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Summary

Human bodies are constantly under attack from bacteria which cause diseases. Yet,

these bodies are also considered to be a shelter to a large number of harmless bacte-

rial species that would not cause any illnesses or infections. These types of bacteria

can be used against another member of the same family with a different effect. In

other words, the harmless bacteria can be an effective cure against the harmful cousins

[2, 3, 6]. To understand the idea, Staphylococcus genus will be defined and considered.

Staphylococcus genus includes more than thirty species, several species identified as

commensals of humans, which means that these species are advantageous while the

host is unaffected. In this genus, most diseases are caused by two well-known species,

S. aureus and S. epidermidis, extending from negligible infections to life-threatening

conditions. S. epidermidis strain is rarely pathogenic, by contrast, S. aureus infections

are more aggressive, associating with both chronic and acute diseases [2, 3].

A significant number of studies have been conducted to discover a potential treat-

ment against Staphylococcus aureus, which colonizes the nose. Usually, these colonies

are not serious. However, if a full infection occurs, the result can include life- threaten-

ing diseases. With the continued progress of S. aureus and other staph strains through

developing a mutation against antibiotics, the threats of these strains have never been

greater [3]. S. epidermidis shares the same environment with S. aureus (the nose). It

is the most common commensal in our bodies. Furthermore, S. epidermidis is consid-

ered harmless, unless the immune system of a body has been compromised. Moreover,

recent studies have shown that S. epidermidis has the ability to prevent and inhibit S.

aureus invasion and lower the rate of infections [2].

In this dissertation, two types of competition will be considered. The first compe-

tition between these strains will take place among population classes while the second

within the host. In the first and the second papers [1, 2], the competition between these

strains will be for them to coexist together in a balanced environment. Otherwise, the

full colonisation of one strain will drive the other strain to extinction and in another

scenario, the dominant strain might also become extinct due to the lack of carriers.
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By way of explanation, in the mathematical model presented in [1], two strains dis-

tinguished by their level of virulence compete, assuming that, the whole population

is colonised by the avirulent strain. Thus the other virulent strain will be driven to

extinction. Conversely, if the entire population is colonised by the virulent strain, this

means not only the avirulent strain will vanish, but also the virulent strain, which

has a high propensity to develop an infection, will eventually become extinct due to

the fact that the population will die, and this will be the dead end of this strain as

well. Likewise, in the other mathematical model presented in [2], where two strains

distinguished by their level of toxicity compete, total domination by one of them will

lead to the exclusion of the other strain, and vice versa. While the competition in the

last paper [4], will be between Staphylococcus strains within the host.

Hence, in this dissertation we will review these three papers [1, 2, 4]. Furthermore,

throughout the second chapter, we will analyze the presented mathematical model

in the first paper [1]. The third chapter will comprise mathematical analysis of the

model presented in the paper [2]. Finally, in the fourth chapter, we will produce a

simple mathematical model to illustrate the presented data in the third paper [4]. This

dissertation will be concluded by the discussion chapter.
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Chapter 1

Introduction

1.1 Overview of the model developed in the paper

”The evolution and maintenance of virulence in

Staphylococcus aureus: a role for host-to-host

transmission?” (Nature, 2006)

Although the advanced and the rapid growth of infectious disease biology, such as the

emergence of genomic sequencing, has enhanced our ability to understand a significant

number of phenomena that occur in this area, the creation and maintenance of micro-

bial virulence and the reasons and the criteria that control it remain in the process

of expectations and speculations. Diverse factors were identified to be responsible for

increased virulence and host damage; this identification was through comparative ge-

nomic analysis between virulent and avirulent strains. However, for solid understanding

of how infectious diseases arise, the forces that underlie the multifaceted virulence are

needed to be known and determined. That are the reasons that made one microbial

species to be virulent, while another species maintains less virulent. Two strains of the

Staphylococcus genus, Staphylococcus aureus and Staphylococcus epidermidis, were

highlighted and taken into consideration, in order to fully understand this aspect of

pathogen biology, and ask why S. epidermidis strain is considered to be less virulent

than S. aureus, and vice versa. Several hypotheses have built a strong argument based

on the fact that, unlike the situation in S. epidermidis, where skin contact affords eas-

ier transmission between hosts, the complex transmission pathway of S. aureus is the

primary factor and the rationale behind the evolution and maintenance of virulence in

this specific strain. Furthermore, a mathematical model was used to support this ar-

gument. Although, many questions about the level of virulence have been answered by

identifying the components that contribute to making one strain more virulent than

another. Some questions remained unanswered, such as the reason that makes the
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acquisition of these mobile genetic elements beneficial for S. aureus? Alternative hy-

potheses were discussed in this paper to explain the evolution of virulence. Moreover,

a mathematical model, that identified the transmission rate as the primary reason that

assist S. aureus to be more virulent than S. epidermidis, was presented in this paper.

In general, the experimental evidence and the mathematical model reveal that the level

of virulence in a pathogen can be determined by the ease of transmission. Thus the

differences in virulence between S. aureus and S. epidermidis is associated with the

ease of transmission. According to the results obtained in this paper, S. epidermidis

strain has a higher rate of transmission among individuals. Through an analysis of

the transmission properties of these strains, three reasons were given explaining the

reason of S. aureus strain to be more challenging to transfers between hosts than S.

epidermidis. First, there is a common belief that every human is colonised by S. aureus

strain given the fact that it is known as being commensal bacteria, and so far there

are no known host barriers preventing colonisation by such strain, on the contrary,

only a limited population of humans are colonised by S. aureus. Second, the dynamic

of transmission in S. epidermidis considered being easier than the transmission in S.

aureus. Given the fact that a direct contact is more efficient regarding transmission of

the bacteria between two hosts. Moreover, S. epidermidis located on the skin, and that

means, transfer between two hosts is possible to occur daily and considered as a rela-

tively simple process, unlike the situation in the other strain S. aureus, which required

a complex process to transfer from one host to another. Third, in S. aureus there are

four different Agr which have been identified. Also, recent studies have revealed that

when one type of these Agr of S. aureus colonises a host the invasion by a different Agr

type will be inhibited by the competitive nature of Agr interference.

A simple mathematical model was used to determine the relationship between trans-

mission and virulence in a single species consist of two competing strains; one strain

described by having a low level of virulence, while the other strain had a high level

of virulence. According to this model, virulence can be defined as the propensity to

develop infections, which means that the disease symptoms have started to appear on

the colonized individuals. In this model, a higher rate of transmission between the

susceptible and infected individuals was assumed based on the fact that in the case of

infection a certain level of attention is required so that the contact between the healthy

individuals, for instance in a hospital and the patients occurred in regular basses. Nev-

ertheless, this contact may also result in individual patients being treated and moved

back into the susceptible class. As mentioned before, this model was applied to two

different species, each of which contains two different strains with different level of

virulence. The only considered distinction between them in this model is the fact that
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one of them (S. epidermidis) has a higher transmission rate than the other species (S.

aureus).

The findings of this paper indicated that, in both scenarios, S. epidermidis and S.

aureus species, the competition between the two strains have led to exclude one strain

against the other. In the case where the transmission rate was relatively high (S. epider-

midis), the avirulent strain becomes dominant, and that drives the other virulent strain

to extinction. While the situation is completely different in the other case (S. aureus),

where the transmission rate was relatively low the virulent strain out-competed the

avirulent strain and exclude it. Thus, the findings of this model showed the negative

correlation between the level of virulence and the transmission rate.

1.2 Overview of the model developed in the paper

”Evolutionary Trade-Offs Underlie the Multi-

faceted Virulence of Staphylococcus aureus”

(PLOS Biology, (2015)

Full awareness of the factors that control the virulence in microbial pathogens would

enable us to produce long-term and efficient methods to prevent such pathogens. One

of the most important factors that played a leading role in disease pathology is the

secretion of the toxins. Which promote the image that in bacterial infections, the tox-

icity level is positively associated with the virulence and the severity of the disease.

This belief also was enhanced through the results of several tests which were conducted

on animals, it showed that highly toxin isolates cause more severe disease symptoms.

However, through recent medical analysis on humans isolated with invasive diseases,

such as bacteraemia, it revealed that the S. aureus strains that caused these diseases

often have a low level of toxicity. Differing bacterial virulence depends on the inter-

action between the host and the pathogen, which determine the severity and the level

of infections. The aim of this paper is to justify and understand the complex rela-

tionship between the level of toxicity and the disease severity through considering S.

aureus strain. This particular strain was chosen in this study given the fact that it is

considered as a global health-care issue. For that, several experiments have been con-

ducted on S. aureus species, where two strains were examined in the research. These

two strains were distinguished by their level of toxicity. The first strain has a low level

of toxicity while the other strain has relatively high level of toxicity. The diversity

of the level of toxicity is caused by the mutations which we were able to determine.
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Furthermore, many toxicity-affecting genes were identified. A mathematical model was

constructed to determine the implications of each level of toxicity, in other words, the

role of the toxicity level of the severity of the disease.

Unexpectedly, our findings indicated a negative correlation between the level of toxicity

and the disease severity. It turns out that, the least toxic strains caused the most severe

disease. A significant number of studies was performed to explain the high propensity

of the low toxic strain to cause a bacteraemia, these studies pointed the implication

of the differences in the fitness between high- and low-toxicity strains within the host,

and described it as an important factor. Being infected by high-level toxic strain is

usually the end of the road for these bacteria, due to the fact that these types are

highly challenging to transmit between individuals. To be able to explain the reasons

behind the high propensity of low toxin strain to cause a bacteraemia, although the

health of the patient is considered as a privilege in their vulnerability to bacteraemia.

There is no solid evidence which supports the fact that their propensity to cause a

bacteraemia is higher than the high toxin strain. However, we were able to identify the

negative relationship between the toxicity and the relative fitness of the strain. Due

to that, the high toxin strain is less likely to develop a bacteraemia from the infection

class. Thus, this explains the results indication. A mathematical model was also used

to support this argument. The outcome of this model indicates the negative correlation

between the toxicity level and the virulence of the diseases. The results validate that,

a distinction between toxicity can affect the nature of bacterial virulence.

1.3 Overview of the paper ”The effects of spatial

structure, frequency dependence and resistance

evolution on the dynamics of toxin-mediated

microbial invasions” (Evolutionary Applications,

2015)

A continuous carriage by S. aureus is frequently asymptomatic, Yet, it might develop

an infection in particular patients. The response to treatment can be low in these fre-

quent infections. Moreover, the risk of increased disease severity and mortality rates is

significantly higher for immunocompromised carriers. Recent studies and experiments

indicate that the interference competition between the bacteria types which colonise

the nasal airway of humans could contribute to the distribution of these types, either by

preventing the colonisation or, in extreme cases, by displacing each other. This inter-
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ference competition is considered as an addition to the factors affecting the colonisation.

