test statistic: This test also uses the normal distribution to form
statistical analysis however this test considers a small sample size com-
pared to the z-test statistc.

With the use of these hypothesis testing a large range of analysis can be
formed. However there is a large range of data sets that do not form hy-
pothesis test and therefore they do not take the probability density function
approach. This approach attempts to fit a model to the data set. Linear
regression is a a typical model that is a commonly used in fitting data sets.
The most basic form of linear regression is the following;

yi = β0 + β1xi + ξi

where β0 is the cross section of the y-axis, β1 is the gradient of the slope, xi is
the explanatory variable (i = 1, . . . , n). ξi is the error of the linear regression
[14].

However when trying to fit models to a data such as the linear regression
there are two key methods, the Likelihood and the Least Squares [15].

1.6.1 Likelihood and Least Squares

A method of analysis need to be developed [17]. For this dissertation Bayesian
Information Criterion (BIC) will be the main method for the analysis. BIC
can be represented into two formats. The likelihood format and the least
squares format. Each format gives the same result showing a casual key link
between the likelihood and residual sum of squares. To understand this link
the Likelihood and Least Squares theory will have to be considered.

Typically Least Squares theory is favoured over Likelihood Theory. Biol-
ogists have been exposed to the Least Squares theory through the application
of applied statistics, as a result Least Squares theory has ‘enjoyed’ an early
history of application (Weistedburg 1985) [17]. By comparison Fisher’s Like-
lihood Methods have required numerical methods and have turned out to be
unpopular before the development of the computer. Both the Least Squares

11



and the Likelihood have many similarities [15]. They both yield identical es-
timators of the structural parameters for linear and non linear models, this is
when the residuals are assumed to be independent and normally distributed
[23].

To see the link between Likelihood and Least Squares theory, the normal
distribution N(µ, σ2) can be considered. This is where µ is the mean of the
normal distribution and σ2 is the variance

g(xj|µ, σ2) =
1√
2πσ

e−
1
2

(xj−µ)
2

σ2 .

The likelihood of the the probability distribution is expressed as;

L(θ, xj) =
n∏
j=1

1√
2πσ

e−
1
2

n∑
j=1

(xj−µ)
2

σ2

L(θ, xj) =

(
1√
2πσ

)n
e−

1
2

n∑
j=1

(xj−µ)
2

σ2

The next step is to take the log-likelihood;

ln(L(θ, xj)) = ln

((
1√
2πσ

)n
e−

1
2

n∑
j=1

(xj−µ)
2

σ2

)

= ln

((
1√
2πσ

)n)
+ ln

(
e−

1
2

n∑
j=1

(xj−µ)
2

σ2

)

= n ln

(
1√
2π

)
− n ln(σ)− 1

2σ2

n∑
j=1

(xj − µ)2

The maximum likelihood estimator (MLE) needs to be found. To do
that partial derivatives of the log-likelihood of the normal distribution. By
setting it to 0 the maximum likelihood can be formed and further analysis
can be observed. The partial derivation of the log-likelihood of the normal
distribution in respect to µ is the following;

0 =
∂

∂µ
l(µ, σ2;xj)

0 =
∂

∂µ

n∑
j=1

(xj − µ)2

(1.4)
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0 = −2
n∑
j=1

(xj − µ)

µ̂ =
1

n

n∑
j=1

(xj),

and solving this for µ we can get an estimate for the population sample µ̂ = x̄.
This can now be subituted into the maximum likelihood in respect to σ.

0 =
∂

∂σ
l(µ, σ2;xj)

0 =
∂

∂σ

(
n ln

(
1√
2π

)
− n ln(σ)− 1

2σ2

n∑
j=1

(xj − x̄)2

)

0 = − 1

σ

(
1

σ2

n∑
j=1

(xj − x̄)2 − n

)

σ̂2 =
1

n

n∑
j=1

(xj − x̄)2

Through maximum likelihood the Least squares method has be shown.
In addition to the maximum likelihood deriving the least squares method
through the use of the normal distribution another important result can be
expressed.

log

(
L(θ̂)

)
= n ln

(
1√
2π

)
− n ln(σ)− 1

2σ̂2

n∑
j=1

(xj − x̄)2

or

log

(
L(θ̂)

)
= −n

2
ln(σ̂2)− n

2
ln(2π)− n

2

The additive constants can often be removed from the log-likelihood, this
results to a key result.

log

(
L(θ̂)

)
≈ −n

2
ln(σ̂2)

This result is important for the Bayesian Information Criteria, because it
allows a simple mapping from Least Squares analysis results into the maxi-
mized value of the log-likelihood function.
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1.6.2 Bayesian Information Criterion

Bayesian Information Criterion can be expressed in two forms giving it a
greater power of analysis[17][19]. Firstly the likelihood format;

BIC = −2log
(
L(θ̂)

)
+ k log(n) (1.5)

The Least Squares format of the Bayesian Information Criteria assumes
that all errors are set to a normal distribution and with a constant variance.

BIC = n log(σ̂2) + k log(n) (1.6)

where k is the number of parameters and n is the number of data.
From this the models can now be analysed in greater detail. The Bayesian

Information Criteria also takes into account parameters. This shows that
the Bayesian Information Criterion gives a high penalty to the number of
parameters (k). This suggests that models with fewer parameters will be
favoured over models will larger number of parameters [20][21].

1.7 Male and Female mortality data

From observing figure 1.1, the number of sub-populations needed to model
age 20+ is unclear. The Bayesian Information Criterion can be used to help
to decipher the amount of sub-populations needed to model mortality above
the age of 20+.

Figure 1.5: Period data from Sweden, set in a semi logarithmic scale (natural
logarithm of mortality against age). Male population is represented by the red
triangles and the Female population is represented by the blue circles. Panel A
is population from the year 1900, panel B is population from the year 1950 and
finally panel C is population from the year 2000

By observing male and female mortality through the last century there
is an increasing gap between the two sexes. Figure 1.5 demonstrates the
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increasing difference between male and female mortality. The females’ acci-
dental hump seems to be decreasing in magnitude and with the period data
set of 2000 it appears that this has disappeared. The decline in the acci-
dental hump for female mortality could be down to the increase in medical
advances in the field of giving birth. Due to these improvements male and
female mortality in Sweden have grown steadily apart making it impractical
to consider both sexes individually. As a result of this the combined mor-
tality of Sweden will taken for the main analysis for this dissertation. For
this dissertation all human mortality observation data is gathered from the
website “http://www.mortality.org”.

1.8 Within the dissertation

For this dissertation there are a few key points that will be taken into con-
sideration. The first point is the see if the Gompertz function is an adequate
model for insurance companies to use when mortality of a population over
the age of 40 is considered. This runs along side the second point the Poisson
Process being another candidate for the insurance companies to use on the
population. The comparison between Poisson Process and Gompertz Law
can be analysed by the Bayesian Information Criterion. The next point fo-
cuses on the understanding of the BIC. This dissertation will go in depth
into analysing how the BIC is derived and what assumptions it uses for the
comparison of models.The final point is to consider a population over the
age of 20 (as this will be more beneficial for the insurance companies due to
nature of employment ). For this the Heterogeneous Gompertz model can be
used to make predictions for the future mortality. Also the reduction of free
parameters will be explored, in an attempt to improve the predictions of the
Heterogeneous Gompertz model’s parameters.
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Chapter 2

Model fitting and Selection
Criteria

2.1 Model selection

In Statistics models are generally being developed to form an analyses over
a data sample. The use of models allows a greater understanding of the data
sample. However the choice of a suitable model is difficult, the possibility
of over fitting or under fitting the data sample is high. By choosing an
inappropriate model for the data sample the predictions and results can
be drastically inaccurate. To avoid this from happening Model Selection
has been developed so that a model can be analysed with regards to it’s
suitability for the data sample. To do this analysis several considerations
have to been taken into account.

