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1 Introduction

Population Genetics is the study of the change in allele frequencies (an
allele is an alernative form of a gene, i.e there are different alleles which
determine the gene for eye colour in humans) under the influence of four
main evolutionary forces: Natural Selection, Mutation, Genetic Drift, and
Gene Flow. In this paper we will consider only first two forces, which we
will analyse in detail how they affect the allele frequencies, eventually re-
sulting in fixation, within both a haploid(which contains only one allele per
gene), and diploid population(which contains a combination of two alleles
per gene). After initially showing how they would act if there was no evo-
lutionary forces involved. Throughout the paper we will always have two
distinct alleles, denoted by A and a that we will analyse in detail through
the use of mathematical models. We will also assume an infinite population
for each, as if we were to assume a finite population, then we would have to
consider genetic drift as well.
The original explaination of Natural Selecion was first thought of by Charles
Darwin in his book On the Origin of Species in which he defines natural
selection as ”[a] principle by which each slight variation [of a trait], if useful,
is preserved”.[1] A famous example of Natural Selection is the evolution of
the peppered moth during the industrial revolution in Britain.[2]
Mutation, is a change in the structure of a gene which results in a variation
of original gene that may be transmitted to the next generation. It can
have four different effects on a genes fitness, the mutation is either harmful,
beneficial, neutral, or nearly neutral. For the purpose of this paper we will
only consider the case of a harmful mutation.
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2 Haploid Genetics

In the first chapter we will consider the most basic form of organisms, haploid
organisms. Haploid organisms contain only one copy of chromosomes. We
will consider two Allele’s, A and a with NA and Na being the number of
each type of allele and for a total of N alleles. Each Allele will be assumed
to have a fitness coefficient denoted rA and ra which is the contribution
of offspring given that the allele survives to reproduction age. From this
information we can find the number of alleles in the next generation.

N
(i)
A = rAN

(i−1)
A and N (i)

a = raN
(i−1)
a (2.0.1)

Using (2.0.1) we can find the number of alleles in any generation given the
initial number of alleles:

N
(i)
A = riAN

(0)
A and N (i)

a = riaN
(0)
a (2.0.2)

Notice that,

N (i) = N
(i)
A + N (i)

a = rAN
(i−1)
A + raN

(i−1)
a (2.0.3)

Where N (i) is the total population in the next generation. It is interesting
to know proportion of A to a alleles we get this by dividing equations (2.0.2)
to obtain:

N
(i)
A

N
(i)
a

=

(
rA

ra

)i N
(0)
A

N
(0)
a

(2.0.4)

From equation (2.0.4) we can see that if rA > ra then the proportion of A
alleles to a will increase infinitely. Conversely, if rA < ra then the proportion
will decrease until it reaches zero.

2.1 Allele Frequencies

Above, we considered the numbers of each allele in the population. It is
often better to compare the frequency of each allele in the population. To
do this we will set p and q to be the frequency of A and a allele’s respectively.
From this we have;

p =
NA

N
and q =

Na

N
with p + q = 1

Next, we need to find the proportion of p and q in the next generation;

pi =
N

(i)
A

N (i)
and qi =

N
(i)
a

N (i)
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Working with p only, and using the formulas derived in equations (2.0.1)
and (2.0.3) we have:

pi =
rAN

(i−1)
A

rAN
(i−1)
A + raN

(i−1)
a

=

(
rA
ra

)
p(i−1)(

rA
ra

)
p(i−1) + q(i−1)

(2.1.1)

Using p + q = 1 we can obtain q:

qi =
q(i−1)(

rA
ra

)
p(i−1) + qi

(2.1.2)

2.2 Natural Selection in Discrete Time

Selection occurs in a population when rA 6= ra, in this section we will be

considering the case for rA > ra i.e
rA
ra

= 1+s for s > 0. For ease of reading

we will rewrite pi as p′ and p(i−1) as p (similarly for q). Now using q = 1−p,
equation (2.1.1) becomes:

p′ =
(1 + s)p

1 + sp
(2.2.1)