The aim of this paper is to inspect the role of the toxic interference competition within

the nasal microbial community. In order to achieve that, several experiments have been

conducted on two well-known strains, S. aureus and S. epidermidis, in both structured

and unstructured environments to investigate the role of the toxin interference compe-

titions. The selection of these particular types of strains resulted from the fact that the

nasal microbial community mainly includes the species S. aureus and S. epidermidis.

The process of investigation is involved S. aureus strain to be cultured with toxin and

non-toxin producing S. epidermidis and vice versa.

Simple communities of S. epidermidis and S. aureus were constructed in this paper

to investigate the hypothesis that the interference competition could contribute neg-

atively to the distributions of these species in nasal communities. Predictions of the

theory propose that interference competition has a critical role in both restricting and

encouraging the invasion of resident communities. The promotion of the invasion is

indicated when the invader strain produces toxins which might lead to the resident

population extinction. However, the advantages gained from producing toxins must

be higher than the disadvantages of producing them. Also, the invader and resident

populations must not divide the benefits between them. If these conditions were not

obtained, then the chance of invasion will be reduced by the interference competition.

Two scenarios were discovered in which S. aureus could be excluded through toxins

production by S. epidermidis. The first scenario: when invasion by susceptible S. au-

reus is inhibited by resident toxin-producing S. epidermidis, while the second scenario

is when the resident susceptible S. aureus population is displaced by the invasion of

the toxin-producing S. epidermidis. Furthermore, a manipulation of two environmen-

tal parameters (the spatial structure, (structured or mix), of the environment and the

starting frequency of invaders), could affect the process of toxin-mediated interference

competition. The interference competition between bacteria occurs via toxin secretion

within the environment of the community. Thus the structure of the environment af-

fects the process. Several experiments revealed that in structured environments, the

invasion could occur with low frequency (concentration) of the invasive strain, whereas,

in a mixed environment in order to achieve an invasion it required a relatively high

frequency. By performing an experiment on the yeast Saccharomyces cerevisiae to in-

vestigate the impact of the environment structure on the success of the invasion. The

outcome demonstrated that structured environments promoted the invasion more than

the mixed environment. Hence, we predict that S. epidermidis strain will have a better
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chance to invade in a structured environment.

To inspect these predictions, competition experiments were performed. In one hand,

whereby S. epidermidis strain was invaded into resident populations of S. aureus. On

the other hand, a mutual invasion of S. aureus was performed into resident populations

of S. epidermidis to test whether S. aureus invasion could be restricted by S. epider-

midis.

The outcome of the first experiment, as illustrated in Fig (1.1), when a population of

S. aureus was invaded by toxin-producing and non-producing strains of S. epidermidis

in both structured and mix environment by three different frequencies. In mix environ-

ment, non-toxin producers were more successful in invading than the toxin produces

which were never able to invade. However, in a structured environment, the population

of S. aureus were more successfully invaded by the toxin-producing S. epidermidis than

non-producers. Thus, the structured environment promotes the invasion. In addition,

during the invasion, the resident strain has developed a toxic resistance which prevents

the total displacement by the invasive strain, in other words, beneficial mutations that

are pre-adapted to survive the conditions of an invasion were developed by the resident

strain.

Whereas the second experiment findings, as illustrated in Fig (1.1), when populations

of toxin and non-toxin producing S. epidermidis were invaded by S. aureus strain from

three different frequencies, in both types of environments. S. aureus successfully in-

vaded into the population of toxin and non-toxin producers of S. epidermidis in mix

environments. However, the toxin-producing S. epidermidis inhibit the invasion of the

S. aureus in a structured environment. In a reciprocal experiment, S. aureus strain

has successfully invaded the resident population of toxin-producing S. epidermidis via

the evolution of toxin resistance. Moreover, the invasion was more efficient under cer-

tain conditions, high initial frequency and low spatial structure. In many invading

populations of S. epidermidis, the toxin production has been enhanced. Therefore,

toxin production has played a significant role in both promoting the invasion by and

inhibiting the invasion into, the population of producers. Furthermore, both of these

invasions were enhanced by a structured environment.

The success of the invasions was determined and quantified through a calculation of

the selection rate constant for each invader which required the use of relative bacterial

frequencies throughout the period. In other words, the use of the following equation
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Figure 1.1: Selection rate coefficients for interference competition between S. aureus
and S epidermidis strains: determining the outcome of the invasion required the use of relative
bacterial frequencies throughout the period to calculate a selection rate constant for each invader.
On other words, the use of (1.1) equation, enabled us to define the results of each invasion. (Left):
the outcome of the invasion by toxin and non toxin producing S. epidermidis into a population of
S. aureus, at relative frequencies of 10, 100 and 1000, in both structured and mix environment. the
negative selection rate coefficients indicate that the invasion has not occurred. (Right): illustration
of the outcome of the mutual experiment, where a populations of toxin and non toxin producing S.
epidermidis were invaded by S. aureus, the negative values indicated that invasion was not possible,
whereas positive values indicated invasion was possible.

enabled us to define the results of each invasion:

Cir =
ln [Ni(7)/Ni(0)]− ln [Nr(7)/Nr(0)]

7days
(1.1)

where (i) represents the invader strain while (r) represents the resident.N(0) represents

the initial density of the population, N(7) reprents the density of the population after

7 days.

The failure of the invasions was indicated by the negative values, whereas the possibil-

ity of invasions was indicated by the positive values.

In conclusion, the findings of this study strongly argue that colonisation by S. au-

reus can be limited and restrained by manipulating some factors of the nasal microbial

community. Also, that could lead to lower the infection transmission rates.
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Chapter 2

Analysis of the model developed in
”The evolution and maintenance of
virulence in Staphylococcus aureus:
a role for host-to-host
transmission?”

The main principle of this model is to indicate the role of virulence and the relationship

between the level of virulence and the transmission rate in two different bacterial

strains.

2.1 Description of the mathematical model.

The population in this model is divided into four different classes or stages. The first

stage is the susceptible class (S), which can be transformed into two different colonial

stages either a virulent strain (Cv), or avirulent strain (Ca), by the rate (βc). Those

individuals that are colonised by a virulent strain might turn into an infection stage (I),

with a higher rate of transmission(βi), based on the assumption that infected people

transmit at a much higher rate through increased contact. However, recovery from this

class can return individuals back into the susceptible class by rate (σ).

This model can be represented by a set of nonlinear differential equations as follow:

dS

dt
= µ− βcCaS − βcCvS − βiIS − µS (2.1)

dCa
dt

= βcCaS − µCa (2.2)
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Figure 2.1: Diagram illustrating the mathematical model.

dCv
dt

= βcCvS + βiIS − (δ + µ)Cv (2.3)

dI

dt
= δCv − (σ + µ)I (2.4)

Remark 1 According to the equations that were taken from [1], it can be noticed that,

there was one term missing from equation (2.1), that is the recovery back into the

susceptible class term and in order to fix this error this term (σI) was added to that

equation. Therefore, the modified equation takes this form:

dS

dt
= µ− βcCaS − βcCvS − βiIS − µS + σI

So that,

d

dt
(S + Ca + Cv + I) = µ− µS − µCa − µCv − µI

d

dt
(S + Ca + Cv + I) = µ(1− (S + Ca + Cv + I))

Let

u = (S + Ca + Cv + I)

Thus;

du

dt
= µ(1− u)

∫
du

1− u
=

∫
µdt
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ln(1− u) = µ(t+ k)

k is a constant

(1− u) = Keµt

where K = eµk

u = 1−Keµt

2.2 Identifying the equilibrium points of non-linear

system of ODEs

An equilibrium point is a constant solution or solution of a system [7]. Therefore, in

order to find the equilibrium points of this model, the previous differential equations

must be set to equal zero as follow:

dS

dt
=
dCa
dt

=
dCv
dt

=
dI

dt
= 0

According to equation (2.2), dCa

dt
= 0 if :

Ca = 0, or S =
µ

βc

In addition, from (2.4), dI
dt

= 0 if :

Cv = I = 0 or Cv =
(σ + µ)I

δ

First, Substituting this Ca = 0, and Cv = I = 0 back into the system:

dS

dt
= µ− βcCaS − βcCvS − βiIS − µS + σI = 0

dCa
dt

= βcCaS − µCv = 0

dCv
dt

= βcCvS + βiIS − (δ + µ)Cv = 0

dI

dt
= δCv − (σ + µ)I = 0

14



yields;

dS

dt
= µ− µS = 0,

dCa
dt

= 0,
dCv
dt

= 0,
dI

dt
= 0

Thus, the first equilibrium point is at (S, Ca, Ca, I) = (1, 0, 0, 0)

Secondly, substituting another condition, when (Ca = 0, and Cv = (σ+µ)I
δ

) into the

system, yields:

dS

dt
= µ− βc S (σ + µ) I

δ
− βi S I − µS + σ I = 0

dCa
dt

= 0

dCv
dt

=
βc S (σ + µ) I

δ
+ βi S I − (σ + µ) I − µ (σ + µ) I

δ
= 0

dI

dt
= 0

By solving these two non-zero equations leads to two solutions, either (S = 1 and I =

0), which is the same as the first equilibrium point, where (S, Ca, Ca, I) = (1, 0, 0, 0)

or

S =
δ µ+ δ σ + µ2 + µσ

βc µ+ βc σ + βi δ

Ca = 0

Cv =
(σ + µ) (βc µ+ βc σ + βi δ − δ µ− δ σ − µ2 − µσ)

βc δ µ+ βc δ σ + βc µ2 + 2 βc µσ + βc σ2 + βi δ2 + βi δ µ+ βi δ σ

I =
δ (βc µ+ βc σ + βiδ − δ µ− δ σ − µ2 − µσ)

βc δ µ+ βc δ σ + βc µ2 + 2 βc µσ + βc σ2 + βi δ2 + βi δ µ+ βi δ σ

Thirdly, substituting another condition, when (S = µ
βc
, and Cv = I = 0) into the

system, yields:

dS

dt
= µ− µCa −

µ2

βc
= 0,

dCa
dt

=
dCv
dt

=
dI

dt
= 0

Thus, the third equilibrium point is at (S, Ca, Cv, I) = ( µ
βc
, 1− µ

βc
, 0, 0)

Fourthly, substituting the last condition, when (S = µ
βc
, and Cv = (σ+µ)I

δ
) into the

system, yields:

dS

dt
= µ− µCa −

µ (σ + µ) I

δ
− βi I µ

βc
− µ2

βc
+ σ I

15



dCa
dt

= 0

dCv
dt

=
βi I µ

βc
− (σ + µ) I

dI

dt
= 0

Solving these non-zero equations leads to the forth equilibrium point, which is at

(S, Ca, Cv, I) = ( µ
βc
, 1− µ

βc
, 0, 0), similar to the third equilibrium point.

Summary: Solving this system of nonlinear ODEs has led to three equilibrium
points:

1. (S, Ca, Cv, I) = (1, 0, 0, 0).

2. (S, Ca, Cv, I) = ( µ
βc
, 1− µ

βc
, 0, 0).