When finding a suitable model from a row of possible candidate models
the number of parameters that the govern each model will have to be taken
into account. The number of parameters of a model show whether the model
has a chance in over fitting the data sample. Usually the larger the number
of parameters will impact on the model over fitting the data sample. If the
model has a small amount of parameters then it generally will under fit the
data sample. This means that the model is too rigid to fit the data and will
make poor predictions. Similarly if the model is over fitting a data sample
then the model will only make predictions to the specific details of the data
sample There is also the danger that the model will be fitting the noise within
the data sample.

The other consideration that is taken into account when selecting a suit-
able model for the data sample, is the size of the sample itself. Generally
speaking the increase in the sample size can compensate for the increase in
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the parameters of the model. However if a model can fit a large data sample
efficiently with a small number of parameters this will be highly preferred.
Due to the minimum number of parameters the model will have a fairly
simple form, this will allow an easy analysis and predictions.

There are several methods for choosing the best model for the data sample
from a group of candidate models. Most of these methods take into account
the number of parameters within the model and the data sample size. This
makes it difficult to choose which model selection method to use. There are
a few categories for selecting a model. Each category holds a wide range of
model selection methods. Here a few categories of model selection;

• Bayesian Model selection.

• Frequentest Model selection.

• Multi-level Inference: A Unifying view of Model selection [16].

The two noticeable model selection categories come straight from two aspects
of statistics. Bayesian statistics is a widely used aspect of statistics. The key
feature of this statistics is the use of priors linked with data to produce a
posterior outcome. This feature runs throughout Bayesian statistics. The
other noticeable model selection category (Frequentest Model selection) is
linked to Frequentest statistics. This statistics does not taken into account
any form of priors to form a result from. The frequentest approach is to
use solely data provide with in the test. The final category takes a slightly
different approach it considers multiple levels of inference where each level
corresponds to one set of parameters or hyper-parameters. As each category
of model selection is equally valid as the next, Bayesian Model selection will
be considered for the analysis for this dissertation.

The reason for the use of Bayesian Model Selection will become more ap-
parent when the assumptions are taken into account. With Bayesian model
selection there are many different methods, each using slightly different as-
sumptions for the selection of a model to fit the data. The two main model
selecting approaches is the Akaike Information Criterion (AIC) [22] and the
Bayesian Information Criterion (SIC, BIC and SBC) [17]. For this disserta-
tion the Bayesian Information Criterion will be considered to be the main
approach in comparing models given a data set.
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2.2 Selection Criteria

The Bayesian Information Criterion was introduced by Schwarz G in 1978
in his paper ‘Estimating the Dimension of a Model’ [18]. Schwarz’s criterion
became a competitor to the already existing method of model comparison
Akaike Information Criterion. Schwarz derived Bayesian Information Cri-
terion as an approximation to the transformation of the Bayesian Posterior
Probability for a candidate model. The derivation of Bayesian Information
Criterion is mainly concerned with the log-likelihood and does not need par-
ticular requirements for priors allowing vague priors to be used within the
derivation.

Another Bayesian comparison method is the Bayes factors [20]. The Bayes
factors represents the ratio of the posterior probabilities of two candidate
models with probable priors. The only problem with Bayes factors is that the
priors’ of the models can be difficult to set. Fortunately Bayesian Information
Criterion model selection is approximately equivalent to the Bayes factors’
model selection (in certain settings) [20]. This makes Bayesian Information
Criterion a more favourable approach to model selection over Bayes factors
when the priors are difficult to set.

Another criterion is the Akaike Information Criterion. Both criteria have
very similar formulas with only part of the formal that differs.

BIC : nln(σ2) + kln(n)

AIC : nln(σ2) + 2k

The difference between these two criteria is the second term [17]. The
second term reflects on the penalty the criterion gives to the parameters of
the candidate model. The penalty term for the Bayesian Information Crite-
rion is more significant compared to the Akaike Information Criterion. As
the sample size becomes greater than 8, the Bayesian Information Criterion
penalty term as a greater impact to the criterion compared to the Akaike
information Criterion penalty term. This makes the Bayesian Information
Criterion favour models that have less parameters compared to the other
criterion.

As each criterion is very close to each other it is difficult to choose between
them. The Akaike Information Criterion is asymptotically efficient however
it is not consistent where as the Bayesian Information Criterion is consistent
yet not asymptotically efficient. A criterion that is asymptotically efficient
will asymptotically select the fitted candidate model which minimises the
mean squared error of prediction [17]. The Bayesian Information Criterion
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can be used to compare candidate models that are non-nested. The Bayesian
Information Criterion can also be used to compare candidate models based
on different probability distributions. By doing this the log-likelihood form
of the Bayesian Information Criterion (equation 2.9) cannot discard any con-
stant terms.

2.3 Derivation of Bayesian Information Cri-

terion (BIC)

In deriving the Bayesian Information Criterion there are many methods. For
this dissertation only one method for deriving the criterion will be considered.
To start the derivation of the Bayesian Information Criterion lets consider
a crude derivation of the criterion, so that the true derivation will become
easier to understand.

Firstly lets consider an observed data sample Yn = (y1, y2, . . . , yn) and
the data sample is n large [19]. Now lets assume that a candidate model M
fits the observed data sample. The candidate model has k parameters that
can be represented as a vector θ.

Now let L(θ|Yn,M) represent the likelihood for Yn based on the candidate
model M . As shown in the introduction chapter the maximum likelihood
estimator can be formulated from the likelihood. The maximum likelihood
estimator for the candidate model is represented as L(θ̂|Yn,M). The next
step is to take the marginal likelihood, this is represented as the following
[18]; ∫

L(θ|Yn,M)dθ (2.1)

Now the likelihood can be approximated through Taylor’s series expan-

sion
[
f(x) = f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a)2 + . . .

]
. The second order of

the Taylor’s series expansion of the log-likelihood about θ̂ will be a efficient
approximation of the log-likelihood function represented as log (L(θ|Yn,M)).

log (L(θ|Yn,M)) ≈ log
(
L(θ̂|Yn,M)

)
+ (θ − θ̂)T

∂ log
(
L(θ̂|Yn,M)

)
∂θ

+(θ − θ̂)T
∂2 log

(
L(θ̂|Yn,M)

)
2∂θi∂θj

(θ − θ̂)
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The first derivative of the maximum likelihood estimator
(
L(θ̂|Yn,M)

)
is

equal to zero. This makes the second term zero, the Taylor series expansion
of the logL(θ|Yn,M) can be reduced to;

log (L(θ|Yn,M)) ≈ log
(
L(θ̂|Yn,M)

)
+(θ − θ̂)T

∂2 log
(
L(θ̂|Yn,M)

)
2∂θi∂θj

(θ − θ̂) (2.2)

The second derivative of the log-likelihood is a key component. The
Fisher information corresponds to this component. The negative expected
value of the second derivative of the log-likelihood is Fisher information. To
understand this component a better understanding of the Fisher information
will have to be considered and analysed.

Side note: Consider the normal distribution as an example in how the
Fisher information works [23]. Suppose a random sample (X1, . . . , Xn) from
a normal distribution N(µ, σ2), and µ and σ are unknown parameters. The
Fisher information is represented by I(θ), where θ represents the unknown
parameters µ and σ2.