We can find the equilibrium points of this equation and then analyse their
stability.[3] To do this we set the next generation frequency equal to the
previous generation, denote this by p∗ so we have;

p∗ =
(1 + s)p∗

1 + sp∗

p∗(p∗ − 1) = 0

⇒ p∗ = 1 or p∗ = 0

Next, to analyse the stability of the equilibrium points we set:

p = p∗ + ε and p′ = p∗ + ε′ where |ε| � 1
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So;

p ∗+ε′ =
(1 + s)(p∗ + ε)

1 + s(p∗ + ε)

ε′ =
(1 + s)p∗ + (1 + s)ε

1 + sp∗ + sε
− p∗

=

(
(1 + s)p∗

1 + sp∗

)(
1 +

ε

p∗

) 1

1 +
sε

1 + sp∗

− p∗

Taking a Taylor expansion of order ε and ignoring higher order terms leads
to:

ε′ =

(
(1 + s)p∗

1 + sp∗

)(
1 +

ε

p∗

)(
1− sε

1 + sp∗

)
− p∗

Multiplying out, ignoring any higher order ε terms, and simplifying reduces
the equation to:

ε′ =
(1 + s)p∗

1 + sp∗
+

(1 + s)ε

(1 + sp∗)2
)− p∗

⇒ ε′

ε
=

1 + s

(1 + sp∗)2
(2.2.2)

Notice that originally if:

f(p) = p′ =
(1 + s)p

1 + sp
(2.2.3)

This a recurrence relation for p and it follows that equation (2.2.2) is f ′(p).

The case for stability of a recurrence relation is |f ′(p∗)| < 1, or,

∣∣∣∣ε′ε
∣∣∣∣ < 1.

Analysing the equilibrium points we find that p∗ = 1 is stable, and p∗ = 0
is unstable.

2.3 Natural Selection in Continuous Time

We can also analyse natural selection in continuous time. To do this we
assume that s � 1, then take equation (2.2.3) and expand it in orders of s
to give;

p′ = (1 + s)p(1− sp)

= p + sp− sp2

p′ − p = sp(1− p)
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If we now consider p as a function of time, then;

p(t + h)− p(t)

h
= sp(t)(1− p(t))

As h→ 0 we get the logistical equation;

dp

dt
= s̃p(1− p) (2.3.1)

Solving for p;

p(t) =
Aes̃t

1 + Aes̃t
(2.3.2)

We can find A in terms of p(0);

p(0) =
A

1 + A

⇒ A =
p(0)

1− p(0)

Using these conditions we can find s̃ in terms of s and see whether they
differ:

p(1) = p(0)(1 + s− sp(0)) =
A

1 + Aes̃t

Rearranging for es̃t;

es̃t =
p(0)(1 + s− sp(0))

A(1− p(0)(1 + s− sp(0))

=
(1− p(0))(1 + s− sp(0))

1− p(0)(1 + s− sp(0))
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Finally solving for s̃:

s̃ = ln

(
(1− p(0))(1 + s− sp(0))

1− p(0)(1 + s− sp(0))

)

= ln

 1− p(0)
1

1 + s− sp(0)
− p(0)


= ln

(
1− p(0)

1− s + sp(0)− p(0)

)
= ln

(
1

1− s

)
≈ s

So by assuming s � 1 we have found that there is no difference between s̃
and s, therefore we can re-write equations (2.3.1) and (2.3.2) as:

dp

dt
= sp(1− p) (2.3.3)

p(t) =
Aest

1 + Aest
(2.3.4)

Respectively. Below there are two figures, Figure 1: represents equation
(2.3.3) and Figure 2: represents equation (2.3.4).
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Figure 1: Stability analysis for Natural Selection in a Haploid Population
with different fitness coefficients.