3. (S, Ca, Cv, I) =
(
δ µ+δ σ+µ2+µσ
βc µ+βc σ+βi δ

, 0,
(σ+µ)(βc µ+βc σ+βi δ−δ µ−δ σ−µ2−µσ)

βc δ µ+βc δ σ+βc µ2+2βc µσ+βc σ2+βi δ2+βi δ µ+βi δ σ
,

δ (βc µ+βc σ+βiδ−δ µ−δ σ−µ2−µσ)
βc δ µ+βc δ σ+βc µ2+2βc µσ+βc σ2+βi δ2+βi δ µ+βi δ σ

)

2.3 Stability analysis

To determine the stability of each equilibrium point, there is a necessary procedure in

order to find out whether the equilibrium at this certain point is stable or unstable.

This procedure is known as linearization technique.

2.3.1 Introduction to the linearization technique

Consider the independent system:

{
dx
dt

= f(x, y)
dy
dt

= g(x, y).

Let (x0, y0) be the equilibrium point, then we choose (x, y) to be

x = x0 + Σ, y = y0 + Ψ

And Σ, Ψ are small terms, so that we can find the closest linear system when (x,y)

is close to (x0, y0). Then approximating the functions f(x, y) and g(x, y) yields:

{
dx
dt

= f(x0, y0) + ∂f
∂x

(x0, y0) Σ + ∂f
∂y

(x0, y0) Ψ
dy
dt

= g(x0, y0) + ∂g
∂x

(x0, y0) Σ + ∂g
∂y

(x0, y0) Ψ.
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Since (x0, y0) is an equilibrium point, then we have f(x0, y0) = g(x0, y0) = 0.

Hence,

{
dx
dt

= ∂f
∂x

(x0, y0) Σ + ∂f
∂y

(x0, y0) Ψ
dy
dt

= ∂g
∂x

(x0, y0) Σ + ∂g
∂y

(x0, y0) Ψ.

The Jacobian matrix of the system at the point (x0, y0) is:

J =

( ∂f
∂x

(x0, y0)
∂f
∂y

(x0, y0)

∂g
∂x

(x0, y0)
∂g
∂y

(x0, y0)

)
.

Next step is to,

Find the eigenvalues of the Jacobian matrix.

Determine the state of the solutions around the equilibrium point from the eigenvalues:

If the eigenvalues are all negative, then the equilibrium at this certain point is con-

sidered to be stable, (sink). If the eigenvalues are complex, with a negative real part,

then the solutions will spiral into the equilibrium point, (Sink). If the eigenvalues are

all or at least one positive, then the equilibrium at this certain point is considered to

be unstable, (Source). If the eigenvalues are complex, with a positive real part, then

the solutions will spiral out of the equilibrium point, (Source), [10].

2.3.2 Determining the stability of the equilibrium points

There are two sets of parameters {S, Ca, Cv, I} and {µ, βc, βi, δ, σ}. The second set of

parameters represents the average life expectancy is given by { 1
µ
}, the rate of trans-

mission through contacting susceptible individuals with colonised individuals, the rate

of added transmission through infections, the propensity of the pathogen to develop

an infection and the recovery rate for infected individuals, respectively. This set of

parameters does not change except the {βc} parameter, which represents the rate of

transmission. Through experimental studies and analysis of the transmission, proper-

ties detect three reasons are indicating that S.epidermidis transferring between hosts is

less challenging than it is in the other strain S.aureus. First, there is a common belief

that every human is colonised by this type of bacteria, in other words there are no

barriers in the host that could prevent the transmission of such a kind, or at least it is

not known yet. The second factor, the dynamic of transmission is much easier in this

particular strain given the fact that a direct contact is more efficient at transferring

between hosts. As S. epidermidis located in the skin, a direct contact could occur

daily. On the contrary, then the situation in S.aureus strain that exists in the internal
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tissue of the nose, which requires more complex procedures to transfer from one host to

another. The third factor, four different Agr groups of S.aureus have been identified,

moreover, once the host is colonised by one type, the competition between these types

will inhibit the colonisation of any transmitted different kind.

The general form of the Jacobian matrix of the system is:

J(S, Ca, Cv, I) =


−βcCa − βcCv − βi I − µ −βc S −βc S −βi S + σ

βcCa βc S − µ 0 0

βcCv + βi I 0 βc S − δ − µ βi S

0 0 δ −µ− σ


Example 2.3.1 The S. Epidermidis strain will be considered first, with the defined

parameters as follow:

Figure 2.2: The effect of the transmission rate on the role of virulence: this figure shows the
predicted population; a host population colonised with an avirulent Ca (red) and a virulent Cv (green)
strain in two different strain of bacteria. (1). When the rate of transmission is relatively high as in the
S. epidermidis scenario (βc = 0.5), the avirulent strain [Ca] becomes dominant and the other strain
with increased virulent [Cv] is driven to extinction. (2). When the rate of transmission is lower as the
situation in S.aureus, (βc = 0.02), the strain with increased virulent [Cv] surpass the avirulent strain
[Ca] and push it to extinction.

µ = 1/70, βc = 0.5, βi = 100, δ = 1/100, σ = 52

By substituting these parameters into the Jacobian matrix to determine the stability
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of the first equilibrium point.

J(1,0,0,0) =


−0.01428571429 −0.5 −0.5 −48

0.0 0.4857142857 0 0

0 0 0.4757142857 100

0 0 0.01 −52.0143


Eigenvalues for this matrix are:

λ1 = −0.014286, λ2 = −52.033, λ3 = 0.49475, λ4 = 0.48571

Since there are two positive eigenvalues. That means this equilibrium is unstable.

Moreover, to determine whether it remains unstable the eigenvalues will be expressed

in terms of the variables rather than numbers.

J(1,0,0,0) =


−µ −βc −βc −βi + σ

0 βc − µ 0 0

0 0 βc − δ − µ βi

0 0 δ −µ− σ


Eigenvalues:

λ1 = −µ

λ2 = −δ
2
− µ− σ

2
+
βc
2
− 1

2

√
βc

2 − 2βc δ + 2βc σ + 4βi δ + δ2 − 2δ σ + σ2

λ3 = −δ
2
− µ− σ

2
+
βc
2

+
1

2

√
βc

2 − 2βc δ + 2βc σ + 4βi δ + δ2 − 2δ σ + σ2

λ4 = βc − µ

To verify that any equilibrium is unstable we must prove that there is at least one

positive eigenvalue. Hence, according to the given parameters λ4 is always positive;

βc > µ → βc − µ > 0.

Substituting the second equilibrium point ( µ
βc
, 1− µ

βc
, 0, 0) and the set of the defined

parameters into the Jacobian matrix yields:
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J =


−0.5 −0.01428571429 −0.01428571429 49.14285714

0.4857142857 0 0 0

0 0 −0.01 2.857142858

0 0 0.01 −52.01429


Eigenvalues for this matrix are:

λ1 = −0.014286, λ2 = −0.48571, λ3 = −52.015, λ4 = −0.0094506

Eigenvalues regarding variables:

λ1 = −µ

λ2 = −βc + µ

λ3 = −δ
2
−µ

2
−σ

2
− 1

2βc

√
βc

2δ2 − 2 βc
2δ µ− 2βc

2δ σ + βc
2µ2 + 2βc

2µσ + βc
2σ2 + 4 βc βi δ µ

λ4 = −δ
2
−µ

2
−σ

2
+

1

2βc

√
βc

2δ2 − 2 βc
2δ µ− 2βc

2δ σ + βc
2µ2 + 2βc

2µσ + βc
2σ2 + 4 βc βi δ µ

Given these eigenvalues, which all have negative values, this equilibrium is stable.

Finally, Substituting the third equilibrium point
(
δ µ+δ σ+µ2+µσ
βc µ+βc σ+βi δ

, 0,

(σ+µ)(βc µ+βc σ+βi δ−δ µ−δ σ−µ2−µσ)
βc δ µ+βc δ σ+βc µ2+2βc µσ+βc σ2+βi δ2+βi δ µ+βi δ σ

,
δ (βc µ+βc σ+βiδ−δ µ−δ σ−µ2−µσ)

βc δ µ+βc δ σ+βc µ2+2βc µσ+βc σ2+βi δ2+βi δ µ+βi δ σ

)
,

and the set of the defined parameters into the Jacobian matrix yields:

J =


−0.5091303511 −0.02338648128 −0.02338648128 47.32270374

0 0.00910076699 0 0

0.4948446368 0 −0.00089923301 4.677296257

0 0 0.01 −52.0143


Eigenvalues for this matrix are:

λ1 = −0.014285, λ2 = −0.49493, λ3 = −52.015, λ4 = 0.0091008

Eigenvalues regarding variables:

λ1 = −µ

λ2 = Obtained in the appendix
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λ3 = Obtained in the appendix

λ4 =
δ (βc µ+ βc σ − βi µ)

βc µ+ βc σ + βi δ

These eigenvalues indicate instability of this equilibrium point. Furthermore, this oc-

curred because of the fourth eigenvalue.

Summary: In the case of S.epidermidis given parameters there is only one stable
equilibrium which occurs at the particular point ( µ

βc
, 1 − µ

βc
, 0, 0), while the other

two equilibrium points are unstable.

Example 2.3.2 The S.aureus strain will be considered in this example, with the

defined parameters as follow:

µ = 1/70, βc = 0.02, βi = 100, δ = 1/100, σ = 52

Testing the stability of the first equilibrium point yields:

J(1,0,0,0) =


−0.01428571429 −0.02 −0.02 −48

0 0.00571428571 0 0

0 0 −0.00428571429 100

0 0 0.01 −52.0143


Eigenvalues for this matrix are:

λ1 = −0.014286, λ2 = −52.033, λ3 = 0.014934, λ4 = 0.0057143

Again, proving instability of an equilibrium point required to have at least one

positive eigenvalue; λ4 = 0.0057143 = βc − µ > 0, as βc > µ.