Firstly consider a single data point X1. The Fisher information then can
be just the log of the normal distribution.

N(µ, σ2) =
1√

2πσ2
e
−(X1−µ)

2

2σ2

l(x|θ) = log
(
N(µ, σ2)

)
= −1

2
log(2π)− 1

2
log(σ2)− (X1 − µ)2

2σ2
.

Hence getting the second derivative l(x|θ) in respect to µ.

lµ(x|θ) =
(X1 − µ)

σ2
, lµµ(x|θ) = − 1

σ2

Now to get the negative expected value of the second derivative.

Iµµ = −E
[
− 1

σ2

]
=

1

σ2
(2.3)

The second step is to get the second derivative l(x|θ) in respect to σ2.

lσ2(x|θ) =
(X1 − µ)2

2σ4
− 1

2σ2
, lσ2σ2(x|θ) = −(X1 − µ)2

σ6
+

1

2σ4
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Hence,

Iσ2σ2 = −E
[
−(X1 − µ)2

σ6
+

1

2σ4

]
(2.4)

The expected value for X1 and X2
1 are known and can be substituted into

(equation 2.4) so that the negative expected value for the second derivative
in represent to σ2 can be found. Where E[X1] = µ and E[X2

1 ] = µ2 + σ2 the
Fisher information value is;

Iσ2σ2 =
1

2σ4
. (2.5)

Finally the second partial derivative in respects to µ and σ2;

lµσ2(x|θ) = lσ2µ(x|θ) = −(X1 − µ)

σ4
, Iµσ2 = 0.

The Fisher Information values can now be placed into a matrix to form
the Fisher’s information matrix (Ī1 represents the Fisher’s information matrix
for one observation) for the normal distribution.

Ī1 =

(
Iµµ Iµσ2

Iµσ2 Iσ2σ2

)
=

(
1
σ2 0
0 1

2σ4

)
. (2.6)

This matrix is now called Fisher’s Information Matrix. A key point to take
into account is the size of the Fisher’s information matrix. The Fisher’s
information matrix is a k by k sized matrix where k is the number of free
parameters. In this case there are two unknown parameters so the size of the
Fisher’s Information matrix is 2 by 2. Now to consider the log-likelihood of
the normal distribution for the n data points.

l(x|θ) = log
(
N(µ, σ2)

)
= −1

2
log(2π)− 1

2
log(σ2)−

n∑
p=1

(Xp − µ)2

2σ2

where p = 1, . . . , n. By taking the likelihood of the normal distribution all
possible values of X are being considered. This will have a slight affect on
the Fisher’s information
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lµ(x|θ) =

n∑
p=1

(Xp)−nµ

σ2 , lµµ(x|θ) = − n

σ2

lσ2(x|θ) =

n∑
p=1

(Xp−µ)2

σ4 − 1
2σ2 , lσ2σ2(x|θ) = −

n∑
p=1

(Xp − µ)2

σ6
+

1

2σ4

lµσ2(x|θ) = lσ2µ(x|θ) = −

n∑
p=1

(Xp)− nµ

σ4

By applying the negative expected value on each second derivative the
Fisher’s information matrix (Īn represents the Fisher’s information matrix
for the entire data set) becomes the following;

Īn =

(
n
σ2 0
0 n

2σ4

)
= nĪ1. (2.7)

This characteristic of the Fisher’s Information matrix carries through
when finding the Fisher’s information matrix for any model. The normal dis-
tribution was considered as the model in calculating the Fisher’s information
matrix as it is fairly easy to compute and analysis.The Fisher’s information
matrix is the inverse of the covariance of the normal distribution, this allows
the covariance to be used when deriving the Bayesian Information Criterion.

Now lets substitute in the Fisher’s information matrix into equation 2.2

log (L(θ|Yn,M)) ≈ log
(
L(θ̂|Yn,M)

)
−(θ − θ̂)T 1

2
nĪ1(θ − θ̂)

L(θ|Yn,M) = L(θ̂|Yn,M)e−
1
2

(θ−θ̂)TnĪ1(θ−θ̂)

where nĪ1 = −E

∂2 log
(
L(θ̂|Yn,M)

)
∂θi∂θj


The covariance can now replace the Fisher’s information matrix and sub-

stituted into equation 2.1. This gives the following;

L(θ̂|Yn,M)

∫
e−

1
2

(θ−θ̂)TnV̄ −1
1 (θ−θ̂)dθ (2.8)

The integral of the multivariate normal distribution is the following;
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∫
(2π)−k/2|nV̄ −1

1 |1/2e−
1
2

(θ−θ̂)TnV̄ −1
1 (θ−θ̂)dθ = 1

Through the use of the integral of the multivariate normal distribution the
expression can be simplified into an approximation. By taking the natural log
and multiplying the approximation by -2 the Bayesian Information Criterion
can be expressed.

∫
L(θ|Yn,M)dθ

≈ L(θ̂|Yn,M)(2π)k/2|nV̄ −1
1 |−1/2

= −2log
(
L(θ̂|Yn,M)

)
− k

2
log(2π) + klog(n) + log

(
|V̄1|
)

(2.9)

To get the Bayesian Information Criterion into the form that it is more
commonly known then the terms that do not contain the number of observed
data can be discarded. This discarding of constant terms happens when n
becomes very large or tends to infinite, this makes the other terms within
the Bayesian Information Criterion become insignificant.

BIC = −2log
(
L(θ̂|Yn,M)

)
+ klog(n)

This derivation of the Bayesian Information Criterion is only taking into
account one possible candidate model for the data set. It also does not take
into account priors, this is unusual as Bayesian statistic uses priors and data
to get the posterior result. To consider the full derivation for the Bayesian
Information criterion the priors and multiple candidate models will have to
be taken into account.

If we assume that MV be the candidate model that describes the data
sample Yn, the candidate model is selected from sequence of candidate models
M1, . . . ,MV , . . . ,ML (1 ≤ V ≤ L). The corresponding parameter vector for
the candidate model MV is represented as θV . in a similar fashion also to
the previous proof of Bayesian Information Criterion L(θV |Yn,MV ) is the
likelihood for the candidate model MV . The maximum likelihood estimator
is also represented as L(θ̂V |Yn,MV ) [19][21].

The priors can now be consider so that the Bayesian statistics can be
formed. Assume that π(MV ) denote a discrete prior [20] over the set of the
candidate models M1, . . . ,ML. π(MV ) is also assumed to have a positive
probability. The prior over the parameter vector θV is denoted as g(θV |MV ).
By applying Bayes’ theorem to the above elements the posterior for MV , θV
can be worked out.
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Posterior = Prior × likelihood of model

f(MV , θV |Yn) =
1

H(YN)
[π(MV )g(θV |MV )] L(θV |Yn,MV ), (2.10)

where H(Yn) is the marginal distribution of Yn. The Bayesian model selection
procedure can then be based on choosing the model MV which is the most
probable posterior [21].

P (MV |Yn) =

∫
L(θV |Yn,MV )dθV . (2.11)

The equation 2.11 can now be applied into equation 2.10.

P (MV |Yn) = H(Yn)−1π(MV )

∫
L(θV |Yn,MV )g(θV |MV )dθV . (2.12)

The applied Bayes’ theorem for the most probable posterior is similar
to the marginal likelihood equation 2.1. Now the priors of the candidate
model and the corresponding parameter vector can now be non informative(
π(MV ), g(θV |MV ) = 1

)
. Finally the term H(Yn)−1 is a constant and for

the purpose of model selection the term can be discarded. This now makes
the probable posterior take the form of;

P (MV |Yn) ≡ S(MV |Yn) =

∫
L(θV |Yn,MV )dθV

This makes it exactly the same format as equation 2.1. However as we
have considered different candidate models and priors the BIC is now non-
bias and follows Bayesian statistics. The Bayesian Information Criterion be
formulated in the exactly same method demonstrated before, in the crude
definition.

