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Abstract 

 

The purpose of this project was to study mechanisms of axis extension on chick embryo using 

mathematical modelling approach. The developed models were designed to describe migration of 

the stem zone and corresponding dynamics on concentration profiles of FGF8 gene and protein 

(denoted as uG and uA in a model) across the stem zone. The stem zone is an area on the blastodisc, 

a small region on top of the yolk in a developing egg, where all 4 main stages of embryogenesis take 

place. The concentration of this gene and protein are thought to be important as they may explain a 

biological phenomenon known as the progression of the primitive streak. This progression and 

subsequent regression takes place during the second stage of embryogenesis, gastrulation, and if it 

were not for this then there would never be a third stage, neurulation. 

In my project I first investigated the concentration of the gene FGF8 inside a stem zone of length   

moving with speed   using a one dimensional continuous model. I found that the concentration of 

the gene FGF8 was constant inside the stem zone, was non-existent in front, and decayed 

exponentially behind. 

Since the concentration of the protein FGF8 depended on the concentration of the gene FGF8, I then 

investigated the concentration of the protein FGF8 using the results I had already obtained for gene 

FGF8. I found slightly more complicated solutions for protein FGF8 inside, in front of and behind the 

stem zone; they were superpositions of exponential functions. I plotted this on a graph, and found 

that the maximum concentration of protein FGF8 was found behind the stem zone. However, I 

wanted to know what factors made this the case. 

I found an expression for   (the size of the stem zone) in terms of   (the speed with which it was 

moving), when the maximum concentration of the protein FGF8 is on the rear boundary of the stem 

zone. I found that when I plotted this expression on a graph, I could see that above this curve would 

mean that the maximum concentration of the protein FGF8 would be found inside the stem zone, 

but below this curve would ensure it was found behind the stem zone. 

I then decided to use a different model- a 2D Cellular Potts model. This involved making swaps 

between cell sites to achieve a minimum energy within the stem zone. Looking at the graph I had 

produced for the concentration profile of protein FGF8 I saw that there would be a point where gene 

FGF8 was no longer produced, and therefore neither was protein FGF8 as the one depended upon 

the other. This meant that any cells behind this point would be different than the cells in front as 

they would essentially be different cells without this feature of producing gene FGF8. This gave me a 

clue as to possibly how Hensen’s node (a group of cells within the stem zone) and the primitive 

streak were formed; the stem zone was moving as we had seen before, and the cells inside were 

constantly proliferating. However, at the point where the gene FGF8 is no longer produced, these 

cells turn into neurons and move much more slowly than the cells in front. The picture to be gained 

from this was Hensen’s node, at the forefront of the primitive streak moving with speed  , 

proliferating cells that would eventually turn into neurons. If we coloured these neurons green as 

they are then different from the cells in Hensen’s node, we would see a train of neurons preceded 

by the cells at Hensen’s node- a good approximation of the primitive streak. 



 

 

1. Biological Introduction/Overview 

In my project I will be attempting to model specific features of a process known as Embryologenesis, 

the progression of stages an organism goes through during its early life from fertilization to birth. In 

particular I will be considering the case of a chick developing in an egg, which undergoes 4 main 

stages. One of these stages, gastrulation, I will be looking at in detail, where the progression and 

subsequent regression of the primitive streak takes place.  

All animal life starts with a fertilised egg, scientifically known as a zygote. The zygote undergoes 

several processes which collectively make up Embryogenesis: Cleavage, Gastrulation, Neurulation 

and Organogenesis. We will consider these stages in some detail to give an overview of what occurs 

within them . 

1.1 Cleavage 

Cleavage, the first of these stages, takes place while the egg is still in the hen’s oviduct. It has in itself 

two stages. The first, mitosis, is where the chromosones of the zygote duplicate themselves to 

produce identical daughter nuclei. After this comes the second stage, cytokenesis, where the cell 

membrane (the outer wall of the zygote) splits into two, and each half now contains one of each of 

the nuclei. These processes are repeated multiple times to increase the number of cells, increasing 

the size of the zygote. 

 

 

 

 

 

 

 

 

 

 

 

 

 



The process of cleavage takes place on the blastodisc, a small circular region on top of the yolk. It 

lasts approximately 20 hours after fertilization, during which time the fertilized egg is travelling 

down the oviduct.  

 

 

 

 

    

 

 

 

 

After the 20 hours, the chick egg has been surrounded by albumen, shell membrane and the shell 

itself, and so it is laid with the chick still developing inside. 