Substituting the second equilibrium point ( µ
βc
, 1− µ

βc
, 0, 0) yields:

J =


−0.02 −0.01428571429 −0.01428571429 −19.42857145

0.005714285710 0 0 0

0 0 −0.01 71.42857145

0 0 0.01 −52.0143


Eigenvalues for this matrix are:
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λ1 = −0.014285, λ2 = −0.0057145, λ3 = −52.028, λ4 = 0.0037317

This equilibrium is unstable, due to the value of λ4, which can be represented in term

of variables as follow:

λ4 = −δ
2
−µ

2
−σ

2
+

1

2βc

√
βc

2δ2 − 2 βc
2δ µ− 2βc

2δ σ + βc
2µ2 + 2βc

2µσ + βc
2σ2 + 4 βc βi δ µ

(2.5)

Finally, inserting the third equilibrium point
(
δ µ+δ σ+µ2+µσ
βc µ+βc σ+βi δ

, 0,

(σ+µ)(βc µ+βc σ+βi δ−δ µ−δ σ−µ2−µσ)
βc δ µ+βc δ σ+βc µ2+2βc µσ+βc σ2+βi δ2+βi δ µ+βi δ σ

,
δ (βc µ+βc σ+βiδ−δ µ−δ σ−µ2−µσ)

βc δ µ+βc δ σ+βc µ2+2βc µσ+βc σ2+βi δ2+βi δ µ+βi δ σ

)
,

into the Jacobian yields:

J =


−0.02922261581 −0.01238261949 −0.01238261949 −9.91309743

0 −0.00190309480 0 0

0.01493690152 0 −0.01190309480 61.91309743

0 0 0.01 −52.0143


Eigenvalues for this matrix are:

λ1 = −0.014937, λ2 = −0.014285, λ3 = −52.026, λ4 = −0.0019031

These eigenvalues indicate that with this value of βc, this equilibrium point becomes

stable, in contrast to what it was before with the other value of βc. In general, changing

the value of this parameter has changed the stability of the second and third equilib-

rium points.

2.4 Bifurcation analysis for the model.

In order to understand this part of the analysis, a couple of concepts are needed to be

defined.

Definition 2.4.1 Bifurcation: Studying the changes in the qualitative or topological

structure of a given family, such the family of differential equations, from a mathemat-

ical point of view is known as the ”Bifurcation theory”, [12, 13, 14]. When a minor and

smooth change occurs to the parameter values of the system, which in our case [βc],

leads to an unexpected ’qualitative’ or topological change in its behaviour, this shows

22



that a bifurcation has happened. Bifurcations occur in both continuous and discrete

systems.

There are two types of bifurcations; Local bifurcation: this type occurs when a

parameter change causes the stability of equilibrium to change. Global bifurcation:

which often occurs to larger invariant sets of the system ’collide’ with each other, or

with equilibria of the system. They are quite challenging to be detected by a stability

analysis of the equilibria, [12, 13, 14].

Figure 2.3: The bifurcation diagram for transcritical bifurcation: The solid line shows the
stable equilibrium point and the dashed line shows the unstable equilibrium.

Definition 2.4.2 Transcritical bifurcation: This particular type of Local bifurcation

occurs as one or more of the parameters are varied, an equilibrium point interchanges

its stability with another equilibrium point. Meaning that, an equilibrium having an

eigenvalue whose real part passes through zero. In other words, assume having two

equilibrium points, first point is stable and the other is not. As the parameter changes,

they collide and interchange their stability state and vice versa, [12, 13, 14].

Manipulating the value of (βc) has led to interchange the stability of two equilib-

rium points.

When βc = 0.5, this equilibrium where,

(S, Ca, Cv, I) = (
µ

βc
, 1− µ

βc
, 0, 0) (2.6)

was stable,
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while the other equilibrium where,

(S, Ca, Cv, I) =
(δ µ+ δ σ + µ2 + µσ

βc µ+ βc σ + βi δ
, 0,

(σ + µ) (βc µ+ βc σ + βi δ − δ µ− δ σ − µ2 − µσ)

βc δ µ+ βc δ σ + βc µ2 + 2 βc µσ + βc σ2 + βi δ2 + βi δ µ+ βi δ σ
,

δ (βc µ+ βc σ + βiδ − δ µ− δ σ − µ2 − µσ)

βc δ µ+ βc δ σ + βc µ2 + 2 βc µσ + βc σ2 + βi δ2 + βi δ µ+ βi δ σ

)
(2.7)

was unstable. The exact opposite occurs when changing the value of βc to become

(0.02).

Figure 2.4: Illustration of the bifurcation point in the system (2.1-2.4). Shows that: the
equilibrium point (2.7), represented by (orange), is stable when (βc < βc

?), otherwise unstable.
Moreover, the equilibrium point (2.6), represented by (blue), is stable when(βc > βc

?), otherwise
unstable. Hence, the value of βc

? = 0.027465, as mentioned in (2.11)

As mentioned before, in each equilibrium there is only one eigenvalue that changes its

sign when changing the value of the parameter. In order to identify the bifurcation

point (βc
?), the eigenvalue that changes its sign in each equilibrium point needed to be

detected and the expression of βc
? can be obtained by make them equal to zero.

From the equilibrium (2.6), the eigenvalue that changed its sign is:

λ4 = −δ
2
−µ

2
−σ

2
+

1

2βc

√
βc

2δ2 − 2 βc
2δ µ− 2βc

2δ σ + βc
2µ2 + 2βc

2µσ + βc
2σ2 + 4 βc βiδ µ

(2.8)
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In addition, from the equilibrium (2.7), the eigenvalue that changed its sign is:

λ4 =
δ (βc µ+ βc σ − βi µ)

βc µ+ βc σ + βi δ
(2.9)

Obtaining the value of (βc
?), from equation (2.8), or similarly from (2.9) yields:

βc
? =

βi µ

σ + µ
(2.10)

Substituting the value of the given parameters into equation (2.10), gives,

βc
? =

(100)(1/70)

52 + 1/70
=

100

3641
= 0.027465 (2.11)

2.5 Conclusion

In this chapter, we were able to amend the given model by adding the missing recov-

ery term, (σI), to the first equation, which represents the changes that occur in the

susceptible class over time. Furthermore, we solve the system numerically to obtain

the equilibrium points. Through the use of linearization technique we were able to

examine the equilibrium points to determine their stability, by substituting the equi-

librium points into the Jacobian matrix and then analyse the eigenvalues to each fixed

point. Changing one particular parameter has led to interchange the stability of two

equilibrium points. By investigating these two equilibrium points on the scale of that

particular parameter and determining the eigenvalue that changes its sign at each point,

a bifurcation point was found. Through the definition and the types of bifurcation we

were capable of identifying the occurrence of the transcritical bifurcation.
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Chapter 3

Analysis of the model developed in
”Evolutionary Trade-Offs Underlie
the Multifaceted Virulence of
Staphylococcus aureus”

The idea of this model is to demonstrate the role of toxicity level on the nature of

bacterial virulence. By studying two different strains of S. aureus, which have a different

degree of toxicity.

3.1 Description of the mathematical model

Unlike the previous model, this model is dividing the population into seven different

stages. Starting with the susceptible individuals class S, which can be either colonised,

Figure 3.1: Diagram illustrating the mathematical model.

(by high toxicity Ch, or low toxicity Cl strain of S. aureus at rate βc), or infected
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(by high toxicity Ih, or low toxicity Il strain of S. aureus with transmission rates βh

andβl , respectively). The colonised individuals by either high or low toxicity strain

might develop an infection at rate δi, (i = h, l). From the infection stage, individuals

either recover, (back to the susceptible class by treatment at rate τi, or back to the

colonised class by developing immunity to the disease at rate ρi), or go on to bac-

teraemia stage Bi with rate σi. Colonised and infected individuals with high toxicity

strain can mutate at a rate ν towards lower levels of toxicity.

This model can be represented by a set of nonlinear differential equations as follows:

dS

dt
= µ−

(
βcCl + βl Il

)
S −

(
βcCh + βh Ih

)
S + τl Il + τh Ih − µ S

dCl
dt

=
(
βcCl + βl Il

)
S + υ Ch + ρl Il − µCl − δl Cl

dCh
dt

=
(
βcCh + βh Ih

)
S + ρh Ih − υ Ch − µCh − δhCh

dCh
dt

=
(
βcCh + βh Ih

)
S + ρh Ih − υ Ch − µCh − δhCh

dIl
dt

= δl Cl + υ Ih − ρl Il − σl Il − µ Il − τl Il

dIh
dt

= δhCh − υ Ih − ρh Ih − σh Ih − µ Ih − τh Ih

dBl

dt
= σl Il − (µ+ χ)Bl

dBh

dt
= σh Ih − (µ+ χ)Bh

(3.1)

Where, µ represents birth and natural death rate, χ stands for death caused by disease

rate, υ represents the rate of high toxic strains mutates towards a lower level of toxicity,

βc the rate of transmission through contacting susceptible individuals with colonised

individuals, βi , (i = h, l) the rate of added transmission through infections, δi , (i =

h, l) the rate of a pathogen to develop an infection, τi , (i = h, l), the rate of recovery

through treatment, ρi , (i = h, l) the rate of recovery through developing immunity,

σi , (i = h, l) the rate of infection to develop invasive disease.

Within this system, a positive correlation was assumed between the level of toxicity and

the propensity of the pathogen to develop an infection. Furthermore, the transmission

and recovery rates of infected individuals also agreed to the degree of toxicity.
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3.2 Identifying the equilibrium points of non-linear

system of ODEs

Finding the explicit or implicit solutions of a nonlinear system considered to be chal-

lenging. The qualitative and numerical approximation are significant given the fact that

it could provide us with conclusions whether the solutions were known or not. This

system of nonlinear differential equations were solved regarding variables. However,

the expressions of the equilibrium points were too complicated and long to be obtained

within the text given the fact that this system considered having seven dimensions. [It

can be seen in the appendix]

Therefore, the equilibrium point in this model were obtained numerically as follows:

By substituting the values of the given parameters: µ = 0.017, χ = 5, υ = 0.002, βc =

0.05, βl = 4, βh = 4.4, δl = 2, δh = 2.2, τl = 3, τh = 3.3, ρl = ρh = 10, into the system of

nonlinear ODEs (3.1) , the system takes this form;

dS

dt
= 0.017−

(
0.05Cl + 4 Il

)
S −

(
0.05Ch + 4.4 Ih

)
S + 3 Il + 3.3 Ih − 0.017S

dCl
dt

=
(
0.05Cl + 4 Il

)
S + 0.002Ch + 10 Il − 2.017Cl

dCh
dt

=
(
0.05Ch + 4.4 Ih

)
S + 10 Ih − 2.219Ch

dIl
dt

= 2Cl + 0.002 Ih − 14.017 Il

dIh
dt

= 2.2Ch − 14.319 Ih

dBl

dt
= 0.01 Il − 5.017Bl

dBh

dt
= 0.01 Ih − 5.017Bh

(3.2)

Finding the equilibrium or fixed points (S,Cl, Ch, Il, Ih, Bl, Bh) of the system, which

can be defined as the intersection point of all the nullclines, where the nullcline is the

set of points which satisfy:

S ′ = Cl
′ = Ch

′ = Il
′ = Ih

′ = Bl
′ = Bh

′ = 0 (3.3)
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Solving this system of nonlinear ODEs numerically has led to three equilibrium

points:

(S,Cl, Ch, Il, Ih, Bl, Bh) = (1, 0, 0, 0, 0, 0, 0). (3.4)

(S,Cl, Ch, Il, Ih, Bl, Bh) = (0.9507, 0.0052, 0, 0.0007, 0, 0.0001, 0). (3.5)

(S,Cl, Ch, Il, Ih, Bl, Bh) = (0.9402, 0.0015, 0.0044, 0.0002, 0.0007, 0.0001, 0.0002).