As we can see from Figure 1: a negative fitness coefficient corresponds to 0
being stable and 1 being unstable, and a positive fitness corresponds to 1
being stable and 0 unstable. From Figure 2: we see how the allele frequency
becomes fixed for s = 0.3 and lost for s = −0.3.
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Figure 2: Natural selection in a Haploid Population: Fixation/Extinction.

2.4 Mutation-Selection in Discrete Time

In the above section, we we notice that if the fitness of allele A is greater
than the fitness of allele a then eventually the population will consist only of
A alleles. In this chapter we will consider what happens when we introduce
mutation which is the probability u that each new A allele will defect into
an a allele which is typically assumed to have a lower fitness than allele A.
For this section we will take allele A as the comparison for fitness so allele a
has a relative fitness of 1− s. Since we are assuming that natural selection
also takes place, each generation a proportion up of A alleles are lost so we
have using the simplified notation established previously:

p′ =
(1− u)p

p + (1− s)p
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The denominator in this case is different to that of equation (2.2.1) because
we have set p as the comparison for fitness. So in terms of p only;

p′ =
(1− u)p

1− s(1− p)
(2.4.1)

And for q;

q′ =
(1− s)q + up

p + (1− s)q

Again, we will proceed to find the equilibrium points of (2.4.1). We do this
by setting p∗ = p′ = p;

p∗ =
(1− u)p∗

1− s(1− p∗)

p∗(−s(1− p∗) + u) = 0

This gives:

p∗ = 0 or p∗ = 1− u

s

Now to analyse these points for stability using the same tactics for the case
without mutation:

p = p∗ + ε and p′ = p∗ + ε′ where |ε| � 1

Substituting into equation (2.4.1) gives:

p ∗+ε =
(1− u)(p ∗+ε)

1− s(1− (p ∗+ε))

ε′ =

(
(1− u)p∗

1− s(1− p∗)

)(
1 +

ε

p∗

) 1

1 +
sε

1− s(1− p∗)

− p∗

=

(
(1− u)p∗

1− s(1− p∗)

)(
1 +

ε

p∗
− sε

1− s(1− p∗)

)
− p∗

=

(
(1− u)p∗

1− s(1− p∗)

)(
1 +

(1− s)ε

p∗(1− s(1− p∗)

)
− p∗

⇒ ε′

ε
=

(1− u)(1− s)

(1− s(1− p∗))2
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Substituiting the equilibrium points in we get;

f ′(0) =
ε′

ε
=

1− u

1− s
or;

f ′(1− u

s
) =

ε′

ε
=

1− s

1− u

The case for stability is again that f ′(p) < 1. Analysing the equilibrium
points we find that p∗ = 0 is stable for s < u i.e. if the relative fitness is

weaker than the force of mutation. p∗ = 1− u

s
is stable for s > u i.e. if the

relative fitness is greater than the force of mutation.

2.5 Mutation-Selection in Continuous Time

Next we should consider what happens if we assume continuous time. The
method involved is analogous to that in Section 2.3. Assume u, s� 1, then
we can approximate equation (2.4.1) with a taylor expansion in s:

p′ = (1− u)(1 + s(1− p))

= p + sp− sp2 − up− usp + usp2

Ignoring terms containing us;

p′ − p = p(s− u− sp)

This can be represented in terms of the differential equation;

dp

dt
= p(s̃− ũ + s̃p) (2.5.1)

Seperating the variables and using partial fractions we get;∫ (
1

(s̃− ũ)p
+

s̃

(s̃− ũ)(s̃− ũ + s̃p)

)
dp =

∫
1.dt

We can rewrite this as;∫ (
1

p
+

s̃

d− s̃p

)
dp =

∫
d.dt Where d = s̃− ũ

Solving for p;

p(t) =
Adedt

1 + s̃Aedt
(2.5.2)
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Where

A =
p(0)

d− s̃p(0)

If we analyse the limit of equation (2.5.2) we see that for d > 0, i.e. s̃ > ũ

lim
t→∞

p(t) = 1− ũ

s̃

Which means that the population will never always consist of just A alleles
as some will always mutate after selection has taken place. However if d < 0
then limt→∞ p(t) = 0, eventually allele A will become extinct. Below we
have two figures; Figure 3: and Figure 4: which represent equations (2.5.1)
and (2.5.2) respectively. In each case p(0) = 0.4 and s = 0.3.