At this point, the central region of the blastodisc is translucent and is known as the area pellucida, 

and is a contrast to the outer region which is darker and known as the area opaca (see Fig 1.4). The 

area pellucida appears lighter as there exists a cavity below it which is filled with a secreted liquid; 

this area is known as subgerminal space, and does not exist beneath the area opaca hence why it 

appears darker. There is also a sickle shaped region of cells that has developed between the areas 

pellucida and opaca at the posterior of the blastodisc, known as Koller’s Sickle.  Once this has all 

taken place, the primitive streak will start to appear at Koller’s Sickle, which signals the next stage of 

embryogenesis- Gastrulation. 

 



 

 

 

1.2 Gastrulation 

The cells on the surface of the blastodisc are collectively known as the epiblast, while the cells on 

the bottom are known as the hypoblast. Gastrulation is signalled by a movement of cells from 

Koller’s Sickle in a posterior (what will be the tail of the chick) to anterior (the head) motion, marking 

the progression of the primitive streak across the area pellucida that forms a groove in the epiblast 

(shown in Fig 1.5). As the primitive streak progresses, some of the other cells are pushed outwards 

and then back towards the primitive streak in a circular motion. Imagine you have a bowl of honey 

and you pull a spoon through it in a straight line; the honey around this would behave in a similar 

way, as these are both viscous fluids.  Some of the cells that return back towards the primitive streak 

will pass through it, and sink underneath, forming two germ layers. The first, mesoderm, is made up 

of the cells that settle beneath the surface. However some cells will move further downwards, and 

will displace the cells in the hypoblast. This then creates the second germ layer known as endoderm. 

Any remaining cells on the surface make up the third germ layer, ectoderm. This process is shown in 

Fig 1.7. These three germ layers will each determine the features of the chick that they will form 

later on, during organogenesis. 

All this time the primitive streak is progressing across the area pellucida, and after around 16 hours 

it is fully extended. Now there comes an interesting change. The area pellucida changes shape, from 

circular to pear. At the same time a collection of cells begins to form at the anterior end of the 

primitive streak, known as Hensen’s node. As the embryo starts to move into the next stage of 

embryogenesis, neurulation, the primitive streak together with Hensen’s node begins to regress 

backwards towards the posterior end of the embryo, shown in Fig 1.6. 

This stage of gastrulation is very interesting- why should the cells start to move at all? Why should 

Hensen’s node progress one minute and begin the regress the next? Essentially the cells in Koller’s 

Sickle differentiate from the rest of those on the epiblast, which is why they move and the rest do 

not. One theory is that there may be a chemical produced in the area pellucida that the cells in 

Koller’s Sickle are either attracted to or repulsed from, and hence they start to move towards or 

away from it, forming the primitive streak and Hensen’s node.  This is known as chemotaxis, which 

can be considered in two cases: either as chemo-attraction (the case where the cells are attracted to 

the chemical) or chemo-repulsion (the case where the cells are repelled from the chemical). 



 

 

 

 

 

1.3 Neurulation 

Neurulation, an early phase of the final stage organogenesis, is where the central nervous system 

and brain begin to develop.  Cells from the ectodermal germ layer begin to form the neural plate, 

moving towards the midline of the blastodisc. The plate then starts to fold around the midline (or 

notochord), starting with a pair of neural folds and ultimately forming the neural tube in a process 

known as primary neurulation, which will eventually form the spinal cord, brain and the entire 

nervous system.  

At the same time, Hensen’s node and the primitive streak has begun to regress towards the 

posterior end of the embryo, resulting in the body axis beginning to extend along the central 

midline. It is Hensen’s node that is in charge of forming the neural tube and production of other cells 

in the area. 

By the end of neurulation, the zygote is in the phylotypic stage with the brain and spinal area clearly 

visible, and signals the final stage of embryogenesis. 

1.4 Organogenesis 

Now that the central nervous system and brain has been laid down, it is time for the internal organs 

(including the circulatory system) and limbs to develop from the three main germ layers (ectoderm, 

endoderm and mesoderm) created earlier during gastrulation. This final stage is known as 

organogenesis.  The different germ layers contribute to the development of different features of the 

chick; for example, the nervous system that started to develop during neurulation was due to the 

ectoderm, the gastrointestinal tract is produced by the endoderm and the liver and heart by the 

mesoderm. During this time, the embryo grows in size, and also develops its beak, wings, and grows 

down feathers on the wings and body. 21 days after the egg is laid, the chick hatches. 