BIC = −2log
(
L(θ̂V |Yn,MV )

)
+ klog(n).

This shows that the Bayesian Information Criterion does not need an
informative prior. However informative priors can be used to derive the
Bayesian Information Criterion, but non-informative priors make the deriva-
tion of the criterion more tractable.
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2.4 Summary

From the ‘Derivation of the Bayesian Information Criterion’ section then
BIC is shown to be an adequate method of selecting a model over a group
of possible candidate models. It has also shown how the BIC does not need
an informative prior to be derived. This allows the BIC to be a better
method for model selection compare to Bayes’ Factors[20].The Bayes’ Factors
need informative priors to make an informative decision on the best possible
candidate model. As several model priors are difficult to calculate the BIC
provides a better form of model selection.

As both AIC and BIC are in the Bayesian Model selection category it is
difficult to choose between the two criterion. However the BIC has a strong
penalty for the number of parameters, therefore BIC will be used for this
dissertation.
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Chapter 3

Gompertz Law and Poisson
Process

For insurance companies the age group above the age of 40 is particular
important, as this age group takes into account the retirement of the general
population and finally deaths. For life insuring companies the age group that
considers death is particular important for this will help to predict the deaths
of the general population.

There are two suitable models that can fit this data group. Gompertz
Law (also known as the Gompertz function) has be recognised as suitable
method in model mortality data since the late 1800s. It has been known
that the Gompertz Law will show the relationship between mortality and
age above a certain age. However in reality mortality data in young and old
data ages will deviate from the Gompertz function. A second suitable model
is the Poisson Process, this approach is very new. The Poison process has
the recognition that the probability of death can be caused by an premature
illness.

Both models will be able to fit the mortality data above the age of 40.
However for insurance companies the question is which model is best. To an-
swer this question the Bayesian Information Criterion can be used to evaluate
the two methods of fitting the mortality.

Another point of interest is the relationship between the parameters of
Gompertz law. The relationship between the parameters can be observed to
see if it is consistent within the Poisson Process. The Poisson Process is a key
feature in this analysis as it can take may forms; because of these multiple
forms the Poisson Process can take it is a virtual observation in whether the
parameter relationship is constant.
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3.1 Gompertz Law

Since the publication of the paper “On the Nature of the function Expressive
of Law of Human Mortality, and on a New Mode of Determining the Value
of Life Contingencies” by Benjamin Gompertz [3], Gompertz Law has been
one of the main forms of modeling mortality data. It has been so important
that many models have incorporated the function within themselves.

The Gompertz Law contains two parameters that have demographical
importance. The first parameter is the initial mortality (also referred as the
theoretical mortality). The second parameter is the demographic slope of
the Gompertz function (beta).

mx = m0e
βx (3.1)

where x represents age.
The link between the two parameters was first observed by Bernard L.

Strehler and Albert S. Mildvan [29]. The link they observed is that the
two parameters have an inverse relationship; high value of initial mortality
is related to small value of demographic slope parameter β and vice-versa.
However this link was formed with the use of the Makeham Model. By taking
mortality data from above the age of 40 the Gompertz Law’s parameters link
can be observed.

By taking the Gompertz function of the last century and over laying the
functions on top of each further analysis can be formed. This form of analysis
has been used by L. A. Gavrilov and N. S. Gavrilov [27]. This analysis was
called the Convergence of Gompertz functions and was observed across many
different countries. The new observation will be taken from a single country
over the last century. This will be more appropriate for insurance companies
as the mortality rates of difference countries are different. Also insurance
companies will be more inclined to consider data from the country they are
situated in.
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3.1.1 Evolution of Gompertz parameters

The first step for the insurance companies is to consider the mortality for
older part of the population. After the age of 40, the general population will
have been in employed for approximately 18 years. This suggests above the
age of 40 this population has accumulated a significant amount of wealth,
making it a priority for the insurance companies. By observing figure (1.1),
the age group of 40 plus consists of the stage of aging, which has an expo-
nential behaviour. This makes it perfect to fit the Gompertz function over
this section.

Figure 3.1: Period data from Sweden, set in a semi logarithmic scale (natural
logarithm of mortality against age). Each graph is fitted with the Gompertz function
after the age of 40. Panel A is a population from the year 1900, panel B is a
population from the year 1950 and panel C is a population from the year 2000

By fitting the Gompertz function on the population of Sweden over the
past century several observations and analysis can be formed. By observing
figure (3.1) it is clear that the Gompertz function improves it’s fit through
time. In 1900 the Gompertz function doesn’t fit the data well between the
age of 40 to 50. This is down to the impact that the accidental hump has
onto the data. The accidental hump at the beginning of the century has a
low magnitude but it affects a large range of ages. Whereas in the later part
of the century the accidental hump has a large magnitude but has a small
range of the affected age groups.

From the Gompertz function (equation 3.1) there are two parameters
(m0 and β).and to examine their relationship we take their values by fitting
Swedish period data over the last century with the Gompertz function using
the Least squares method. The evolution of the two parameters over time
is shown in figure 3.2. From this observation the relationship of the initial
mortality and beta can be formed. As the initial mortality decreases the beta
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Figure 3.2: Panel A plots the logarithm of mortality against years. The red tri-
angles represent male population, the blue circles represents female population and
finally green diamonds represent total population. Panel B Gompertz slope (Beta
β) versus time set in years. Green triangles is the male beta, the blue circles
represents the female beta and the green diamonds is the both male and female.

parameter increases. This link is not exactly same rate. The initial mortality
is decreasing at an exponential rate whereas the beta parameter is increasing
at a linear rate. This link between the initial mortality and the parameter
beta has been observed by Bernard L. Strehler and Albert S. Mildvan [29].
However in the study Bernard L. Strehler and Albert S. Mildvan have used
the Makeham model (equation 1.2) instead of the Gompertz function on it’s
own. The link between the initial mortality and the Beta parameter is strong
with both model designs.

3.1.2 Compensation Effect

Now to consider the link between the two parameters of the Gompertz func-
tion. Set the natural logarithm of the initial mortality at age 0 against the
demographic slope beta (β), this gives a very surprising result. By observ-
ing figure (3.3) a clear link between these two parameters can be made. As
the initial mortality at age 0 decreases exponentially the demographic slope
increases linearly. This suggests as the initial mortality decreases the aging
rate of the population increases.

A similar comparison has been made between the initial mortality and
the demographic slope (β) with the studies [27] [29]. With the use of data
that is taken from a large range of countries, the parameters are influenced by
a large range of possible exterior effects. For example environmental factors
may have impact on the data and also financial wealth of the country will
also have an effect on the data. Whereas data from a single country over a
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Figure 3.3: Logarithm of the initial mortality rate versus Gompertz slope (β) at
age 0 for the combined population of male and female for the country of Sweden.

century, the parameters are only effected by the circumstances that happen
within the country. As the environment of Sweden has not change over the
last century, there will be no impact from the environment as it is constant.
Sweden as a country has been classified as a first world country over the last
century, illustrating that it is fairly wealthy and the general population from
Sweden will have access to health care. From this it is clear that the two
parameters will have little affect from environmental and financial factors.
As there is little impact from exterior factors the compensation effect shown
in figure 3.3 gives a near prefect analysis of the two parameters.

