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Chapter 1

Summary

For over a century topology concepts were used to study, explain and organise several
structures that develop from comparatively natural physical processes, for instance,
honeycombs, drying mud and even geological features of extra-terrestrial lunar sur-

faces [13]. More recently, Gibson and Newman (2006-2011) [2], [7], were fascinated

by the emergence of geometric order in the two-dimensional structure of epithelial
cells. That was the motive behind the construction of four different models. They
compute the topology of tissue by the distribution of a number of neighbour and
geometry of tissue by the distribution of cell shapes and sizes. Each and every one
of them was built on different assumptions and had advantages and disadvantages.
In addition, the mathematical study and analysis of these models highlighted a sig-
nificant number of problems in these models. Some of these problems have been
addressed mathematically and some issues were not solved because it was basically
built on assumptions. This report will: briefly review these models and outline the
main points and aspects that were based on these models. In addition, analyses the
transition matrices of each model by solving eigen-problems. Furthermore, attempt
to find a propitiate probability function which could describe this pattern by fitting
the experimental histogram which was obtained from actual observation to the com-
monly used probability density functions.
Therefore, the aim of this report is to review and analyse these models from a
mathematical point of view.
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Chapter 2

Introduction

2.1 Biological background

The smallest component of the body is known as the cell. A group of cells formed
the tissue. There are four primary types of tissues: epithelial, connective, muscular,
and nervous tissue. Under each primary tissue, there might be several sub-tissues.
Each tissue has different functions. The general concept of cells and tissues regarding
the structure and its vital functions, such as signal transmission, are carried out by

pure biology [6]. However, recently there were some cases where biology was unable

to explain clearly some of the phenomena and patterns prompting scientists to use
topological concepts in order to organise, translate and analyse these patterns. This
report will focus on one particular type of these tissues. The epithelial tissue, which
represents the lining of the internal organs such as the stomach and covers the outer

surface of the body (skin). [1] [8] [9] [10].

Figure 2.1: A: Microscopic view showes polygonal topology of the Drosophila wing. B: Diagram
of the extracted polygonal network from A [13].

The focus on this type of tissue for several reasons: The epithelial is usually a
2-dimensional array of cells. Also through a microscopic study of epithelial tissue

in various organisms such as Drosophila (a fruit fly), Xenopus (a frog) and Hydra

(a tiny fresh-water relative of jellyfish), it was found that an identical, asymmetric

distribution of polygonal shapes shows up over these organisms.
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Figure 2.2: Drosophila wing disc (pink), Xenopus tail epidermis (green) and Hydra epidermis
(blue) all exhibit a similar non-gaussian distribution of epithelial polygons with less than 50%
hexagonal cells and high (and asymmetric) percentages of pentagonal and heptagonal cells. The
inset indicates relative phylogenetic positions for Drosophila, Xenopus and Hydra [4].

2.2 Review of models describing epithelial tissue topol-

ogy

There were several attempts to produce models describing the topology of epithelial

tissue. Perhaps the most well-known were the one that produced by Gibson (2006)

in (The emergence of geometric order in proliferating metazoan epithelia) [2].

2.2.1 GPNP (Gibson’s) model

Gibson’s model was based on some assumptions [2].

[1] Cells have a polygonal shape, where the minimum number of the (edges-vertices)

in each cell is four.

[2] Divisions through vertices of the mother cell neglected in contrast to the divisions

that occur through sides.

[3] Cells divide randomly.

[4] Cells divide synchronously.

[5] Spatial correlations between the sidedness of cells can be neglected.

The model:
The main idea of Gibsons algorithm was about a mother cell with (i)-sides divides

into two daughters, placing two (vertices-edges) from the mother cell in each side

of the division line, which leaves (i − 4) edges in the mother cell to be distributed

randomly. While the gaining (vertices-edges) by the daughters with (j)-sides from

each division will be four, 2 from the mother cell and the other two will be given

by the division line, which leaves (j − 4) edges in the daughter cell to be gained

randomly. This random separation follows the binomial distribution.
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Therefore, the random probabilities of given (the mother) and gaining (the daugh-

ters) edges is given by:

Ti,j =
(i− 4)!

(j − 4)!(i− j)!
∗ 1

2(i−4)
(2.1)

Ti,j =


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
Each division will produce six new sides. Four of them will be distributed equally
between the two daughters, and to neighbouring cells each being provided with an
additional side.
According to Gibsons assumption, the cells divide synchronously and one round of
division cannot be completed unless each cell has divided. Therefore, each cell in
average will be provided with one additional side after each round of division and
this is the role of matrix S.