 

a) Shows the chick near the end of neurulation. The spinal area and brain are clearly visible. 

b) Shows the chick towards the start of organogenesis; limbs have started to develop, as well 

as the beak. 

c) Shows the chick almost ready to be hatched at the end of organogenesis; most of its 

features are now clearly defined, and it has grown down feathers on its wings and body. 

 
 

2. Mathematical models 
 
We need mathematical models to explore possible mechanisms for the progression and regression 
of the primitive streak during gastrulation. A feasible reason for this, as mentioned earlier in the 
biological introduction, is chemo-repulsion. 
 
During gastrulation, the group of cells known collectively as Hensen’s node is inside the ‘stem zone’. 

The stem zone is made up of around 1000 stem cells, which are cells that, under the right conditions, 

can become anything they like, such as skin, bone or muscle.  It is these cells, whilst on the epiblast, 

that begin to move in a head to tail motion. As they progress, forming the primitive streak, the cells 

surrounding them are pushed first outwardly and then flow inwardly towards the midline, as was 

described above. This is similar to an unzipping motion along the midline, and some of the cells 

begin to sink eventually forming the mesodermal and ectodermal germ layers. When the primitive 

streak finally starts to regress, it is a similar action to ‘zipping up the midline’; there is now no 

motion along the midline. 

 

 



 

The cells in the stem zone constantly proliferate, yet the number of cells inside always remains the 

same and so the size (also known as the DOT) remains constant. This happens because some cells 

will stop moving as others multiply, and be left behind (picture). These cells become neurons, which 

eventually form the nervous system during the embryonic stage of neurulation. This act of stem cells 

becoming neurons is what balances out the number of cells in the stem zone.  Figure 1.9 below 

displays what is happening within the stem zone, as old stem cells stop moving and become 

neurons. 

 

 

 

 

 

 

 

 

 

The stem cells express a gene called FGF8. It is thought that the gene FGF8 may regulate the mobility 

and differentiation of the surface cells on the area pellucida. Let’s use a one-dimensional continuous 

model and take a section including the stem zone, considering the image above. 

 

 

 

 



2.1 One-dimensional continuous model 

In this model we will consider two variables representing the levels of gene FGF8 and a protein FGF8 

which we will consider later. 

 

Dynamics of gene FGF8 : a lab perspective  

In this system of coordinates, the differential equation defining the level of gene FGF8 (herein called 

  ) inside of the stem zone moving with speed c is  

   

  
         

The moving stem zone is represented by a segment of line of length L moving to the right with speed 

c, i.e. in the range 

         

   and   are called kinetics constants:     defines the rate of decay of   , and    defines the rate of 

production of   . 

Outside of this segment, i.e. within the ranges  

               

   

  
       

as    (production) is  . 

We can approximate the level of gene inside the stem zone by a stationary solution:  

   

  
              

  

  
 

We can see that    is a constant inside the stem zone. If we let      , then      inside the 

stem zone.  



As for the level of gene outside the stem zone, we can conclude that its level is zero in front of the 

stem zone and decreases exponentially behind, since the stationary solution is given by:  

        

However, the ranges for the differential equations change over time, so this isn’t the best way to 

represent the solution. Consider the case in a co-moving frame of reference, where we are moving 

with the stem zone. 

Dynamics of gene FGF8 : In a co-moving frame of reference 

In this system of coordinates, the partial differential equation defining the level of gene    inside 

the stem zone is  

   

  
  

   

  
           

for the range      , and outside the stem zone is 

   

  
  

   

  
         

for the ranges     and     . 

These areas do not change over time, so we use this co-moving frame of reference to easily solve for 

  . 

We can look for the stationary solutions representing the concentration of the gene, i.e. 

   

  
   

In front of the stem zone 

   
   

  
                 

In fact, 

          

This is clearly true; there will be no concentration of    in front of the stem zone. 

Inside the stem zone 

   
   

  
          

   

  
         

          

   will clearly not be   as in front, but let 

            



 
Behind the stem zone 

   
   

  
       

   

  
      

   

  
 

  

 
   

        
   

 
 

 

            
   
  

 
Where    is    at time  , position  . 
 
We also need to model the amount of a diffusible protein FGF8 (herein called   ), also produced in 
the stem zone wherever the gene FGF8 is produced. 
 