(3.6)

Remark 2 : The expression of the second equilibrium points regarding variables will

be obtained in the appendix.

In addition, each of these three fixed points was validated to satisfy (3.3) by substituting

them into the original system (3.2).

3.3 The linearized form of the system

As the equilibria of the system (3.2) are obtained at the hand, the next step is to lin-

earize the equations about these three points. Linearizing requires computation of the

Jacobian matrix J(S,Cl,Ch,Il,Ih,Bl,Bh) of the vector field (S ′, Cl
′, Ch

′, Il
′, Ih

′, Bl
′, Bh

′)T ,

we have;

J(S,Cl, Ch, Il, Ih, Bl, Bh) =



∂S ′

∂S
∂S ′

∂Cl

∂S ′

∂Ch

∂S ′

∂Il

∂S ′

∂Ih

∂S ′

∂Bl

∂S ′

∂Bh

∂Cl
′

∂S
∂Cl

′

∂Cl

∂Cl
′

∂Ch

∂Cl
′

∂Il

∂Cl
′

∂Ih

∂Cl
′

∂Bl

∂Cl
′

∂Bh

∂Ch
′

∂S
∂Ch

′

∂Cl

∂Ch
′

∂Ch

∂Ch
′

∂Il

∂Ch
′

∂Ih

∂Ch
′

∂Bl

∂Ch
′

∂Bh

∂Il
′

∂S
∂Il

′

∂Cl

∂Il
′

∂Ch

∂Il
′

∂Il

∂Il
′

∂Ih

∂Il
′

∂Bl

∂Il
′

∂Bh

∂Ih
′

∂S
∂Ih

′

∂Cl

∂Ih
′

∂Ch

∂Ih
′

∂Il

∂Ih
′

∂Ih

∂Ih
′

∂Bl

∂Ih
′

∂Bh

∂Bl
′

∂S
∂Bl

′

∂Cl

∂Bl
′

∂Ch

∂Bl
′

∂Il

∂Bl
′

∂Ih

∂Bl
′

∂Bl

∂Bl
′

∂Bh

∂Bh
′

∂S
∂Bh

′

∂Cl

∂Bh
′

∂Ch

∂Bh
′

∂Il

∂Bh
′

∂Ih

∂Bh
′

∂Bl

∂Bh
′

∂Bh


(3.7)

Remark 3 The original form of the Jacobian matrix regarding the variables will be

added to the appendix.

3.4 Determining the stability of the equilibria.

In this section, we will analyse each equilibrium points separately, for each point alone.

Starting with first equilibrium point which was obtained in (3.4). Then testing the
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stability of the second point as illustrated in (3.5). Finally, we will end this section

with the last equilibrium point (3.6).

3.4.1 Determining the stability of the first equilibrium point

By substituting the equilibrium point (S, Cl, Ch, Il, Ih, Bl, Bh) = (1, 0, 0, 0, 0, 0, 0),

into the Jacobian matrix (3.7) to determine the stability of the first equilibrium point.



−µ −βc −βc −βc + τl −βh + τh 0 0

0 βc − µ− δl υ βl + ρl 0 0 0

0 0 βc − υ − µ− δh 0 βh + ρh 0 0

0 δl 0 −ρl − σl − µ− τl υ 0 0

0 0 δh 0 −υ − ρh − σh − µ− τh 0 0

0 0 0 σl 0 −µ− χ 0

0 0 0 0 σh 0 −µ− χ


The eigenvalues of this matrix are:

λ1 = −µ (3.8)

λ2 = −µ− χ (3.9)

λ3 = −µ− χ (3.10)

λ4 = −2µ+ βc − δl − ρl + σl + τl +
[
(βc)

2 − 2βcσl + 2βcρl + 2βσl + 2βτl + 4βlσl

+(δl)
2 + 2δlρl − 2δlτl + (ρl)

2 + 2ρlσl + 2ρlτl + (σl)
2 + 2σlτl + (τl)

2
]1
2 (3.11)

λ5 = −2µ+ βc − δl − ρl + σl + τl −
[
(βc)

2 − 2βcσl + 2βcρl + 2βσl + 2βτl + 4βlσl

+(δl)
2 + 2δlρl − 2δlτl + (ρl)

2 + 2ρlσl + 2ρlτl + (σl)
2 + 2σlτl + (τl)

2
]1
2 (3.12)

λ6 = −2µ− 2υ + βc − δh − ρh − σh − τh +
[
4βhδh + (βc)

2 − 2βcδh + 2βcρh + 2βcσh

+2βcτh + (δh)
2 + 2δhρh − 2δhσh − 2δhτh + (ρh)

2 + 2ρhσh + 2ρhτh + (σh)
2 + 2σhτh + (τh)

2]12
(3.13)

λ7 = −2µ− 2υ + βc − δh − ρh − σh − τh −
[
4βhδh + (βc)

2 − 2βcδh + 2βcρh + 2βcσh

+2βcτh + (δh)
2 + 2δhρh − 2δhσh − 2δhτh + (ρh)

2 + 2ρhσh + 2ρhτh + (σh)
2 + 2σhτh + (τh)

2]12
(3.14)
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Through the stability analysis, it turns out that,
(
λ1, λ2, λ3, λ5, λ7

)
, are always negative.

However the sign of λ4 depends on the value of σl, if{
σl > 1.2179, then λ4 is negative,

σl < 1.2179, then λ4 is positive.

Whereas the sign of λ6 depends on the value of σh, if:{
σh > 1.286809126, then λ6 is negative,

σh < 1.286809126, then λ6 is positive.

Knowing that, these exact values of σl and σh, were obtained by following these steps:

1. Setting the value of these eigenvalues to zero. λ4 , λ6 = 0

2. Isolating the expression for σl andσh from the equations (3.11) and (3.13) respec-

tively, yields:

σl =−(βcρl + βcτl + µβc − δlτl + βlδl − µ δl − µ ρl − µ τl − µ2)/(βc − δl − µ)

σh =−(βcρh + βcτh + µβc + υ βc + βhδh − δhτh − µ δh
− υ δh − µ ρh − υ ρh − µ τh − υ τh − µ2 − 2µυ − υ2)/(βc − δh − µ− υ)

3. Substituting the parameters into the resulted equation yields:

σl = 1.2179 , σh = 1.286809126

Hence, the first equilibrium point (3.4) is;{
stable , if σl > 1.2179, σh > 1.286809126,

unstable, otherwise.

3.4.2 Determining the stability of the second equilibrium point

Following a similar procedure as in the previous section to examine the stability of the

second equilibrium point (3.5).

−0.02020625458 −0.04753724636 −0.04753724636 −0.802979709 −0.883277680 0 0

0.003206254574 −1.969462754 0.002 13.80297971 0 0 0

0.0 0 −2.171462754 0 14.18327768 0 0

0 2 0 −13.02700000 0.002 0 0

0 0 2.2 0 −13.32900000 0 0

0 0 0 0.01 0 −5.017 0

0 0 0 0 0.01 0 −5.017


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The eigenvalues:

λ1 = −0.016969, λ2 = −5.0170, λ3 = −5.0170, λ4 = 0.12707, λ5 = −15.125, λ6 = .14437, λ7 = −15.645

It showed that,
(
λ1, λ2, λ3, λ5, λ7

)
, are always negative. However, the sign of λ4

depends on the value of σl, if:{
σl > 0.838, then λ4 is negative,

σl < 0.838, then λ4 is positive.

While the sign of λ6 depends on the value of σh, if:{
σh > 1.0505, then λ6 is negative,

σh < 1.0505, then λ6 is positive.

Thus, the second equilibrium point (3.5) is:{
stable , if σl > 0.838, σh > 1.0505,

unstable, otherwise.

3.4.3 Determining the stability of the third equilibrium point

By substituting the value of the third equilibrium point (3.6) into the Jacobian matrix

(3.7), then obtaining the eigenvalues of the resulting matrix.

−0.02117212672 −0.04700802236 −0.04700802236 −0.760641788 −0.836705967 0 0

0.0009619030498 −1.969991978 0.002 13.76064179 0 0 0

0.003210223669 0 −2.171991978 0 14.13670597 0 0

0 2 0 −13.02700000 0.002 0 0

0 0 2.2 0 −13.32900000 0 0

0 0 0 0.01 0 −5.017 0

0 0 0 0 0.01 0 −5.017


The eigenvalues:

λ1 = −0.016969, λ2 = −5.0170, λ3 = −5.0170, λ4 = 0.12707, λ5 = −15.125, λ6 = .14437, λ7 = −15.645

We conclude that,
(
λ1, λ2, λ3, λ5, λ7

)
, are always negative. However the value of σl

determines the sign of λ4, if:{
σl > 0.94, then λ4 is negative,

σl < 0.94, then λ4 is positive.
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In addition, the sign of λ6 is determined by the value of σh, if:

{
σh > 0.9956, then λ6 is negative,

σh < 0.9956, then λ6 is positive.

Therefore, the third equilibrium point (3.6) is:

{
stable , if σl > 0.94, σh > 0.9956,

unstable, otherwise.

3.5 Comparing our results with the results pre-

sented in the paper [2]

As the results of the second model indicate the negative correlation between the level of

toxicity and the probability of bacteraemia occurrences, i.e., the low toxic strain is most

likely to cause a bacteraemia than the high toxic strain. Due to the fact that, the high

propensity of the high toxic strain to develop an infection is positively correlated with

the rate of recovery either by the treatment or the mutation. To validate and prove

this theory, two hypothesises were conducted on two different strains of S. aureus which

diverse in their level of toxicity. The first scenario was based on, the assumption that,

both the high and the low strain have an equal propensity to cause a bacteraemia, i.e.,

(σl = σh).

The outcome of this hypothesis was illustrated in the Figure (3.2), which shows that

the low toxic strain becomes a dominant in both the carriage and the bacteraemia

stages. Which means that the higher toxic strain was defeated by, the lower toxic

strain and the reasons behind this are the fast virulence-induced clearance rates of the

high toxic strain.

Whereas, the second scenario was based on the assumption that there is a negative

relationship between the level of toxicity and the rate of transmission to the bacter-

aemia stage, i.e., (σl > σh).

The consequences of the second hypothesis as illustrated in the Figure (3.3), are:

at the carriage stage, the high toxic strain has gained an advantage of the leadership.

However the desire of the low toxic strain to remain in the population promotes it to

develop mutations which support its dominant position in the bacteraemia stage.
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Figure 3.2: Evolution towards increased levels of virulence, when (σl = σh = 0.01). This
figure illustrates the results of the first hypothesis. The high toxic strain (red) out-competed by the
low toxic strain (green) in both stages the carriage (left), and the bacteraemia (right). This defeat
occurs because of the high rate of the recovery in the high toxic strain which promotes and encourages
the lower toxic strain to become the prevailing in both carriage and bacteraemia stages.