Figure 3: Stability analysis for Natural Selection with Mutation in a Haploid
Population with different fitness coefficients.
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As we can see from Figure 3: when u > s, which is represented by the red
line, p = 0 is stable. Whereas when u < s, p = 0 is unstable and p = 1− u

s
is stable.

Figure 4: Natural selection with Mutation in a Haploid Population: Fixa-
tion/Extinction.
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Notice from Figure 4: we can see how the red line which represents the case
for when d < 0 and the allele is lost, whereas the blue line represents d > 0

and the allele eventually tends to a frequency of
1

2
.
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3 Diploid Genetics

In this chapter we will consider the other form of organisms which are
diploids. Diploids are organisms that contain two copies of chromosomes,
one from each parent. Again we will assume two distinct allele’s, A and a
and we will proceed through the chapter in a similar way as we did for our
haploid models.

3.1 Allele Frequencies

There are two different ways in which a diploid organism can reproduce
that we will consider in this section. The two methods we will introduce are
self-fertilisation or selfing and random mating. In each case we will find the
frequency of each allele in the ith, ith + 1 , and nth generations.

For a diploid organism with two distinct alleles we have three possible com-
binations of genotypes. We have the homozygous combinations AA and aa
or the heterozygous combination Aa. For each of the combinations we define
their frequency in the population as:

P =
NAA

N
, Q =

NAa

N
, R =

Naa

N
(3.1.1)

From the equations in (3.1.1) we can find the proportion of A and a alleles
in the population;

p =
nA

n

=
2P + Q

2N

= P +
1

2
Q (3.1.2)

Similarly, the proportion of q alleles is;

q = R +
1

2
Q (3.1.3)

Since we are dealing with proportions, we also have the two constraints:

p + q = 1 and P + Q + R = 1 (3.1.4)

For finding the allele frequencies in a diploid population we will first begin by
making six assumptions, and we will prove that how under these conditions
the allele frequencies in both random mating and selfing populations remains
constant. The assumptions we make are as follows:
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1. Large (in theory infinite) population

2. No selective reproduction

3. No cross-overs or mating between different generations

4. No natural selection

5. No mutation

6. No genetic drift

3.1.1 Random Mating

To model sexual reproduction in a diploid population we will use two meth-
ods of random mating and show how they in fact produce the same results.
Random Mating assumes that each organism in the population has a chance
of mating with the opposite sex.

From this definition we can introduce the two different methods of mod-
elling; the Gene pool approach and the Mating table Method.

Gene Pool Approach
First assume that all males and females release their gametes into two dif-
ferent pools each pool containing either all male or all female gametes. The
offspring for the next generation is then determined by selecting one gamete
from each pool. Then the probability of getting P, Q or R genotypes in the
next generation is as follows:

Probability of offspring P’ = p(AA) = p2

Probability of offspring Q’ = p(Aa or aA) = 2pq

Probability of offspring R’ = p(aa) = R2

If we sum up the probability of getting each genotype in the next generation
we have:

P ′ + Q′ + R′ = 1

⇒ p2 + +2pq + q2 = 1

⇒ (p + q)2 = 1 (3.1.5)

This result is known as the Hardy-Weinberg equation[4] and we will now
show how we can get the same result from the mating table method.
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Mating Table Method
For this approach we will consider all the different mating possibilities be-
tween the different genotypes. We have 3 different genotypes P, Q, R and
we have 2 different combinations where order doesn’t matter, so we have
6 different combinations; AAxAA, AAxAa (twice), AAxaa (twice), AaxAa,
Aaxaa (twice), and aaxaa. We will now put these mating combinations into
a table along side their frequencies and the probability of offspring:

Mating Frequency P’ Q’ R’

AAxAA P 2 1 ∗ P 2 − −

AAxAa 2PQ
1

2
∗ 2PQ

1

2
∗ 2PQ −

AAxaa 2PR − 1 ∗ 2PR −

AaxAa Q2 1

4
∗Q2 1

2
∗Q2 1

4
∗Q2

Aaxaa 2QR − 1

2
∗ 2QR

1

2
∗ 2QR

aaxaa R2 − − 1 ∗R2

Table 1: Random Mating table with two distinct alleles

If we now add up the offspring columns we get:

P ′ = P 2 + PQ +
1

4
Q2 =

(
P +

1

2
Q

)2

= p2 (3.1.6)

Q′ = PQ + 2PR +
1

2
Q2 + QR = 2

(
1

2
PQ + PR +

1

4
Q2 +

1

2
QR

)
= 2

(
P +

1

2
Q

)(
R +

1

2
Q

)
= 2pq (3.1.7)

R′ = R2 + PQ +
1

4
Q2 =

(
R +

1

2
Q

)2

= q2 (3.1.8)

Adding up equations (3.1.6), (3.1.7) and (3.1.8) we get the same result as
equation (3.1.5) using the gene pool approach. Hence both methods produce
the same answer. We can use the Hardy-Weinberg Equation to show how
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allele frequencies remain constant in each generation. Using equation (3.1.2)
for the next generation we have;

p′ = P ′ +
1

2
Q′

Substituting our results from equations (3.1.6) and (3.1.7);

p′ = p2 +
1

2
∗ 2pq

= p(p + q)

= p(p + (1− p)

= p

This result is analogous for q, therefore proving that allele frequencies re-
main constant in a diploid population modelling random mating under our
6 assumptions.

Another interesting result coming from these assumptions is the genotype
frequencies P, Q, and R remain constant after the second generation. After
one generation of mating we have the genotype frequencies P’, Q’ and R’
described above. For the generation after that we will have:

P ′′ = P ′2 + P ′Q′ +
1

4
Q′2

=

(
P ′ +

1

2
Q′
)2

substituting P’ and Q’ from equations (3.1.6) and (3.1.7);

P ′′ =

(
P 2 + PQ +

1

4
Q2 +

(
P +

1

2
Q

)(
R +

1

2
Q

))2

Using R=1-P-Q and expanding;

P ′′ =

(
P 2 +

1

4
Q2 + PQ + P (1− P −Q) +

1

2
Q(P + 1− P −Q) +

1

4
Q2

)2

=

(
P +

1

2
Q

)2

= P ′

Showing that it only takes one generation before the genotype frequencies
are mixed in the population. The figure below will show this graphically:
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Figure 5: Random Mating with two distinct alleles

We see that the initially we have P (0) = 0.1 Q(0) = 0.6 and R(0) = 0.3
then after one generation the genotypes remain fixed at P = 0.16, Q = 0.48,
and R = 0.36

3.1.2 Selfing

The other way a diploid organism can reproduce is by self reproduction or
selfing. Selfing is when the organism involved provides both the male and
female gametes. We can use a mating table similar to table 1 to model
selfing:
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Parent Frequency P’ Q’ R’

AA P P ∗ 1 − −

Aa Q
1

4
Q

1

2
Q

1

4
Q

aa R − − R ∗ 1

Table 2: Self-fertisation table with two distinct alleles.