 
Dynamics of protein FGF8 (also called protein A) 
 
In a co-moving frame of reference the partial differential equation defining the level of    is 
 

   

  
   

    

   
  

   

  
            

 
where    defines the diffusion constant and    is a kinetic constant. 2     represents the 
production of    and -     represents the decay of   . 
 
Remember,      in front of the stem zone, inside the stem zone it is a constant (say 1), and 
behind it is a decaying exponential. 
We need to solve for    in three regions:           (shown in Fig 2.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
In front of the stem zone 

     
To find stationary solution, 

  

    

   
  

   

  
        

 
This is a homogeneous second order differential equation, so choose a trial solution        
If we substitute this into our differential equation we get 

   
          

   
            

   
 

Take 

   
            

   
 

And 

   
           

 

   
 

 
to be the roots of this quadratic equations, where           
So our general solution is 

               
 
Inside the stem zone 

           
To find stationary solution,  

  

    

   
  

   

  
           

 
 

Our general solution is the same as before,                
However we need to find the particular solution as well, as this is no longer a homogeneous second 
order differential equation. 
Try  

           
    

     
 
 
If we substitute this back into our differential equation we get  

          
     

So our solution is 

                 
 
 
Behind the stem zone 

    
   
  

From time to time we will refer to 
  

 
 as   for simplicity. 

 
To find a stationary solution, 



  

    

   
  

   

  
           

   

 
Again our general solution is as before, but we need to find the particular solution. 
Try 

               
           

           
 
If we substitute this back into our differential equation we get 

         
              

   
 

      

   
    

   
       

 
    

   
       

 
    

   
       

 

 

   
   

   
       

 

 
We will leave   in this form as it is tedious to write out; but we must remember that   is a constant 
throughout our workings. 
 
So our solution is 

                 
   
  

 
However, we need to find a continuous smooth solution for   , which means we have 6 conditions 
we need to fulfil: 

            
  

       
     

            
  

       
     

and 
               

 
 

1)                         

2)   
       

             
   

 
         

3)                                        
4)   

       
                                      

5)                        

6)                           
    

    
 
 
Take 5): 

              
We have      , so the term          To satisfy the whole equation,      
 
Take 6): 

         

This is true because        and   
    

  both equal zero, since    and 
  

 
 are both positive. 

     
 



 
Take 1) and 2) and substitute in    : 
 
1)           

2)               
   

 
 

              
   

 
             

 

          
   

 
                 

 

     
   

 
             

 

                 
   

 
                     

 

   
          

       
 

 

   
            

       
 

 
1)   

    
           

       
     

 
3) and 4) now become: 
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Multiply 3) by   : 

    
    

           

       
   

             
    

 
Now we can equate 3) and 4): 
 

    
    

           

       
   

            
    

           

       
   

    

     
            

    
 

      
        

                      
 

   
    

        
   

 

         
   

     
  

And so 



          

         
   

     
  

           

       
     

 
                                

     
 

 
                                   

     
 

 
                   

     
 

    
    

                 

     
  

 
And 4)  

    
         

        
    

     
          

   

     
    

    
           

       
   

    

 
            

       
          

     
 

 

   
            

       
          

   
          

 

 

 
        

               

           
 

 

   
    

                

     
 

 
Also remember that in these equations, 

  

 
   

 
So we can say that: 

              
                 

         
 
Therefore, substituting in our constants of integration, the solution is 
 

    
    

                 

     
      

   

   
       

                  

 

         
   

     
       

            

     
                        

 

    
    

                

     
            

 
 



Check  using boundary conditions: 
 

1)             
 

    
                 

     
         

   

     
  

           

       
   

 
    

                          

     
 

    
                         

     
 

     
                            

                        
 
All the terms cancel so this holds. 
 

2)         
   

 
         

 
    

                 

     
             

   

     
    

               

       
 

 
      

                               

     
 

      
                    

     
 

       
                               

       
                      

 
All the terms cancel so this holds. 
 
 

3)                            

      
   

     
      

           

       
       

    
                

     
     

 
        

                        

     
 

                       

     
 

         
                                                      

 
All the terms cancel so this holds. 
 

4)                                  
 

      
   

     
    

    
           

       
   

    
    

                

     
   

    

 
            

        
         

     
 

          
                

   

     
 

             
         

          
               

          
          

    
 
All the terms cancel so this holds. 
 