To get a better idea of the affect the two parameters have on the Gom-
pertz function is to set several Gompertz functions that fit actual consecutive
period data next to each other. Each Gompertz function will be represent-
ing a point in time over the last century. This approach of analysis is in the
book published by L. A. Gavrilov and N. S. Gavrilova [27]. In the book the
Gompertz functions that are set against each other, analyse data from differ-
ent countries. This is slightly different from this dissertation, as previously
mentioned the data gathered for this dissertation is from one country over
one century.

Unlike the result shown in the book mentioned previously, two Gompertz
functions stray out of the conclusion set by Gavrilov. The conclusion was
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Figure 3.4: Logarithm of mortality versus age over Swedish data. Dark blue that
fits the 1900 Gompertz function, Maroon line is the 1920 Gompertz function, Green
is the 1940 Gompertz function, Purple represents 1960 Gompertz function, Light
blue is the 1980 Gompertz function and Orange is the 2000 Gompertz function

that all the Gompertz functions will approximately converge to a single point.
It is demonstrated by graphical displays within the book. However the data
used for this conclusion seems have been bias. The data has been picked
from a large range of countries. The years in which the data is extracted
from seem to be varied, and suggesting that the data was hand picked to
draw up the conclusion. On the other hand the data could be randomly
chosen, as the year and the country have been randomly selected.

The result from figure 3.4 gives a slight convergence of the Gompertz
functions. There are two Gompertz functions that diverge from this con-
clusion they are the 1940’s and the 1960’s Gompertz functions. This result
cannot be ignored as a simple anomaly. It occurs over the entire time period
of 20 year. Each Gompertz function seems to have been shifted to converge
at a different point making it a significant result. This shows that there is
not a convergence to a single point but just a general convergence of Gom-
pertz functions. However we can conclude that the compensation effect is
observed. As initial mortality decline the Gompertz slope is increasing.
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3.2 Poisson Process

So far the Gompertz function has been proven to be an excellent method on
fitting mortality data after the age of 40. However can the Gompertz function
be derived and expressed through the idea of the Poisson Process? When
deaths are considered to be the cause of death then the Poisson Process takes
the following assumption;

• Death is caused by a form of illness or disease.

• All illnesses or diseases are random independent events

As the Poisson Process has been considered the probability density func-
tion is the starting point for this approach [11]. The probability that an
individual have n diseases at age x is given by;

P (n, x) =
1

n!
(λx)ne−λx, (3.2)

where λ is the rate of one disease in a unit of age, n is the number of diseases
and x represents age. We consider that a fraction δ, average number of the
diseases and therefore the force of mortality is given by;

µ(x) =
∞∑
n=0

[
P (n, x)(δn)

]
(3.3)

where δ the probability of deaths due to illness.

µ(x) = δ
∞∑
n=0

1

(n)!
(λx)ne−λx

let e−λx be constant. The term e−λx does not depend on n and can be taken

out of the sum. The Taylor’s expansion
∞∑
n=0

xn

n!
= ex can be used to simplify

the expression further.

µ(x) = δe−λx(λx)eλx

µ(x) = δ(λx)

Therefore let’s consider thatλ is a function of age x. The assumption that
the rate λ is a constant give that the force of mortality is a linear function
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of age and this result is not very interesting. Then the force of mortality is
given by;

µ(x) = δ
∞∑
n=0

1

(n− 1)!
(f(x)x)n−1e−f(x)x

= δxf(x). (3.4)

As proven by Benjamin Gompertz and observations, mortality behaves in an
exponential format when mortality is against age. By taking a linear function
for f(x) it would prove to be uninformative, as mortality is exponential.
Assume δ is constant for this study it will be set as 1. Now lets consider f(x)
as the Gompertz function, this will give;

f(x) = λ0e
βx

µ(x) = xλ0e
βx (3.5)

By changing the f(x) function the Gompertz function can be found
through this Poisson Process, when the function f(x) is represented in the
form;

if f(x) =
1

x
λ0e

βx then µ(x) = λ0e
βx (3.6)

Through the Poisson Process the Gompertz function can be derived. This
makes the assumptions that the Poisson Process can possibly be assumed
over the Gompertz function. This supports the Gompertz function being a
suitable and good method of fitting mortality. By increasing the power of
the denominator of equation 3.6 another format of the Poisson Process can
be expressed.

As the Poisson Process can be used as a homogeneous model, it can be
easily put against the Gompertz function for comparison. This will prove
to be helpful for the insurance companies when selecting a candidate model.
Unlike the Gompertz function the Poisson Process does not assume the func-
tion that fits the aging stage to be an exponential function.However through
recent calculations the linear version of the Poisson Process gives an non-
informative model when considering mortality.

Using the Poisson Process now can be represented into three different
formats;

if f(x) = λ0e
βx then µ(x) = xλ0e

βx, (3.7)

if f(x) = 1
x
λ0e

βx then µ(x) = λ0e
βx, (3.8)

if f(x) = 1
x2
λ0e

βx then µ(x) =
1

x
λ0e

βx. (3.9)
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where the parameter x represents age.
The first version of the Poisson Process will have a distinctive shape when

set into a semi logarithmic scale graph. The function will give a convex shape
that will fade gradually off as age increases. The second version of the Poisson
Process (equation 3.8) is the Gompertz function and has been analysed in
the previous section. On the other hand the third version of the Poisson
Process (equation 3.9) will have a concaved shape that will smooth off into a
straight line. These two shapes are very critical as either one could possibly
fit the mortality against age, better than the Gompertz function.

3.2.1 Mortality data as approximated by function xm0e
βx

The first version of the function f(x) when placed in the Poisson Process
can be referred to “exponential multiplied by age” (where the exponential
is the Gompertz function). As the Poisson Process can be modeled over a
homogeneous population it makes sense to model the Poisson Process over
the same age period as the Gompertz function. This will allow for further
analysis between the two approaches in modeling mortality.

Figure 3.5: Logarithm of mortality versus age (period data from Sweden). Each
graph is fitted with the Poisson Process with the function given in equation 3.7
fitted after the age of 40. Panel A is the population at the year 1900, Panel B is
the population at the year 1950 and finally Panel C is the population at the year
2000

By observing figure (3.5) the fit of the Poisson Process improves over
time similar to the improvements of the Gompertz function over time. The
convex shape of the “exponential multiplied by age” Poisson Process does
not quite match the general shape of the mortality above the age of 40.
In the early part of the 20th century the general shape of the logarithmic
mortality above the age of 40 is concaved for the first part and then assumes

34



a straight line that is increasing due to age. By the end of the century the
shape of the logarithmic mortality after the age of 40 is completely different,
it becomes roughly a straight line that is increasing proportional to age.
Taking this in to account, does the “exponential multiplied age” Poisson
Process fit the mortality worse than the Gompertz function? This question
can only be answered through therefore analysis using Bayesian Information
Criterion. However before this analysis is made the comparison between the
two parameter need to be observed.

Figure 3.6: Both panels are fitted with the function given in equation 3.9. Panel
A has the logarithm of mortality against years. The red triangles represent male
population, the blue circles represents female population and finally green diamonds
represent total population. Panel B has the Gompertz slope (Beta β) versus time
set in years. Green triangles is the male beta, the blue circles represents the female
beta and the green diamonds is the both male and female.

From figure (3.6) the parameters are acting exactly the same way as the
Gompertz function. The parameters compared to the Gompertz function
are ever so slightly smaller in size. However the link between the exponential
decrease in the initial mortality and the linear increase of the (β) parameter
still remains. These strengths reveal the unusual relationship between the
two parameters first noticed by Bernard L. Strehler and Albert S. Mildvan
with the use of the Makeham model (equation 1.2).