Again adding up the columns for the next generation genotype frequencies
we find that:

P ′ = P +
1

4
Q (3.1.9)

Q′ =
1

2
Q (3.1.10)

R′ = R +
1

4
Q (3.1.11)

Now to find the allele frequencies in the next generation:

p′ = P ′ +
1

2
Q′

= P +
1

4
Q +

1

2

(
1

2
Q

)
= p

We can use a similar method to show that q′ = q. It’s worth saying that
although we have consistency in allele frequencies over generations, unlike
in random mating the genotype frequencies do not remain the same each
time. In fact after each generation half of the Q genotypes are lost from the
previous generation, and the P and R frequencies each grow by an additional
quarter of Q from the previous generation. If initially at the first generation
we have P (0), Q(0) and R(0) then in the second generation we have:

P (1) = P (0) +
1

4
Q(0), Q(1) =

1

2
Q(0), R(1) = R(0) +

1

4
Q(0)
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For the third generation we will have;

P (2) = P (1) +
1

4
Q(1)

= P (0) +
1

4
(Q(0) + Q(1))

= P (0) +
1

4
Q(0)(1 +

1

2
)

In general we have;

P (n) = P (0) +
1

4
Q(0)

n−1∑
n=0

(
1

2
)n

Again, we will show this graphically with the figure below:

Figure 6: Self-Fertilisation with two distinct alleles

This time we notice that it takes much longer for the genotypes to eventually
become fixed at P = 0.4, Q = 0, and R = 0.6, even though we started with
the same frequencies that we had for Figure 5.
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3.2 Random Mating with Natural Selection in Discrete Time

To model natural selection in a diploid population we will start by assuming
that one allele has a higher fitness coefficient than the other, as we did with
a haploid population. We will choose this to be allele A, so that the fitness of
the genotype AA is greater than that of the genotype aa, but the genotype
Aa doesn’t necessarily have the same fitness as either of the two. So we need
to introduce a new parameter h to allow for this condition. Next we will
set genotype aa as the comparison genotype such that the relative fitness of
aa = 1. We will summarise all this into one table, bearing in mind we are
assuming random mating throughout.

Genotype AA Aa aa

Freq. of offspring p2 2pq q2

Relative fitness 1 + s 1 + sh 1

Freq. after selection
(1 + s)p2

w

(1 + sh)2pq

w

q2

w

Table 3: Random mating with Natural selection with two distinct alleles

Where w = (1 + s)p2 + (1 + sh)2pq + q2. So that the sum of the frequencies
in the next generation is one. Hence the frequency of allele A after selection
is given by;

p′ = P ′ +
1

2
Q′

=
(1 + s)p2 + (1 + sh)pq

(1 + s)p2 + (1 + sh)2pq + q2

Using q = 1− p and simplifying;

p′ =
(1 + sh)p + (1− h)sp2

1 + 2sh + (1− 2h)sp2
(3.2.1)

We will find and analyse the stability points in the next section.
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3.3 Random Mating with Natural Selection in Continuous
Time

To find a model for natural selection in continuous time we will use the
trick we established in previous sections. We begin by rearranging equation
(3.2.1) into:

p′ =
p + s(hp + (1− h)p2)

1 + s(2hp + (1− 2h)p2)
(3.3.1)

Next we will assume that s � 1 and take a Taylor expansion of equation
(3.3.1) to get:

p′ = (p + s(hp + (1− h)p2))(1− s(hp + (1− h)p2)(1 + s(2hp + (1− 2h)p2) + ...)
(3.3.2)

We can then ignore any higher terms of s and simplify equation (3.3.2) to:

p′ − p = sp((1− 3h)p + h− (1− 2h)p2) (3.3.3)

Equation (3.3.3) Can be represented by the differential equation:

dp

dt
= sp((1− 3h)p + h− (1− 2h)p2) (3.3.4)

We will now use this equation to find the stationary solutions of our model
and analyse their stability then we will proceed to solve the differential

equation. We find stationary points from f(p) =
dp

dt
= 0, there are three

solutions to this equation. One obvious solution is p = 0, the next solution
is p = 1 so we can factor this out of equation (3.3.4) to find the remaining
solution:

sp(p− 1)(−p− h + 2hp) = 0

Hence:

p =
h

2h− 1
for h 6= 1

2

Is our final solution. For the case when h =
1

2
the cubic term in equation

(3.3.4) will disappear and our only solutions will be p = 0 and p = 1. To
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analyse the stability of our three points we will differentiate equation (3.3.4)
to get:

f ′(p) = s((1− 3h)p + h− (1− 2h)p2) + sp(1− 3h− (2− 4h)p) (3.3.5)