5)               

6)                 
    

    
 
These both obviously hold as we have shown before. 

 
 
 



Location of maximum    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We now want to find the maximum point of   . The protein FGF8 is produced wherever the gene 
FGF8 is. Since there is no production of the gene FGF8 in the region   , i.e. in front of the stem zone, 
we will not consider this region. Instead we will search for          inside regions    and   . We 
can use Maple to plot the graph of the concentrations of the protein FGF8 (red line) and the gene 
FGF8 (green line), using the following parameters, acquired by experimentation: 
 

          
           

        
     
      

 
(See Fig 2.4 above for graph) 
 
The green line represents the concentration of gene FGF8. It is at its highest concentration inside the 
stem zone with a concentration of 1, its lowest in front with zero concentration, and is exponentially 
decaying behind the stem zone. The red line represents the concentration of the protein FGF8 which 
is produced wherever the gene FGF8 is. It is clear that the maximum value of    is just behind the 
stem zone; however we must be able to prove this beyond any doubt, to check we have made no 
mistakes. To do this we must evaluate the   position of   (max) both behind the stem zone and 
inside it. 
 
 
 



Behind stem zone (    : 

           
   
              

To find the   position of   (max); 
 

  
      

            

     
          

  

   
          

            
  

   
  

And so 

   
 

      
   

  

   
  

 
 
Inside stem zone (      : 

                 
 
To find the x-position of   (max); 
 

  
      

        
      

     
         

     
   

   
           

We can find that 
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This gives 

                 
       

   
                    

       

   
  

And so 
 

   
   

     
 

 

     
     

       

   
  

 
We now have two points where   (max) could be found, and of course only one of these will be 
correct. Using Maple, we will evaluate them. To be a true maximum point, the   coordinate must 
exist within the ranges we have chosen. 
 
The maximum found in    (i.e. behind the stem zone) is given by the coordinates (-14.70668504, 
1.009018583). The   coordinate is at -14.706 (approximately), which is within the range       . 
However, the maximum found in    (i.e. inside the stem zone) is given by the coordinates  



(-10.35744445, 1.002809479),which is not within the range of the stem zone, (0, 48). Therefore, the 
true maximum must be 
 

   
 

      
   

  

   
  

 
which is behind the stem zone, as was shown in Fig 2.4. 
 
 
The next question we would like to answer is what conditions on the parameters ensure that  
  (max) will be found behind the stem zone? 
 
The extreme case is on the border between the sections     and       , i.e. when    . 
So we put      (we could also put     , and we should still find the same answer) 
 

   
 

      
   

  

   
    

  

   
   

 

    
    

                 

     
   

 

 
          

  
     

                  

 

 
          

  
                  

     

 

 
                           

     
 

                           

     
       

 

           
      

   
     

 

  
     

       

   
  

 
So we have found an expression for the same of the stem zone in terms of the speed with which it is 
moving (remember,      and   are all functions of  ) 
 
Using to Maple to plot   as a function of  , using the same parameters as before, we obtain the 
following graph: 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Along this red curve, max(  ) will always be found on the line     . Now we can find what 
happens above and below this curve. 
 
For a maximum to be found behind the stem zone: 
 

   
 

      
   

  

   
    

 
We need to consider two cases;          and         : 
 

            
  

   
    

  

   
   

 

    
 

  
     

       

   
  

 

            
  

   
    

  

   
   

 

     
 

  
     

       

   
  

 



Using the parameters from before, we can find that          ; it is -0.0080741759. Therefore, 
being below the curve on the graph will ensure that a maximum value of    is found behind the 
stem zone. 
 
For a maximum to be found inside the stem zone: 
 

   
   

     
 

 

     
     

       

   
    

 
        (it is 0.05385164808)        
 

          
       

   
    

 

  
     

       

   
  

 
So being above the curve on the graph will ensure that a maximum value of    is found inside the 
stem zone. 
 
 
2.2 Potts Model 
 
2.21 Cellular Potts model 
 
In the last chapter we used a 1-dimensional continuous model considering a segment on a line to 
represent a stem zone, which gave accurate results. We can also use a 2-dimensional model that 
considers individual cells, and is more representative of what is happening biologically. 
The Cellular Potts model developed by Graner and Grazier is a computational method using lattices, 
used to simulate the behaviour of cellular structures. The lattice was originally created as a model of 
ferromagnetism (the mechanism by which certain materials are attracted to magnets) in ferrous 
crystalline (or lattice) materials. 
 