So far only “exponential multiplied by ages” has been observed and anal-
ysed, the next Poisson Process has not yet been consider. The next Poisson
Process that will be introduced separately from the Gompertz function will
be the “exponential divided by age” Poisson Process.
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3.2.2 Mortality data as approximated by function 1
xm0e

βx

In a similar fashion to the “exponential multiplied by age” Poisson Process
the “exponential divided by age” Poisson Process will be fitted to data of
age 40 plus. This will allow the comparison between all three methods in
modeling for a homogeneous population.

Figure 3.7: Logarithm of mortality versus age (period data from Sweden). Each
graph is fitted with the Poisson Process with the function given in equation 3.9
fitted after the age of 40. Panel A is the population from the year 1900, panel B is
the population from the year 1950 and finally panel C is the population from the
year 2000.

Unlike the previous Poisson Process, the “exponential divided by age”
has a strong similarity to the logarithmic mortality after the age of 40. This
suggests that this version of the Poisson Process could prove to fit the mor-
tality far better. The concaved structure of the “exponential divided by age”
Poisson Process takes into consideration the accidental hump. From figure
(3.7) a similar observation to the previous Poisson Process can be made. The
“exponential divided by age” Poisson Process fits the mortality better later
in the last century. As the Poisson Process now contains a different func-
tion (f(x)) the link between the two parameter could be very different from
previous fitted models.

From observing figure (3.8) the parameters for the “exponential divided
by age” Poisson Process is exactly the same as the previous Poisson Process
and the Gompertz function. Through both methods of the Gompertz func-
tion and the Poisson Process the parameters (β and m0) present the same
pattern. As the initial mortality decrease exponentially the beta parameter
increase linearly in respect to time. This reinforces the link between the two
parameters.
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Figure 3.8: Both panels are fitted with the function given in equation 3.9. Panel
A is the logarithm of mortality against years. The red triangles represent male
population, the blue circles represents female population and finally green diamonds
represent total population. Panel B. is the Gompertz slope (Beta β) versus time
set in years. Green triangles is the male beta, the blue circles represents the female
beta and the green diamonds is the both male and female.

3.3 Summary

Firstly the comparisons between the Poisson Process can be formed. Through
the previous analysis of the parameters a strong link has been clearly been
shown. As the initial mortality decreases the beta parameter increases lin-
early. This link is also present in the Gompertz function, showing that this
link between the two parameters in constant. Similar to the Gompertz func-
tion analysis the two parameters can be set against each other (initial mor-
tality versus beta in a semi-logarithmic graph) for further analysis for the
Poisson Processes.

Like that of the Gompertz function the Poisson Process parameter act
in the same manner. As the demographic slope (beta) increases the initial
mortality decrease. The difference between these two Poisson Processes is
the size of the parameters and not the trend between parameters. This cor-
responds to the shape of the Poisson Process. As the “exponential multiplied
by age” Poisson Process has a convex shape, then initial mortality should be
very small. With the demographic slope of this Poisson Process as apart the
demographic slope is taken into account by the initial convex shape of the
fitting model. As the “exponential divided by age” Poisson Process has a
concaved shape then the initial morality should be slightly larger. Also the
demographic slope (beta) will also be larger and this is down the to initial
concaved shape of this Poisson Process. Finally as anticipated the Gompertz
function is between the two Poisson Processes. Each compensation effect run
parallel to each other in the semi logarithmic scale.
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Figure 3.9: Initial mortality versus Beta set in a semi-logarithmic graph, the black
line is a fitted exponential function. The green triangles points taken by using the
exponential multiplied by age, the blue diamond points is the Gompertz function.
Finally the red square points is the exponential divide by age.

Figure 3.10: The Bayesian Information Criterion (BIC) of all fitting models of
mortality above the age of 40 against time. Where blue line represents the BIC for
the Gompertz function, the red line represents the BIC for the “exponential divided
by age ” Poisson Process and the green line represents the BIC for the “exponential
multiplied by age” Poisson Process.
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Secondly there is the comparison of modeling Poisson Process (both ver-
sions) against the Gompertz function. As the “exponential multiplied age”
Poisson Process has a convex shape, this model would naturally be assumed
to have the weakest fitting of mortality. From observing figure (3.10) the
differences between the fitting models is very small. This makes it very diffi-
cult to choose the best fitting model. The Bayesian Information Criterion for
all models follow the same pattern with little difference between each BIC.
From figure (3.10) all models seem to be equally a good method for fitting
mortality above the age of 40. When choosing which model to use for the
fitting of mortality it all depends on the initial assumption on whether the
probability of death is caused by an illness. When considering a diseases that
can possibly kill individuals then the Poisson Process can be considered to
be a better model. However the Poisson Process can be used to express the
Gompertz function. The main method in picking the best fitting model will
all depend on the population. Therefore it is unclear which method to use
for analysis.
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Chapter 4

Heterogeneous Gompertz
model

After reviewing data above the age of 40 is it clear that the Gompertz func-
tion and the Poisson Process are efficient methods in modeling the data set.
However insurance companies would prefer to take into account the point at
which a person would start a career. This will allow for the wage structure
of an individual’s career to be assessed by the insurance company, making it
far more beneficial for the insuring body in dealing with life insurance.

An assumption can be made in setting the point where the data is fitted by
a model. As the entire career of an individual is now being taken into account
it is reasonable to take data from the age of 20 and above. This assumption
is that most people who start a career go through higher education and
consequently postpone in taking a career until their early 20s.

By modeling the data from an earlier age the data now contains another
section of the different stages of mortality [2]. To recap, the first stage is
the sharp decline in mortality from the age of 0 to 10. This stage is still out
of the range of the data set that is getting fitted by a model. The second
stage is the accidental hump and this stage starts approximately from the
age of 12 and finishes roughly at the age of 30. This stage is within the age
group that is going to be used and fitted and analysed. However only half
of the end part of the accidental hump stage is fitted and modeled. Fitting
the Gompertz function and the Poisson Process maybe an inefficient method
in fitting the data, and other modeling methods will have to be considered.
The last stage of mortality is called aging, aging process is an exponential
link between age and mortality.

By considering the Heterogeneous Gompertz model equation 1.3 as a
suitable model to fit the age group of 20 plus, the model will be able to
accommodate the remaining apart of the accidental hump. From the paper
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‘A mathematical model of mortality dynamics across the lifespan combining
Heterogeneity and stochastic effects’ (authors Avraam D, de Magalhaes J Pe-
dro and Vasiev B) [10] the Heterogeneous Gompertz model was first derived
and this demonstrated the versatility of the model. This versatility allows
the model to take into account different aspects of the data set. This makes
it an ideal model to use fit the age group of 20 plus.

By reflecting upon two sub-populations the Heterogeneous Gompertz
model can use a Gompertz function to describe two stages of mortality that
are happening over this age group. The first Gompertz function will describe
the remaining part of the accidental hump and the second Gompertz function
will portray the aging of mortality stage. These two sub-populations should
be efficient enough to represent the data over the age of 20. By increasing
the number of sub-populations can make the Heterogeneous Gompertz model
start to over fit the data set. This is down to the increasing number of free
parameters with each sub-population. However as a 2 sub-population will
relate to the different stages of mortality within the data set, it would be
more preferable to use a 2 sub-population.

When using the Heterogeneous Gompertz model for predictions the num-
ber of free parameters can cause problems. To reduce the number of free
parameters without reducing the number of sub-populations, the free pa-
rameters can be fixed so that it cuts down the number of free parameters
without diminishing the sub-populations.