Since the sign of f ′(p) depends on our choice of h, we will consider four

different cases, either h = 0, 0 < h <
1

2
,

1

2
< h < 1, or h > 1. These

four different cases can be interpreted as follows; h = 0 means there is
no difference between the fitness of the homozygous genotype aa and the
heterozygous genotype Aa this means that allele A would be recessive. 0 <

h <
1

2
implies a partial dominance of allele A whereas

1

2
< h < 1 implies

a strong dominance. h > 1 models a phenomena known as heterozygous
dominance where the heterozygous genotype has the highest fitness, a few
examples in humans are sickle cell anaemia and thalassemia.Two mutations
of the haemoglobin cell that when paired with a normal haemoglobin gene
offer a natural immunity to malaria. [5]

For h = 0;

f ′(p) = sp(1− 3p)

So;

f ′(p) =

0, if p = 0 or p =
h

2h− 1
hence is a saddle point.

−2, if p = 1 hence is a stable equilibrium point.

Next for h 6= 0;

f ′(p) = 2sp− 6shp + sh− 3sp2 + 6shp2
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For p = 0 we have f ′(p) = sh > 0 for all h > 0 so p = 0 is an unstable
equilibrium point. Now instead of computing the value for f ′(p) at the other

points we will do it by analysis. If 0 < h <
1

2
we have a negative cubic,

hence we have two stable equilibria points and one unstable equilibrium
point, this means that the other two points are stable equilibria. Next,

for h >
1

2
we have a positive cubic, hence two unstable equilibria and one

stable equilibria. If
1

2
< h < 1 then p =

h

2h− 1
> 1 meaning that p = 1

is stable and p =
h

2h− 1
is unstable, and if h > 1 then p = 1 is unstable

and p =
h

2h− 1
is stable. All of this information will be summarised in the

figure below:
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Figure 7: Natural selection with Random mating for different h parameters
with s = 0.3

From Figure 5 we have each of the four different cases represented by a line
on the figure. The red line represents h = 0 i.e a recessive A allele, the yellow
line represents heterozygous dominance, the blue and green line represent
partial and strong dominance of allele A respectively.

Now that we have found the equilibrium points and determined the stability
of the allele frequency we will attempt to solve the differential equation
(3.3.4). First we will factorise the equation, and separate the variables to
get the following: ∫

dp

p(p− 1)(p− h
2h−1)

=

∫
s.dt
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Next, using partial fractions to simplify the left hand side we get:∫ (
2h− 1

hp
+

2h− 1

(h− 1)(p− 1)
+

(2h− 1)3

h(1− h)((2h− 1)p− h)

)
.dp = st + c

Integrating;

2h− 1

h
ln (p) +

2h− 1

h− 1
ln (p− 1) +

(2h− 1)2

h(1− h)
ln ((2h− 1)p− h) = st + c

Even with the help of mathematical software, this equation is difficult to
solve for p, so we will consider a specific example. If we take a population
of diploid organisms where the dominant allele is recessive such that h = 0
and p0 = p(0)� 1 then we can rewrite (3.3.4) as:

dp

dt
= sp2

solving for p;

p =
p0

1− sp0t

taking a taylor expansion;

p ≈ p0(1 + sp0t)

From this we see that a recessive dominant allele increases only linearly
across generations. This will be shown in the figure below.
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Figure 8: Natural selection in continous time with p(0) = 0.1

3.4 Mutation-Selection in Discrete Time

Now we will introduce mutation into our model. Again, we will use u to
denote the force of mutation of allele a onto allele A, and again like we did
for our mutation in a haploid population model, we will set the genotype
AA as the comparison for our fitness so we can amend table 3 as follows:
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Genotype AA Aa aa