Si,j =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


By multiplying these two matrices we have the transition matrix of GPNP model

U =
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
→ UT =


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
The distribution of different shapes of cells at the current generation is given

by the product of the transpose of matrix U multiplied by the column-vector of the
cells in the previous generation.

p(t) = UT ∗ p(t−1) (2.2)

on another word

p(t) = (UT )
t ∗ p(0) (2.3)
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where

p(t) = [p4, p5, p6, p7, p8, p9 . . . ]
(t)

t represents the time or generation and [ 4, 5, 6, 7, 8, 9 . . . ] defined as the state of the

cell which represents the number of its sides . Ps represents the relative frequency
of s-sided cell in the population, and the infinite row vector.

Assuming that

p(0) = [0, 0, 1, 0, 0, 0]

Inserting the obtained values into 2.3 yields:

t = 10 t = 100 t = 1000 t = 10000 t = 100000

p4 0 0 0 0 0
p5 0.28871 0.28656 0.26593 0.12596 0.000071611
p6 0.46384 0.46039 0.42724 0.20237 0.00011505
p7 0.20840 0.20685 0.19195 0.090921 0.000051689
p8 0.035844 0.035576 0.033015 0.015638 0.0000088903
p9 0.0026555 0.0026355 0.0024458 0.0011585 0.00000065861

Sum 0.9994495 0.9920115 0.9205808 0.4360475 0.000247899

Table 1: Evolution of cell-edges distribution in Gibson’s model.

2.2.2 Newman’s first model

In his first modification, Newman [7], changed some of the assumptions in the pre-

vious model, to construct his first model which was based on:

[A] Allowing transient 3-sided cells.

[B] Change the mechanisms of the division to be the mother cell gives only one

(edge-vertex) to each daughter instead of two.

Obtaining such clear error in the previous model motivate Newnan to change the
first assumption in Gibsons model, which was about the minimum number of the
sides in each cell, to be three this time.

Ti,j =
(i− 2)!

(j − 3)!(i− j + 1)!
∗ 1

2(i−2)
(2.4)

Using the 2.4 formula, the entries of matrix T changed to this form:

TN1 =


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
And to continue with the same procedure, the results:
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t = 10 t = 100 t = 1000

p3 0 0 0
p4 0.082838 0.067543 0.0088317
p5 0.26586 0.21682 0.028351
p6 0.33227 0.27108 0.035445
p7 0.21098 0.17222 0.022518
p8 0.076223 0.062265 0.0081415
p9 0.016458 0.013457 0.0017596

The sum 0.984629 0.803385 0.1050468

Table 2: Evolution of cell-edges distribution in Newman’s first model.

2.2.3 Newman’s second model

The concept behind his second model (modification) is to introduce the pure mean-

ing of randomness to Gibsons model [7].

Newman’s suggestion concerning randomness issue: the mother cell should be di-
vided randomly except two (edges-vertices), this well lead to three cases:

1) If one side of the division has no (edges-vertices) then provide it with this two.

2) If one side has only one (edge-vertex) then distribute one randomly if its remain
with only one then provide it with that last one otherwise divide randomly.

3) If both side of the division line has at least two (edges-vertices) then distribute
the rest randomly.

Ti,j =
i!

(j − 2)!(i− j + 2)!
∗ 1

2i − (2i+ 2)
(2.5)

Applying these conditions produced this formula for T matrix where (2i + 2) rep-

resents the discarded probabilities which satisfy Gibson’s assumptions. Using the
equation 2.5, the entries of matrix T take this form:

TN2 =


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
By following the same procedure as the first model the results at t=1000:

t = 10 t = 100 t = 1000 t = 10000

p4 0 0 0 0
p5 0.33158 0.31582 0.19406 0.0014889
p6 0.40402 0.38482 0.23646 0.0018142
p7 0.20141 0.19183 0.11787 0.00090437
p8 0.051891 0.049419 0.030366 0.00023299
p9 0.007368 0.0070156 0.0043108 0.000033075

The sum 0.996269 0.9489046 0.5830668 0.004473535

Table 3: Evolution of cell-edges distribution in Newman’s second model.
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2.2.4 Newman’s third model

In this model Newman [7], used the same idea as in Newmans second model (Intro-

ducing the pure meaning of randomness) except he applied it onto his first model

which makes this model based on:

A) Allowing transient 3-sided cells.

B) The mother cell will be distributed randomly, and the number of the gained

edges by the daughter will be random except the two which will be gained from
the cleavage plane.

Ti,j =
i!

(j − 2)!(i− j + 2)!
∗ 1

2i − 2
(2.6)

Where (−2) in (2i − 2) represents the discarded probabilities which satisfy his as-

sumptions A and B. With these two conditions the entries of the T matrix changed
to be:

TN3 =
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
Multiplying this matrix by the S matrix, transpose the product and insert the

final matrix in equation 2.3, yields:

t = 10 t = 100 t = 1000

p3 0 0 0
p4 0.11789 0.074508 0.00076038
p5 0.24889 0.15732 0.0016055
p6 0.28931 0.1829 0.0018666
p7 0.1971 0.12464 0.001272
p8 0.086393 0.054655 0.00055777
p9 0.024642 0.015598 0.00015918

The sum 0.964225 0.609621 0.00622143

Table 4: Evolution of cell-edges distribution in Newman’s third model.