3.6 Conclusion

Throughout this chapter, we were able to describe the mathematical model, which

divided the population into seven different classes and defined a set of parameters that

controls the transmission from one class to another. However, two of the parameters

(σl) and (σh), were undefined in the given set of parameters, which we discovered them

later on to produce the figures. We found that, (σl = σh = 0.01) in the assumption

that, both the high and the low strains have an equal propensity to cause a bacter-

aemia, while (σl = 0.1 > σh = 0.01) in the second assumption that, low toxic strains

have more ability to cause a bacteraemia. Through the translation of the mathematical

model into differential equations we were able to solve this system of nonlinear differen-

tial equation numerically, given the fact that this system has seven dimensions. Three

equilibrium points were obtained from the solution. Linearized form of the system was

required to examine the stability of the equilibria. Applying the stability analysis on

the equilibrium points determined and identified the boundary of the stability for each

point. Finally, the results of the model were reviewed and discussed.
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Figure 3.3: Evolution towards increased levels of virulence, when (σl = 0.1 > σh =
0.01). Creates the change in the transmission rate σi, in favour to the low toxic strain (green), has
led to gained the high toxic strain (red), the leadership in the carriage stage (left). Yet, the low toxic
strain remained occupied the high frequency at the bacteraemia stage (right), because of its relentless
seeking to maintain in the population through the development of mutations.

Summary: Solving this system of nonlinear ODEs has led to three equilibrium
points:

1. (S, Cl, Ch, Il, Ih, Bl, Bh) = (1, 0, 0, 0, 0, 0, 0).{
stable , if σl > 1.2179, σh > 1.286809126,

unstable, otherwise.

2. (S, Cl, Ch, Il, Ih, Bl, Bh) = (0.9507, 0.0052, 0, 0.0007, 0, 0.0001, 0).{
stable , if σl > 0.838, σh > 1.0505,

unstable, otherwise.

3. (S, Cl, Ch, Il, Ih, Bl, Bh) = (0.9402, 0.0015, 0.0044, 0.0002, 0.0007, 0.0001,
0.0002). {

stable , if σl > 0.94, σh,> 0.9956,

unstable, otherwise.
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Chapter 4

Modelling the data presented in
”The effects of spatial structure,
frequency dependence and
resistance evolution on the
dynamics of toxin-mediated
microbial invasions”

4.1 Introducing the mathematical model

While the previous models indicated and discussed the negative correlation between

the role of (the transmission rate and the level of toxicity) and the level of disease

severity, on the population classes. This model has a different story. In this model, we

indicate the competition within the nasal microbial community. By introducing two

different strains of the Staphylococcus microbe to each other. This occurs by cultur-

ing S.aureus with toxin and non-toxin producing S.epidermis. we manged to create

the interference competition and observe the role of the toxin in both structured and

unstructured environments. Manipulating some factors in the microbial community

could take the role of the antibiotic by limiting colonisation by S. aureus and lower the

transmission and infection rates, [4].

A simple illustration of the competition within the nasal microbial community pre-

sented in the ”The effects of spatial structure, frequency dependence and resistance

evolution on the dynamics of toxin-mediated microbial invasions” can be shown by

this system of ”Logistic Equation” as follow:

du

dt
= ru u (1− u) (4.1)
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dv

dt
= rv v (1− v) (4.2)

Where ru and rv are positive constants.

Definition 4.1.1 : Logistic Equation (sometimes known as the Verhulst model or

logistic growth curve) represents the increase of the population, first published by

Pierre Verhulst (1845, 1847). The model is continuous in time. However, the logistic

map which is commonly used, can be defined as a discrete quadratic recurrence equation

by adjusting the continuous equation [5, 6]. The continuous form of the logistic model

is can be defined by the differential equation:

dN

dt
=
r N (K −N)

K
. (4.3)

Where, N represents the population size, r represents the rate of the maximum in-

crease in population, i.e.,(birth rate minus death rate) and K represents the maximum

possible and potential population, also known as the carrying capacity, [11].

By dividing both sides by K and defining u = N/K then we obtained:

d

dt
(
N

K
) =

r N (K −N)

K2
→ du

dt
= r u (1− u). (4.4)

In this simple model noted by the logistic equations, we assumed that (u) represents

one strain, while (v) represented the other. Moreover, to guarantee and ensure the oc-

currence of interaction and interference between those strains, we modified the logistic

equation (4.2), by adding the inhibition term (b u v). So the system takes this form:

du

dt
= ru u (1− u) (4.5)

dv

dt
= rv v (1− v − b u). (4.6)

Where 0 6 b < 1.

37



4.2 Identifying the equilibrium points of non-linear

system of ODEs

To identify the equilibrium points of the system (4.5 – 4.6), we start by setting,

du

dt
=
dv

dt
= 0. (4.7)

du

dt
= 0, If u = 0 or u = 1. (4.8)

dv

dt
= 0, If v = 0 or v = 1− bu. (4.9)

This results in four equilibrium points,

(u, v) = (0, 0), (0, 1), (1, 0) and (1, 1− b)

4.3 The linearized form of the system.

Applying the linearization technique on the system (4.5 – 4.6), yields:

J(u,v) =

[
∂u′

∂u
∂u′

∂v

∂v′

∂u
∂v′

∂v

]

=

[
ru (1− 2u) 0

−rvvb rv (1− 2v − bu)

]
(4.10)

4.4 Determining the stability of the equilibria.

By inserting the first equilibrium point (0,0) into the Jacobian matrix (4.10), to deter-

mine its stability.

J(0,0) =

[
ru 0

0 rv

]

A linear transformation or a matrix is non-invertible if and only if its determinant is

zero. So det(J − λ I) = 0, for non-trivial solutions.

det(J − λ I) =

[
ru − λ 0

0 rv − λ

]
= (ru − λ) (rv − λ) = 0

38



As λ = ru, rv > 0, Thus, this equilibrium point is unstable. Inserting the second equi-

librium point (0,1) into the Jacobian matrix (4.10), to determine its stability.

J(0,1) =

[
rU 0

−rV b −rV

]

Obtaining the determinant, yields:

det(J − λ I) =

[
ru − λ 0

−rvb −rv − λ

]
= (ru − λ) (−rv − λ) = 0

As λ = −rv < 0, ru > 0, Thus, this equilibrium point is unstable. Applying the same

Figure 4.1: Illustration of the equilibrium points of the model. As shown through the stability
analysis, there is only one stable equilibrium point in this mathematical model, that is (u, v) = (1, 1−b)
where, (0 6 b < 1).

procedure to the third equilibrium (1, 0) point yields;

J(1,0) =

[
−ru 0

0 rv (1− b)

]

So that, the determinant of this Jacobian matrix is;

det(J − λ I) =

[
−ru − λ 0

0 rv (1− b)− λ

]
= (−ru − λ) (rv (1− b)− λ) = 0

Given the fact that , (0 6 b < 1) so λ = −ru < 0 , rv (1− b) ≮ 0. Thus, this

equilibrium point is unstable. Determining the stability of the last equilibrium point

(1, 1− b), through the insertion of the point into the Jacobian matrix (4.10);

J(1,1−b) =

[
−ru 0

−rv (1− b) b −rv (1− b)

]
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So that,

det(J − λ I) =

[
−ru − λ 0

−rv (1− b) b −rv (1− b)− λ

]
= (−ru − λ) (−rv (1− b)− λ) = 0

According to the value of (b), this equilibrium point is stable, which ensure the occur-

rence of interaction between these two strains.

Where, λ = −ru < 0 , −rv (1− b) < 0. The illustration of the equilibrium points is

obtained in Fig(4.1)

4.5 Competition experiments

Simple communities of S. epidermidis and S. aureus were constructed to examine the

hypothesis that interference competition could contribute negatively to the distribu-

tions of these species in nasal communities. Predictions of the theory suggest that

interference competition has a critical role in both restrict and encourage the invasion

of resident communities. The promotion of the invasion is indicated when the invader

strain produces toxins which might lead to killing the resident population. However,

the advantages gained from producing toxins must be higher than the disadvantages

of producing them. Also, the invader and resident populations must not divide the

benefits between them. If these conditions were not obtained, then the chance of inva-

sion will be reduced by the interference competition. Two scenarios were discovered in

which S. aureus could be excluded through toxins production by S. epidermidis. The

first scenario: when invasion by susceptible S. aureus is inhibited by resident toxin-

producing S. epidermidis, while the second scenario is when the resident susceptible S.

aureus population is displaced by the invasion of the toxin-producing S. epidermidis.

Furthermore, a manipulation of two environmental parameters (the spatial structure

of the environment and the starting frequency of invaders), could effect the process of

toxin mediated interference competition.

As mentioned before, the model that we presented in this dissertation is a sim-

ple illustration of the invader - inhibitor process where the spatial structure of the

environment and the starting frequency of invaders were neglected. Also, developing

mutations during the invasion which might change the outcome of the process were

not taking into consideration. To examine these predictions, competition experiments

were performed whereby S. epidermidis strain was invaded into resident populations

of S. aureus. On the other hand, a mutual invasion of S. aureus was performed into

resident populations of S. epidermidis to test whether S. aureus invasion could be re-
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stricted by S. epidermidis . Applying our system of nonlinear differential equation with

appropriate initial conditions as follow:

u(0) = 1, u(0) = ξ, v(0) = 1, v(0) = ξ

And,

b = ξ, b = 0.99

Where, (0 < ξ � 1).

According to these initial conditions and the value of b, we will end up with four
cases of interaction.

1. b = ξ, u(0) = 1, v(0) = ξ.

2. b = ξ, u(0) = ξ, v(0) = 1.

3. b = 0.99, u(0) = 1, v(0) = ξ.

4. b = 0.99, u(0) = ξ, v(0) = 1.

The first case represents the strain u(t) as the resident (cultured) strain, (S. au-

reus), with high concentration, where u(0) = 1, and v(t) as the invasive strain, (S.

epidermidis), with low concentration, where v(0) = ξ, and (b = ξ).

Figure 4.2: Illustration of the first and the second cases of interaction. (Left): this figure
represents the strain u(t) as the resident (cultured) strain, (S. aureus), with high concentration, where
u(0) = 1, and v(t) as the invasive strain, (S. epidermidis), with low concentration, where v(0) = 0.01.
(Right): this figure represents the strain v(t) as the resident (cultured) strain, (S. epidermidis), with
high concentration, where v(0) = 1 and u(t) as the invasive strain, (S. aureus), with low concentration,
where u(0) = 0.01 and the inhibition parameter b = 0.01 for both cases. As shown, no inhibition
occurred in both cases due to the elimination of the inhibition term (b u v), which equal to zero when
(b ≈ 0).

As Fig (4.2) demonstrates the evolution of the first condition, no inhibition occurred
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when the resident population of S. aureus with high concentration was invaded by the

invasive strain of S. epidermidis, when (b = ξ). In another word, no change over time

has happened to the resident strain. However, the invasive strain has increased over

time.