4.1 Evolution of parameters

The evolution of parameters can be formed by fitting the Heterogeneous
Gompertz model on several populations over the last century. By fitting the
Heterogeneous Gompertz model on many populations over the last century
several observations can be formed [24].

From figure 4.1 the Heterogeneous Gompertz model can be observed on
how well it can fit mortality data over the age range. The 1900 period
mortality data contains an accidental hump the spans over a large age range.
The Heterogeneous Gompertz model takes this into account, the first sub-
population described by the Gompertz function portrays the accidental hump
up to the age of 40. The second sub-population then starts to take control
of the model and moves the model from the accidental hump to the aging
aspect of mortality. For the remaining time period are all represented in
the same way. After 1950 the demographic slope of the first sub-population
is decreasing, this could be a coincidence or it could down to affects of the
accidental hump. The accidental hump starts to change shape from having
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a large span over an age group with a swallow curvature of the hump, to a
short expanse of the accidental hump with a steep curvature of the hump.

Figure 4.1: Period data from Sweden, set in a semi logarithmic scale (natural
logarithm of mortality against age). Each graph is fitted with the Heterogeneous
Gompertz function after the age of 20. Panel A is the population from the year
1900, panel B is the population from the year 1950 and finally Panel C is the
population from the year 2000.

To see if the previous observations from figure 4.1 are accurate the pa-
rameters of the Heterogeneous Gompertz model can analysed. By viewing
the parameters over last century trends and parameters can be observed to
get a deeper understanding how the Heterogeneous Gompertz model changes
throughout the last century.

By observing figure 4.2 the compensation effect appears. This compen-
sation effect appears in the first sub-population. Through the advancements
in medicine, the general concept for the initial mortality would be a decline
in both sub-populations. This is not the case as observed in figure 4.2. The
initial mortality for the first sub-population is increasing exponentially, this
is very unusual. However it can be explained by the nature of the accidental
hump. The accidental hump’s steepness is fairly shallow at the start of the
century, as time goes by the nature of the hump changes and by the end of
the century the hump become steep. To compensate the change in the nature
of the hump the initial mortality alters corresponding to the change. The sec-
ond sub-population’s initial mortality reflects the increasing improvements
of medicine with in Sweden over the last century.

However the first sub-population can not have this effect as the initial
mortality is increasing, the beta parameter does not display any form of trend
or pattern instead it displays a random effect. Interestingly the parameters
that reflect the fractions of the sub-populations is that one sub-population
becomes more dominate as it increases size. This is suggesting that the
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Figure 4.2: For all graphs the blue points represents the first sub-population and
the green points reflects the second sub-population. Panel A is the natural logarith-
mic of the initial Mortality versus the year of the period data. The green and blue
points is fitted with an exponential trend. Panel B is the demographic slope against
the year. Beta is fitted with an linear trend function. Panel C is the fraction of the
sub-populations against year. The first sub-population is fitted with an exponential
trend.

data can increasingly be described by one sub-population, making it become
approximately the Gompertz function.

4.2 Reducing number of free parameters

After observing the evolution of the parameters certain trends appeared that
could be fitted with exponential and linear functions. When making any
form of predictions it would be ideal if the number of free parameters can
be minimised. When taking the Heterogeneous Gompertz model with 2 sub-
populations there are 5 free parameters (the 6th parameter is not a free
parameter). This gives countless of methods in reducing the number of free
parameters. Now if the sub-populations within the Heterogeneous Gompertz
model is taken into account, then the free parameters linking to the each
sub-population can be use.

Between the two sub-populations it is the second sub-population that has
largest fraction of the total population making it the most dominating sub-
population. This is reflected in the fraction parameters from the previous
section “Evolution of Parameters”. As a result the first sub-population’s
parameters will be considered first. Each step in reducing the number of
free parameters will make the model more rigid and consequently making
the Bayesian Information Criterion number for the model poorer.

First Step: From the figure 4.2 the parameter from the first sub-population
that is forming a trend is the initial mortality. By fixing the initial

43



mortality parameter to exponential trend then the parameter is no
long free and change the shape of the model ever so slightly making
the parameters react accordingly.

Second Step: Through the fixing of the initial mortality of the first sub-
population, the evolution of parameters change. The evolution of the
beta parameter for the first sub-population there has been little im-
provement in setting a trend or pattern. Therefore the evolution of the
parameter beta will be set to the average (a constant).

Third Step: Since the first sub-population’s parameters have been fixed
the second sub-population’s free parameters can be taken into account.
Both the initial mortality and the beta parameter of the second sub-
population are showing trends. That makes this step fairly straight
forward, the initial mortality of the second sub-population will be fixed
to the exponential trend. This is leaving the evolution beta of the
second sub-population being the final parameter to consider.

Fourth Step: The remaining beta parameter is now fixed to the linear
trend. This makes all the parameters in relation to Gompertz func-
tion of each sub-population fixed. The only free parameter is one of
the fractions of the population for the sub-population.The fractions
are still presenting an exponential trend similar to the initial step from
figure 4.2.

Figure 4.3: For all graphs the blue points represents the first sub-population and
the green points reflects the second sub-population. Panel A is in a semi-logarithmic
graph of the initial Mortality versus the year of the period data. The green and blue
points is fitted with an exponential trend. Panel B is the demographic slope against
the year. Beta is fitted with a linear trend function. Panel C is the fraction of the
sub-populations against year. The first sub-population is fitted with an exponential
trend.
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Figure 4.3 is the evolution of parameters for the fourth step. By com-
paring the evolution of parameters of figure 4.3 with the initial evolution of
parameters figure 4.2 there are strong similarities and there are some subtle
differences. These subtle differences will have the biggest impact on how the
Heterogeneous Gompertz model will change in shape over each step. Taking
period data from the year 2000 the change in parameters with the fixing of
parameters can now be shown in figure 4.4. The biggest change of the Het-
erogeneous Gompertz model is the first sub-population’s Gompertz function.
This is because of the beta parameter corresponding to this sub-population
are being set to a constant.

By observing the fourth step to the initial step (step 0), there seems to
be little change in the shape of the Heterogeneous Gompertz model. All the
steps, taken into consideration, the accidental hump and morality are linked
to aging. As there is not a great deal of change between the initial step and
the fourth step, this suggest that the reduction in parameters may not be
needed in this case.

Figure 4.4: Period data from Sweden from the year 2000, set in a semi logarithmic
scale (natural log of mortality against age). Each graph is fitted with the Heteroge-
neous Gompertz function after the age of 20. Panel A is the population from the
year 1900, panel B is the population from the year 1950 and finally Panel C is the
population from the year 2000.
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4.3 Parameter predictions

To see whether the fourth step of the Heterogeneous Gompertz model will
produce a better prediction of the parameters, it can be set against the
parameters of the initial step of the Heterogeneous Gompertz model.

However unlike the prediction that the reduction of the free parameter
could form a better prediction of future parameters, the reduced free pa-
rameters give a very similar result to the normal Heterogenous Gompertz
model. This is disappointing but it can informative. The initial state of the
Heterogeneous Gompertz model gives strong trends throughout most of the
parameters (figure 4.2). Through the use of these trends the predictions for
future parameters can be gathered making it suitable to consider the initial
step without the unnecessary work to reduce the free parameters.

On the other hand the reduction of parameters is not always a necessary
amount of work to obtain predictions. It can prove to be a very useful method
for predictions.