2.3 Conclusion

This figure 2.3 has shown the results of four different approaches compared to the
results that were obtained from experimental observation for various types of organ-
isms. These attempts have tried to establish an accurate model by using topology

and focusing on the shape of the cells. It can be seen in Figure 2.3 that, Gibson [2],

had shown a significant approximation. His model has failed to show one type of
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cells (4-sided cells) after one round of division. Such defect was caused by his as-

sumptions and the role of matrix S.

Figure 2.3: The comparison between cell-edges distribution of experimental observation, Gibson’s
model, Newman’s first, second and third modification.

Newman [7], investigated Gibson’s model and started by re-examining Gibson’s

assumptions. That led to construct three models by adjusting some factors. Accord-
ing to Figure 2.3, in the first modification, Newman manages to deliver four-sided
cells in the mathematical calculation as in the experimental observation. However,
that appearance was at the expense of other shapes proportion. In the second and
third modifications, the pure meaning of randomness ”as he argued” which was ap-
plied to Gibson’s model and Newman’s first model led to an even worse agreement.
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Chapter 3

Analysis of models’ transition
matrices.

There was another gap noted in the previous models which are the fact that as

t → ∞ the vector p(t) → 0 and the sum of the vector p(t) � 1. So, each time the
vector needed to be normalised in order to obtain the values and to avoid convergence
to zero.
Example.

t = 100000 (GPNP) model Normative (GPNP) model

p4 0 0
p5 0.000071611 0.288871782
p6 0.00011505 0.464100467
p7 0.000051689 0.208508379
p8 0.0000088903 0.035862602
p9 0.00000065861 0.002656768

The sum 0.000247899 1

Table 5: Illustration of (GPNP) model at t= 100000, before and after being normalized.

Moreover, this gap was caused by: The role of the matrix S which was the main
reason of such leak. The concept of matrix S is to add one extra edge to each cell
after one round of division which means that when 9 − sided cell gained one extra

edge, it will be lost from the transition matrix U = (T.S). In another word because

of the matrix S the probability of 9 − sided cell to remain 9 − sided cell after one
round of division = 0. Due to that if the same size of the matrix U were obtained
every time the leak can be seen. To eliminate the leak matrix S was modified to be
in this form:

Si,j =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1


That means each type of the cell will gain one extra edge from dividing neighbour

except the 9-sided type, to make sure that such type will remain in the transition
matrix after the division. Hence, the obtained transition matrix will be in this form:
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U =


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
Thus, the sum of the coefficients of each row in matrix U or the sum of the

coefficients of each column in matrix (U)T is equal to one, on contrary of the previous

transition matrices were the sum of the last (row-column) was < 1

Inserting the modified matrix (U)T in all previous models, yields:

t = 1000 (GPNP) model N1 model N2 model N3 model

p4 0 0.0834699 0 0.1204276
p5 0.2887968 0.2682236 0.33234474 0.2548167
p6 0.4640083 0.3360083 0.4050672 0.2973409
p7 0.2085275 0.2143541 0.20215874 0.2041609
p8 0.0359054 0.0782208 0.0522927 0.0908377
p9 0.002762 0.0197232 0.00813662 0.0324163

The sum 1 1 1 1

Table 6: Stable cell-edges distribution in the models after adjusting matrix S.

3.1 Eigenvalues and eigenvectors of the transition ma-

trices

This part of the chapter analyses the transition matrices of the previous models by
solving eigen-problems.

3.1.1 (GPNP) model

The transition matrix (U)T of Gibsons model: 4, 5, 6, 7, 8, 9-sided cells.

UT =



0 0 0 0 0 0
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
The characteristic equation of the transition matrix:

λ6 − 29λ5

16
+

253λ4

256
− 95λ3

512
+

161λ2

16384
− λ

16384
= 0 (3.1)
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Solving equation 3.1, gives this eigenvalues:

Eigenvalues =



1.000

0.4989129

0.2328268

0.07362346

0.007136843

0


The eigenvectors corresponding to this eigenvalues:

0 0 0 0 0 0.0121

0.4928 −0.6297 0.4999 −0.2498 −0.0589 −0.1091

0.7917 −0.3800 −0.2478 0.5401 0.3236 0.3880

0.3558 0.5591 −0.7495 0.0274 −0.6734 −0.6790

0.0613 0.3753 0.2091 −0.7041 0.6255 0.5820

0.0047 0.0753 0.2883 0.3865 −0.2168 −0.1940


By choosing the eigenvector that corresponding to the eigenvalue 1, and normalising
this eigenvector, yields:

λ = 1 Eigenvector

p4 0
p5 0.2887968
p6 0.4640083
p7 0.2085275
p8 0.0359054
p9 0.002761954

The sum 1

Table 7: Cell-edges distribution as represented by eigenvector corresponding to λ = 1 in (GPNP)

model.