Considering the second case, represented in Fig (4.2), where a population of S. epi-

dermidis with high concentration, v(0) = 1, was invaded by the strain of S. aureus with

a relatively low concentration,u(0) = ξ, and the inhibition parameter b = ξ.

Regarding the results of the first and the second cases, one may argue that, when

(b ≈ 0), no inhibition occurred and that caused by the elimination of the inhibition

term in the system (4.5–4.6). By proceeding to examine the results of the interaction

between different strains of the Staphylococcus microbe. The third case of interaction

is considered, which can be described as follow; a resident strain of S. aureus with high

concentration u(t) = 1, is invaded by an invasive strain of S. epidermidis with low

concentration v(t) = ξ, and (b = 0.99).

Figure 4.3: Illustration of the third and the fourth cases of interaction. (Left): this figure
represents the strain u(t) as the resident (cultured) strain, (S. aureus), with high concentration, where
u(0) = 1, and v(t) as the invasive strain, (S. epidermidis), with low concentration, where v(0) = 0.01.
(Right): this figure represents the strain v(t) as the resident (cultured) strain, (S. epidermidis), with
high concentration, where v(0) = 1 and u(t) as the invasive strain, (S. aureus), with low concentration,
where u(0) = 0.01, and b = 0.99 for both cases.

According to Fig (4.3), the resident strain (S. aureus),u(t), has inhibited and restricted

the invasion of the invasive strain (S. epidermidis), v(t). Conversely, when applied the

fourth case conditions the invasive strain (S. aureus),u(t), had successfully invaded the

resident strain (S. epidermidis), v(t), when (b = 0.99).
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4.6 Conclusion

In this chapter, we were able to analyse the data presented in the paper ”The effects

of spatial structure, frequency dependence and resistance evolution on the dynamics of

toxin-mediated microbial invasions”. The findings suggest that the interference com-

petition within the microbial communities can be used as a potential cure to eliminate

the colonisation by S. aureus, furthermore, lower the rate of infection, as it could be

an alternative to the antibiotics.

The represented data considered the crucial role of the interference competition

between S. aureus and S. epidermidis in two types of environments, structured and

mix environment, with different frequencies.

To illustrate the idea, two experiments were performed, the first experiment, when

a population of S. aureus (resident), was invaded by toxin and non-toxin producing S.

epidermidis, (invasive strains), in both structured and mix environments. Each of the

invasions was carried out at relative frequencies of 10, 100 and 1000. The outcomes of

these invasions were illustrated in Fig (1.1), as mentioned before, both invasive strains

of S. epidermidis (toxin-producing and non-producing), successfully invaded the resi-

dent population of S. aureus in a structured environment. Whereas the negative values

indicate that no invasions were possible in the mixed environment. To test whether

the populations of toxin and non-toxin producers strains of S. epidermidis would in-

hibit and restrict the invasion by S. aureus, a reciprocal invasion were performed. So

that, the second experiment, when populations of toxin and non-toxin producing S.

epidermidis, (resident strains), invaded by S. aureus in both structured and mix en-

vironments. Each of the invasions was carried out at relative frequencies of 10, 100

and 1000. The findings of this experiment indicate that only a population of toxin-

producing S. epidermidis was able to inhibit the invasion. However, we were able

to construct a simple mathematical model which only considered the particular case

of these interference competitions, (invasive - inhibitor) model in mix environment.

Where the structured type of the environments was neglected along with mutations

issue, which might change the outcome of the invasion.

First, through the use of the logistic equations a mathematical model was built.

Furthermore, we modified one of the equations by adding a nonlinear term, to ensure

the interference between these strains during the invasion. Second, we analyse the

stability of this model by finding the equilibrium points and linearized the system to

obtain the eigenvalues so that we can determine the stability of these points. Finally,

we performed the interference competition between these two strains by considering S.

aureus and S. epidermidis, which represented in our model by u(t), v(t) respectively.
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We obtain four different scenarios, where the S. epidermidis invaded into a population

of S. aureus and conversely when a population of S. epidermidis was invaded by S.

aureus, at two different concentration. The outcomes of this model can be concluded

as follow: No successful invasions occurred when the value of (b ≈ 0). However, when

the value of b was relatively high, S. aureus resident strain was able to inhibit in

restrict the invasion of S. epidermidis, and successfully invaded into the population of

S. epidermidis in the mutual experiment.
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Chapter 5

Discussion

Through the use of different mathematical concepts, we were able to analyse the data,

and the mathematical models are given in the first two papers [1, 2]. The main idea

that underlies the first model is to determine the relationship between the transmis-

sion rate and the level of virulence and severity of the disease. By considering two

species of Staphylococcus microbe each of this species contains two different strains

distinguished by their level of virulence. S. aureus and S. epidermidis were chosen in

this study based on many criteria, First, due to the fact that these two strains are the

most famous species of the genus Staphylococcus. Second, they have a different rate of

transmission, S. epidermidis is well-known as the commensal in our bodies, and thus

it has a high transmission rate while S. aureus has a lower rate of transmission. To

explain this phenomenon, the experimental studies and analysis of the transmission,

properties identify three reasons are indicating that S. epidermidis transferring between

hosts is less challenging than it is in the other strain S. aureus. First, there is a common

belief that every human is colonised by this type of bacteria, in other words there are

no barriers in the host that could prevent the transmission of such a kind, or at least

it is not known yet. The second factor, the dynamic of transmission is easier in this

particular strain given the fact that a direct contact is more efficient at transferring

between hosts. As S. epidermidis located on the skin, a direct contact could occur

daily. On the contrary, then the situation in S. aureus strain that exists in the internal

tissue of the nose, which requires more complex procedures to transfer from one host

to another. The third factor, there are four different agr groups of S. aureus have been

identified, moreover, once the host is colonised by one type, the competition between

these types will inhibit the colonisation of any transmitted different kind. The findings

of this paper indicate a negative correlation between the rate of transmission and the

level of virulence. A mathematical model was presented to support this argument. The

dynamics of this model was presented as a system of nonlinear differential equations.

However, a missing term in the model was detected and added to achieve the balance
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of the system. By solving this system at equilibrium, we were able to obtain three

equilibrium points. The stability analysis enabled us to determine the stability of the

equilibrium points. By defining the bifurcations and applying the bifurcation analysis

the type of the local bifurcation which justifies the interchange of the two equilibrium

points in the system was determined as the transcritical bifurcation.

Moving into the second mathematical model represented in [2], where the main idea of

this model is to indicate the relationship between the toxicity and the severity of the

disease. In this model two of S. aureus strains were considered and they were distin-

guished by their level of toxicity. The population in this model were divided into seven

classes, and the set of transmissions parameters between these stages were defined ex-

cept two parameters σl and σh. We discovered them later on to produce the figures. We

found that, (σl = σh = 0.01) in the assumption that, both the high and the low strains

have an equal propensity to cause a bacteraemia, while (σl = 0.1 > σh = 0.01) in the

second assumption that, low toxic strains have more ability to cause a bacteraemia.

Through the translation of the mathematical model into differential equations, we were

able to solve this system of nonlinear differential equations numerically, given the fact

that this system has seven dimensions. Three equilibrium points were obtained from

the solution. Linearized form of the system was required to examine the stability of

the equilibria. Applying the stability analysis on the equilibrium points determined

and identified the boundary of the stability for each point. Finally, the findings of this

paper indicate a negative relationship between the toxicity and the disease severity.

Furthermore, by comparing our results with that obtained in the paper [2], we found

out that, the results of the mathematical model approved this negative correlation.

While the first two papers [1, 2], represented mathematical models to illustrate the

relationship between two important factors and the level of disease severity on popu-

lation, the third paper [4], discussed another hypothesis . that is the benefits of the

interference competitions between the commensals and the harmful bacteria within

the host, which might lead to eliminating the colonisation of the bacteria with a high

propensity to develop infections. Hence, lower the rate of the infections eventually.

Simple communities of toxin producing and non-toxin producing S. epidermidis and

S. aureus were constructed to assay this hypothesis. Predictions of the theory sug-

gest that interference competition has a critical role in both restrict and encourage

the invasion of resident communities. Likewise, toxins production by S. epidermidis

enhances and inhibits the invasion. Two scenarios were discovered in which S. aureus
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could be excluded through toxins production by S. epidermidis. The first scenario:

when a resident strain of toxin-producing S. epidermidis inhibits the invasion by the

invasive strain S. aureus, whereas the second scenario is when a resident strain of S.

aureus is displaced by the invasive strain of toxin-producing S. epidermidis. Moreover,

the process of toxin-mediated interference competition could be affected by two envi-

ronmental parameters, the shape of the environment, structured or unstructured, and

the starting concentration of invaders.

As mentioned previously, the model that we presented in this dissertation is a sim-

ple illustration of the invader - inhibitor process where the spatial structure of the

environment and the starting concentrations of invaders were neglected. Also, devel-

oping mutations during the invasions, which might change the results of the process,

were not taken into consideration. However, a couple of modifications can be added to

this model to consider these neglected factors. For instance, to consider the structured

and unstructured environments, we need to add the diffusion term (space variables).

Furthermore, to consider the mutations issues, we need for example, to change the

value of b to be a function of time instead of constant. As the results obtained in the

fourth chapter indicated that when (b ≈ 0), no invasions were possible, likewise with

the mutation case, if a strain has mutated against the other, then no invasion could be

possible.
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Chapter 6

Maple Appendix

6.1 Eigenvalues for the third equilibrium point in

the section 2.3.2, (Example 2.3.1).