Freq. of offspring p2 2pq q2

Relative fitness 1 1− sh 1− s

Freq. after selection
p2

w

(1− sh)2pq

w

(1− s)q2

w

Table 4: Modelling Mutation-selection in Diploids

With w = p2+2(1−sh)pq+(1−s)q2. Next, however, instead of dealing with
the frequency of A alleles we will consider the frequency of a alleles instead,
which we have previously denoted q as it slightly simplifies our equations.
First, let p̂ and p̂ be the frequencies of alleles A and a after selection respec-
tively. Now we apply the force of mutation so that the frequency of allele a
in the next generation is given by:

q′ = up̂ + q̂

Substituting p̂ and q̂;

=
u(p2 + (1− sh)pq) + (1− sh)q2 + (1− sh)pq

w

Where the values for p̂ and q̂ are the frquencies after selection and we obtain
from the formulas (3.1.2) and (3.1.3) respectively. Now, using q = 1− p we
get:

q′ =
u + (1− u− sh(1 + u))q − s(1− h(1 + u))q2

1− 2shq − s(1− 2h)q2

Now to find the equilibrium solutions of this equation we begin by setting
q∗ = q = q′ One solution is readily found, by neglecting back mutation (i.e.a
mutated gene reverting back to it’s original state) as q1 = 1. The other two
solutions are found from the equation:

s(1− 2h)q2 + sh(1 + u)q − u = 0; [6]
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As;

q2 =
h(1 + u)

2(2h− 1)

(
1 +

√
1− 4(2h− 1)u

sh2(1 + u)2

)
and;

q3 =
h(1 + u)

2(2h− 1)

(
1−

√
1− 4(2h− 1)u

sh2(1 + u)2

)

For the special case when h =
1

2
the quadratic equation becomes linear, and

the other solution is given by q =
2u

s(1 + u)
. The stability of these points

are analysed in detail in a paper published by J.R.Chasnov.[7]
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4 Conclusion

In conclusion, we have seen how the introduction of either evolutionary force
can affect the allele frequencies over generations. This was to be expected,
as we had initially shown in the beginning of each chapter how without
any forces the frequencies remained constant regardless of size, and then
the introduction of either force would favour one of the allele’s, eventually
making that allele fixed in the population, whilst the other was lost.

The interesting results came from when we considered a diploid popu-
lation. It would have been possible to analyse a diploid population that
experienced self-fertilisation, however, for random mating within a diploid
population we seen how the results for the equilibrium points and the sta-
bility of them, really only depended on the heterozygous genotype and in
particular, how dominant allele A was compared with allele a. This re-
sult also extends for the case with mutation. As was shown by the work
of J.R.Chasnov, the equilibrium points and their stability also depended
on the value for our h parameter. It would also be interesting to consider
what would happen for a diploid population that experiences a mix of both
self-fertilisation.

It be natural to follow up the results we have gathered and consider
Natural Selection and Mutation for organisms with multiple alleles, not just
two and see how or if, they differ. Or also relaxing some of our assumptions
such as selective reproduction, or cross-overs and seeing what impact they
have upon our model.

However, even though we have shown how these organisms react to these
evolutionary forces under certain assumptions. We have neglected to con-
sider the case for a finite population. In such a circumstance it is unre-
alistic that any one allele would become totally fixed within a population
because of the effect of gene flow and genetic drift which we have yet to
discuss. Extensive research into the idea of genetic drift has been discussed
by mathematicians Motoo Kimura, and James Crow. It is also conceivable
to combine all the evolutionary forces into one model.

In the end, the beauty of population genetics is that it is still a very new
area of mathematics with very much left to be discovered, from Darwin’s
original theory of evolution we have came a long way in a short period of
time and we know have a ”Modern evolutionary synthesis” explaination of
evolution, which has resulted from the works of Charles Darwin, R.A.Fisher,
and Sewell Wright, to name a few.
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