The lattice   can be thought of as a 2D matrix, with each entry representing a ‘cell site’.  Many 
squares make up a single cell, as shown below in Fig 2.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



So for example, all the red entries numbered 2 make up one single cell; the same goes for all the 
green entries, yellow entries, and blue entries. 
Biologically, cells explore their boundaries in an attempt to minimise the overall energy. We have an 
expression for the energy of the system: 
 
 
 
 
where the energy terms somehow relate to forces existing within the system. The first term relates 
to the adhesive forces existing between the cells. The second term is related to the cell size, which 
must always remain constant. The third term is related to chemotaxis- this describes the movement 
of cells due to the gradient of a chemical that may be present within the cells. This is the case we 
looked at in the one dimensional model, where we considered chemotaxis due to the presence of a 
gene FGF8. 
We could consider more energy terms, but for the problem we want to solve these will be enough.  
 
The energy is defined in such a way as to mimic the desired biological behaviour of cells; in our case 
we shall consider the stem cells within the stem zone. 
First we shall consider a case with no chemotaxis (i.e. we will obtain a stationary solution), and will 
consider the evolution of the system towards minimisation of energy. So for this we only need 
consider the first two terms of the energy, 
 

 

To mimic the behaviour of the cells, the CPM uses an algorithm to choose a particular site; 
for example it picks site B in the image above. It then uses a random sampling method to 
pick a neighbouring site, for example site A. It then calculates the probability that site B will 
choose to inhabit the space where site A currently resides. 

It the CPM finds that by site B invading site A the overall energy of the system decreases, 
the probability is 1 and site B will definitely invade site A. If the CPM finds that the overall 
energy does not decrease, it calculates the probability that site B will invade site A using a 
Boltzmann probability function: 

        
  
  

where T is the “temperature” of the system, and    is a change in energy. So there is still a 
probability that site B will inhabit site A, but it is not definite that this will happen. 

The CPM repeats this process until the solution stabilises as it has found the minimised 
energy state. By doing so, the CPM eventually changes the lattice to a desired biological 
representation, i.e. the cells in the stem zone. We would expect the lattice to reduce to a 
circular group of cells as this would represent a minimised energy state. The picture below 
illustrates this. Figure a) shows a regular 2-D lattice before any steps have been taken. 
Figure b) shows the lattice after maximum number of cell site invasions; it shows the lattice 
in a minimized energy state, that now more closely resembles the cells in the stem zone. 
These cells will have little motility now that the energy is at a minimum. 

..._  chemotaxissizecelladhesive EEEE

..._  chemotaxissizecelladhesive EEEE



 

 

 

 

 

 

 

 

 

If we now consider the case with chemotaxis involved, we now consider the first three 
energy terms, 

 

 

The CPM will repeat the same process used before. However there will be a slight difference in what 

we see happening biologically. Because of chemotaxis, there will be a general movement of the cells; 

in our case we considered a movement of left to right due to chemo-repulsion. 

 

 

 

 

 

 

 

 

 

 

 

..._  chemotaxissizecelladhesive EEEE



If we consider the concentrations of the gene FGF8 and the protein FGF8 that we found before, we 

can see that there will come a point at     where the gene FGF8 is no longer produced (shown in 

Fig 2.8). At this point, protein FGF8 reaches its threshold value, as it is only produced wherever FGF8 

is produced. As the stem zone moves from left to right, the stem cells are constantly proliferating; 

however, at this point where the gene FGF8 is no longer produced, any cells behind this point will 

stop moving and turn into neurons- they differentiate from cells in front as they no longer express 

the gene FGF8. The stem zone continues to move and reproduce cells in this fashion. As the neurons 

left behind are now stationary, graphically we will see a trail of neurons dragging behind the stem 

cells that are still expressing the gene FGF8. This is a feasible explanation of how the primitive streak 

forms, with the group of cells known as Hensen’s node at the forefront differentiating from the rest 

of the cells on the primitive streak. In Fig 2.9, the cells coloured red represent the stem cells, and the 

cells coloured green represent the cells that no longer express the gene FGF8 (the neurons), trailing 

behind the stem zone. 

 

 

 

 

 

 

 

 

The CPM model is much slower than the 1-D model, so to solve we use different parameters to 

cause dimensional diffusion and kinetic constants to be slightly smaller than used in the 1-D model. 
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