λ1 = −µ

λ2 = −0.5 δ3βi− δ2µβi−0.5 δ2σ βi−0.5 δ2βi
2−0.5 δ µ2βi− δ µ σ βi− δ µ βcβi−0.5 δ σ2βi−

δ σ βcβi− 0.5µ2σ βc− 0.5 βc
2µ2− µσ2βc− µσ βc

2− 0.5σ3βc− 0.5σ2βc
2 + 0.5

(
δ6βi

2−

2 δ5βi
3+δ4βi

4+µ4βc
4+σ6βc

2−2σ5βc
3+σ4βc

4+28 δ4µσ βi
2+38 δ3µ2σ βi

2+28 δ3µσ2βi
2+

16 δ2µ3σ βi
2+18 δ2µ2σ2βi

2+18 δ4µ2βi
2+11 δ4σ2βi

2+16 δ3µ3βi
2+5 δ2µ4βi

2+6 δ2µ2βc
2βi

2+

8 δ2µσ3βi
2 − 12 δ2µσ2βc

3 + 10 δ2σ4βcβi − 22 δ2σ3βc
2βi − 6 δ2σ3βcβi

2 + 6 δ2σ2βc
2βi

2 +

4 δ µ3βc
3βi+2 δ σ5βcβi−6 δ σ4βc

2βi+4 δ σ3βc
3βi−8 δ4µβcβi

2−8 δ4σ βcβi
2−10 δ3µ2βc

2βi+

4 δ3µβcβi
3− 10 δ3σ2βc

2βi− 20 δ3σ2βcβi
2 + 4 δ3σ βcβi

3− 12 δ2µ2σ βc
3− 62 δ2µ2σ βc

2βi−
22 δ2µ2σ βcβi

2 − 64 δ2µσ2βc
2βi − 20 δ2µσ2βcβi

2 − 36 δ µ3σ βc
2βi −

48 δ µ2σ2βc
2βi− 28 δ µ σ3βc

2βi− 36 δ3µσ βcβi
2 + 8 δ4µ2βcβi + 8 δ4σ2βcβi + 24 δ3µ3βcβi +

12 δ3µ2σ βc
2 + 12 δ3µσ2βc

2 + 18 δ3σ3βcβi + 24 δ2µ4βcβi + 44 δ2µ3σ βc
2 + 60 δ2µ2σ2βc

2 +

36 δ2µσ3βc
2 + 8 δ µ5βcβi + 52 δ µ4σ βc

2 + 88 δ µ3σ2βc
2 + 72 δ µ2σ3βc

2 + 28 δ µ σ4βc
2 +

4 δ3µ3βc
2 + 4 δ3σ3βc

2 + 12 δ2µ4βc
2 + 8 δ2σ4βc

2 + 12 δ µ5βc
2 + 20µ5σ βc

2 + 41µ4σ2βc
2 +

44µ3σ3βc
2 + 26µ2σ4βc

2 + 16 δ4µσ βcβi + 66 δ3µ2σ βcβi + 60 δ3µσ2βcβi + 84 δ2µ3σ βcβi +

106 δ2µ2σ2βcβi+56 δ2µσ3βcβi+34. δ µ4σ βcβi+56 δ µ3σ2βcβi+44 δ µ2σ3βcβi+4µ6βc
2−

4 δ2µ3βc
3+δ2σ4βi

2−4 δ2σ3βc
3+4 δ σ5βc

2−8 δ σ4βc
3+4µ3σ βc

4+6µ2σ2βc
4+8µσ5βc

2+

4µσ3βc
4− 6 δ4σ βi

3 + 6 δ3σ3βi
2− 2 δ3σ2βi

3− 20 δ2µ3βc
2βi− 8 δ2µ3βcβi

2− 10 δ µ4βc
2βi−

32 δ µ3σ βc
3 − 48 δ µ2σ2βc

3 − 32 δ µ σ3βc
3 − 16 δ3µ2βcβi

2 − 4 δ3µσ βi
3 − 20 δ3µσ βc

2βi +

12 δ2µσ βc
2βi

2 + 12 δ µ2σ βc
3βi + 16 δ µ σ4βcβi + 12 δ µ σ2βc

3βi + 8 βi
2δ5µ + 6 βi

2δ5σ −
4 δ4µβi

3 − 2 δ3µ2βi
3 − 8 δ µ4βc

3 − 18µ4σ βc
3 − 32µ3σ2βc

3 − 28µ2σ3βc
3 − 12µσ4βc

3 −
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4µ5βc
3
)1/2

/
(
βiδ

2 + δ µ βc + µβiδ + δ σ βc + βiδ σ + µ2βc + 2µσ βc + σ2βc

)
λ3 = −0.5 δ3βi− δ2µβi−0.5 δ2σ βi−0.5 δ2βi

2−0.5 δ µ2βi− δ µ σ βi− δ µ βcβi−0.5 δ σ2βi−

δ σ βcβi− 0.5µ2σ βc− 0.5 βc
2µ2− µσ2βc− µσ βc

2− 0.5σ3βc− 0.5σ2βc
2− 0.5

(
δ6βi

2−

2 δ5βi
3+δ4βi

4+µ4βc
4+σ6βc

2−2σ5βc
3+σ4βc

4+28 δ4µσ βi
2+38 δ3µ2σ βi

2+28 δ3µσ2βi
2+

16 δ2µ3σ βi
2+18 δ2µ2σ2βi

2+18 δ4µ2βi
2+11 δ4σ2βi

2+16 δ3µ3βi
2+5 δ2µ4βi

2+6 δ2µ2βc
2βi

2+

8 δ2µσ3βi
2 − 12 δ2µσ2βc

3 + 10 δ2σ4βcβi − 22 δ2σ3βc
2βi − 6 δ2σ3βcβi

2 + 6 δ2σ2βc
2βi

2 +

4 δ µ3βc
3βi+2 δ σ5βcβi−6 δ σ4βc

2βi+4 δ σ3βc
3βi−8 δ4µβcβi

2−8 δ4σ βcβi
2−10 δ3µ2βc

2βi+

4 δ3µβcβi
3− 10 δ3σ2βc

2βi− 20 δ3σ2βcβi
2 + 4 δ3σ βcβi

3− 12 δ2µ2σ βc
3− 62 δ2µ2σ βc

2βi−
22 δ2µ2σ βcβi

2 − 64 δ2µσ2βc
2βi − 20 δ2µσ2βcβi

2 − 36 δ µ3σ βc
2βi −

48 δ µ2σ2βc
2βi− 28 δ µ σ3βc

2βi− 36 δ3µσ βcβi
2 + 8 δ4µ2βcβi + 8 δ4σ2βcβi + 24 δ3µ3βcβi +

12 δ3µ2σ βc
2 + 12 δ3µσ2βc

2 + 18 δ3σ3βcβi + 24 δ2µ4βcβi + 44 δ2µ3σ βc
2 + 60 δ2µ2σ2βc

2 +

36 δ2µσ3βc
2 + 8 δ µ5βcβi + 52 δ µ4σ βc

2 + 88 δ µ3σ2βc
2 + 72 δ µ2σ3βc

2 + 28 δ µ σ4βc
2 +

4 δ3µ3βc
2 + 4 δ3σ3βc

2 + 12 δ2µ4βc
2 + 8 δ2σ4βc

2 + 12 δ µ5βc
2 + 20µ5σ βc

2 + 41µ4σ2βc
2 +

44µ3σ3βc
2 + 26µ2σ4βc

2 + 16 δ4µσ βcβi + 66 δ3µ2σ βcβi + 60 δ3µσ2βcβi + 84 δ2µ3σ βcβi +

106 δ2µ2σ2βcβi+56 δ2µσ3βcβi+34. δ µ4σ βcβi+56 δ µ3σ2βcβi+44 δ µ2σ3βcβi+4µ6βc
2−

4 δ2µ3βc
3+δ2σ4βi

2−4 δ2σ3βc
3+4 δ σ5βc

2−8 δ σ4βc
3+4µ3σ βc

4+6µ2σ2βc
4+8µσ5βc

2+

4µσ3βc
4− 6 δ4σ βi

3 + 6 δ3σ3βi
2− 2 δ3σ2βi

3− 20 δ2µ3βc
2βi− 8 δ2µ3βcβi

2− 10 δ µ4βc
2βi−

32 δ µ3σ βc
3 − 48 δ µ2σ2βc

3 − 32 δ µ σ3βc
3 − 16 δ3µ2βcβi

2 − 4 δ3µσ βi
3 − 20 δ3µσ βc

2βi +

12 δ2µσ βc
2βi

2 + 12 δ µ2σ βc
3βi + 16 δ µ σ4βcβi + 12 δ µ σ2βc

3βi + 8 βi
2δ5µ + 6 βi

2δ5σ −
4 δ4µβi

3 − 2 δ3µ2βi
3 − 8 δ µ4βc

3 − 18µ4σ βc
3 − 32µ3σ2βc

3 − 28µ2σ3βc
3 − 12µσ4βc

3 −

4µ5βc
3
)1/2

/
(
βiδ

2 + δ µ βc + µβiδ + δ σ βc + βiδ σ + µ2βc + 2µσ βc + σ2βc

)
λ4 =

δ (βcµ+ βcσ − β iµ)

βcµ+ βcσ + β i δ

6.2 Identifying the equilibrium points of non-linear

system of ODEs regarding varibles in section

(3.2).

The second equilibrium point (3.5), can be represented regarding variables as follow:

(S, C l, Ch, I l, Ih, Bl, Bh) = ( µ2+µ δl+µρl+µσl+µ τl+δlσl+δlτl
µβc+βcρl+βcσl+βcτl+βlδl

,

−
(
µ (µ2 − µβc + µ δl + µ ρl + µσl + µ τl − βcρl − βcσl − βcτl − βlδl + δlσl + δlτl)

(µ+ ρl + σl + τl)
)
/
(
µ3βc + µ2βcδl + 2µ2βcρl + 2µ2βcσl + 2µ2βcτl + µ2βlδl + µβcδlρl +
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2µβcδlσl + µβcδlτl + µβcρl
2 + 2µβcρlσl + 2µβcρlτl + µβcσl

2 + 2µβcσlτl + µβcτl
2 +

µβlδl
2 + µβlδlρl + µβlδlσl + µβlδlτl + βcδlρlσl + βcδlσl

2 + βcδlσlτl + βlδl
2σl
)
, 0 ,

−
(
µ δl (µ

2 − µβc + µ δl + µ ρl + µσl + µ τl − βcρl − βcσl − βcτl − βlδl + δlσl + δlτl)
)
/(

µ3βc +µ2βcδl + 2µ2βcρl + 2µ2βcσl + 2µ2βcτl +µ2βlδl +µβcδlρl + 2µβcδlσl +µβcδlτl +

µβcρl
2+2µβcρlσl+2µβcρlτl+µβcσl

2+2µβcσlτl+µβcτl
2+µβlδl

2+µβlδlρl+µβlδlσl+

µβlδlτl + βcδlρlσl + βcδlσl
2 + βcδlσlτl + βlδl

2σl
)

, 0

, −
(
σlµ δl (µ

2 − µβc + µ δl + µ ρl + µσl + µ τl − βcρl − βcσl − βcτl − βlδl + δlσl + δlτl)
)
/(

(µ3βc+µ2βcδl+2µ2βcρl+2µ2βcσl+2µ2βcτl+µ2βlδl+µβcδlρl+2µβcδlσl+µβcδlτl+

µβcρl
2+2µβcρlσl+2µβcρlτl+µβcσl

2+2µβcσlτl+µβcτl
2+µβlδl

2+µβlδlρl+µβlδlσl+

µβlδlτl + βcδlρlσl + βcδlσl
2 + βcδlσlτl + βlδl

2σl)

(µ+ χ)
)

, 0)

6.3 The original form of the Jacobian matrix in sec-

tion (3.3).



−βcCl − βlIl − µ −βcS −βcS −βlS + τl −Sβh + τh 0 0

βcCl + Il βl βcS − µ− δl υ S βl + ρl 0 0 0

Ch βc + Ih βh 0 βcS − µ− υ − δh 0 S βh + ρh 0 0

0 δl 0 −µ− ρl − σl − τl υ 0 0

0 0 δh 0 −µ− υ − ρh − σh − τh 0 0

0 0 0 σl 0 −µ− χ 0

0 0 0 0 σh 0 −µ− χ


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