4.4 Summary

From the observations of the evolution of parameters from the initial Het-
erogeneous Gompertz model (figure 4.2), the parameter that is linked to the
fractions of the population presents some interesting results. The fractional
parameters over time show that one of the sub-population becomes increas-
ingly more dominant. The increasing in dominants starts to imply that is
the Heterogeneous Gompertz model starts to become more like the Gom-
pertz function. Suggesting that over time the data above the age of 20 can
be represented by the removal of one of the sub-populations and therefore
only the Gompertz function can be used.

From the previous chapter of “Poisson Process and Gompertz law” it
has been shown that the Gompertz function can be derived through the
Poisson Process. As a result of this the Poisson Process can be acknowledge
for the comparison of the Heterogeneous Gompertz model. By taking this
comparison the idea of the removal of one of the sub-populations can be
considered.

The evolution of the fraction parameters from the initial step of the Het-
erogeneous Gompertz model (figure 4.2) at the start of the last century sug-
gests that two sub-populations is going to be better than a single population.
Which is shown by the first sub-population having approximately 20% of the
total population at the start of the last century and by the end of the century
the first sub-population has approximately 0.5% of the total population.
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From figure 4.5 the first graph is displaying the Bayesian Information
Criterion of all the models. The Poisson Process for the- ‘exponential divided
by age’ is improving its fit most dramatically by the end of the century the
BIC for Poisson Process ‘exponent divide by age’ become very close to the
BIC of the Heterogeneous Gompertz model. This suggests that the Poisson
Process ‘exponential divided by age’ for future period data sets could present
an adequate model for insurance companies to consider.

Figure 4.5: Panel A is the red line is the BIC of the Poisson Process ‘exponential
multiplied by age’, the purple is the BIC of the Gompertz function. The green line
is the BIC of the Poisson Process ‘exponential divided by age’ and finally the blue
line is the Heterogeneous Gompertz model with 2 sub-populations. Panel B shows
the relative changes of BIC for different models. The blue line is the difference
between the ‘exponential multiplied by age’ and the ‘exponential divided by age’.
The red line is the ‘exponential divided by age’ and the Gompertz function.

Unlike the the comparison between all three of the Poisson Process above
the age of 40, there is a clear difference the BIC values of each Poisson
Process. By viewing the second graph in figure 4.5 the Poisson Process
differences are displayed. The two differences made in the Poisson Process
is the ‘exponential divided by age’ against the other two versions (Gompertz
function and the ‘exponent times by age’).

The comparable difference between the ‘exponential multiplied by age’
and the ‘exponential divided by age’ is an increasing linear trend through-
out the century. This is displaying that the ‘exponential divided by age’ is
improving it’s fit faster than the other Poisson Process.

The difference between the ‘exponential multiplied by age’ and the Gom-
pertz function is also increasing by a linear trend. However it is increasing
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at a slower rate than the other difference.
When an insurance company is considering a model to use when fitting

data above the age of 20, both the Heterogeneous Gompertz model and the
Poisson Process ‘exponential divided by age’ version have to be contemplated.
At the moment the Heterogeneous Gompertz model is still the best fitting
model, however the Poisson Process ‘exponential divided by age’ is improving
its fit at a steady rate. Giving it a possibility that the ‘exponential divided
by age’ Poisson Process becoming as good as the Heterogeneous Gompertz
model fit. But for now the main model to contemplate for fitting data above
the age of 20 is the Heterogeneous Gompertz function.
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Chapter 5

Conclusions

This dissertation is an extension of my prelimenary dissertation. Within the
prelimenary dissertation the study of the Heterogeneous Gompertz model
was reviewed and analysed. This dissertation extends the analysis of the
Heterogeneous Gompertz model and introduces new model the Poisson Pro-
cess. Also the BIC has been analysed in a greater extent enabling an greater
understanding. Through the progress of this dissertation many factors about
mortality dynamics have been addressed. The observation and analysis of
this dissertation are listed as the following:

1. Bayesian Information Criterion: The comparison method of Bayesian
Information Criterion which is the mathematical tool that is used to
compare candidate models of a data set by taking into account the
number of free parameters. The Bayesian Information Criterion can be
defined in several ways. Each method with the definition of the crite-
rion all start off with the initial step, taking the marginal Likelihood of
the candidate model. To get to this step many methods consider plac-
ing the candidate model in the Bayesian theorem and then taking the
probability of the posterior. Once set in this form different methods can
be used to derive the criterion. The Laplace approximation of integrals
is a common method in the deriving the criterion. Another method is
to take the Taylor’s expansion of the likelihood of the candidate model.
Both methods in deriving the criterion aim to approximate the integral
itself or apart of equation within the integral. As shown in the chapter
“Model fitting and Selection Criteria” the derivation of the criterion
does not depend on prior knowledge as it assumes a non-informative
prior. It can also be derived in a crude method by the use of one can-
didate model instead of a set. The use of a set of candidate models has
been the more common practice when deriving the criterion.
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2. Mortality data above the age of 40: The first mortality data age
group that was observed and analysed was the age group above the age
of 40. When fitting the mortality data over this age group the Gom-
pertz Law and the Homogeneous Poisson Process describing mortality
dynamics were used as suitable models. Through the analysis of the
Gompertz Law the compensation effect was applied to the Homoge-
neous Poisson Process. As the Gompertz Law was derived through the
Homogeneous Poisson Process describing mortality dynamics (chapter
“Gompertz Law and Poisson Process”). The parameters within the
Gompertz Law are also present in the Poisson Process. The analysis
of the different versions of the Poisson Process (equation 3.7, 3.8 and
3.9) clearly expressed the compensation effect within the parameters.
This strengthened this effect in respect to mortality dynamics. When it
came to comparing the Gompertz Law and the Homogeneous Poisson
Process the Bayesian Information Criterion was used. From figure 3.10
the Bayesian Information Criterion number value of both the Gompertz
Law and the Poisson Process was set against time. From this analysis
neither modeling methods presented a clear ‘winner’. As there was not
a clear difference between the models.

3. Mortality data above the age of 20: The second mortality data age
group that was observed was above the age of 20. With this the age
group the Gompertz Law will be inefficient to model the mortality
data. The reason for this was that the accidental hump is within the
age group. The Heterogeneous Gompertz model was been used as a
suitable model to fit the mortality data over the age group of 20 plus.
The Heterogeneous Gompertz model presented the compensation effect
over the second sub-population. This is the sub-population that is fit-
ting the aging of mortality, which is approximately 40 and above. The
first sub-population expressed an unusual result as the initial mortal-
ity did not decrease over time and instead it increased. However this
could be explained by the nature of the accidental hump, the accidental
hump became increasingly severe in height as time progressed. The ini-
tial mortality reflects the change in the nature of the accidental hump.
The reduction of free parameters unfortunately did not produce a bet-
ter prediction for the parameter compared to the initial Heterogeneous
Gompertz model. By comparing the Bayesian Information Criterion
value of the Heterogeneous Gompertz model and the Poisson Process
over the same age group (above the age of 20), particular analysis and
observation were made. The Poisson Process that is represented by the
equation 3.9 shows the most promise in improvement over time. At the
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end of the last century the Poisson Process’s (equation 3.9) BIC value
become very close to the Heterogeneous Gompertz model’s BIC value.
This presents a trend that the Poisson Process (equation 3.9) has the
possibility in future populations can become equally as good as fit as
the Heterogeneous Gompertz model above the age of 20.

4. Poisson Process: Through this dissertation the Poisson Process has
been proven to be a suitable model for fitting mortality data. It can
express Gompertz Law and alternative exponential functions. It is
these functions that show promise as they are more flexible compared
than the Gompertz Law, making it a key model for consideration when
insurance companies analyses mortality dynamics.
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