This is the same results that were obtained from Gibson’s model.

3.1.2 Newman’s first model

The transition matrix (U)T of Newman’s first model: 3, 4, 5, 6, 7, 8, 9-sided cells.

UT =



0 0 0 0 0 0 0
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
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The characteristic equation of the transition matrix:

λ7 − 113λ6

64
+

7497λ5

8192
− 10273λ4

65536
+

30743λ3

4194304
− 921λ2

16777216
+

3λ

134217728
= 0 (3.2)

Solving equation 3.2, gives this eigenvalues:

Eigenvalues =



1.0000

0.4926396

0.2099667

0.06100359

0.009320917

0.0005067064

0


The eigenvectors corresponding to this eigenvalues:



0 0 0 0 0 0 0.0042

0.1689 −0.2897 0.2858 0.1822 0.0714 −0.0193 −0.0464

0.5427 −0.6350 0.2751 −0.1503 −0.2531 0.1465 0.2109

0.6799 −0.2187 −0.5147 −0.5153 0.1350 −0.4485 −0.5062

0.4337 0.4339 −0.6020 0.3489 0.4935 0.6884 0.6750

0.1583 0.4667 0.1034 0.5907 −0.7569 −0.5269 −0.4725

0.0399 0.2428 0.4524 −0.4561 0.3101 0.1597 0.1350


By choosing the eigenvector that corresponding to the eigenvalue 1, and normal-

ising this eigenvector, yields:

λ = 1 Eigenvector

p3 0
p4 0.0834717
p5 0.2682274
p6 0.3360096
p7 0.2143515
p8 0.0782181
p9 0.0197218

The sum 1

Table 8: Cell-edges distribution as represented by eigenvector corresponding to λ = 1 in (N1)

model.

This is the same results that were obtained from Newman’s first model.

3.1.3 Newman’s second model

The transition matrix (U)T of Newman’s second model: 4, 5, 6, 7, 8, 9-sided cells.
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UT =



0 0 0 0 0 0

1 1
2

3
10

3
16

2
17

3
41

0 1
2

2
5

5
16

4
17

7
41

0 0 3
10

5
16

5
17

21
82

0 0 0 3
16

4
17

21
82

0 0 0 0 2
17

10
41


The characteristic equation of the transition matrix:

λ6 − 94329λ5

55760
+

22043λ4

27880
− 22201λ3

223040
+

27λ2

44608
− λ

111520
= 0 (3.3)

Solving equation 3.3, gives this eigenvalues:

Eigenvalues =



1.0000

0.4936

0.1925

0.0028 + 0.0093i

0.0028− 0.0093i

0


The eigenvectors corresponding to this eigenvalues:



0 0 0 0 0 0

−0.5892 0.6145 −0.3482 0.0282 + 0.0183i 0.0282− 0.0183i 0.0197

−0.7181 0.4557 −0.0456 0.0209− 0.0632i 0.0209 + 0.0632i 0.0414

−0.3584 −0.3564 0.7092 −0.4567 + 0.0599i −0.4567− 0.0599i −0.4725

−0.0927 −0.4853 0.2449 0.7950 + 0.0000i 0.7950 + 0.0000i 0.7927

−0.0144 −0.2286 −0.5602 −0.3873− 0.0149i −0.3873 + 0.0149i −0.3824


By choosing the eigenvector that corresponding to the eigenvalue 1, and normalising
this eigenvector, yields:

λ = 1 Eigenvector

p4 0
p5 0.332345
p6 0.405067
p7 0.202159
p8 0.052293
p9 0.008137

The sum 1

Table 9: Cell-edges distribution as represented by eigenvector corresponding to λ = 1 in (N2)

model.

This is the same results that were obtained from Newman’s second model.
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3.1.4 Newman’s third model

The transition matrix (U)T of Newman’s third model: 3, 4, 5, 6, 7, 8, 9-sided cells.

UT =



0 0 0 0 0 0 0

1
2

2
7

1
6

3
31

1
18

4
127

3
170

1
2

3
7

1
3

15
62

1
6

14
127

6
85

0 2
7

1
3

10
31

5
18

28
127

14
85

0 0 1
6

15
62

5
18

35
127

21
85

0 0 0 3
31

1
6

28
127

21
85

0 0 0 0 1
18

18
127

43
170


The characteristic equation of the transition matrix:

λ7− 14126821λ6

8433054
+

48917167λ5

63247905
− 16879279λ4

168661080
+

30713λ3

14881860
+

λ2

453390
+

λ

63247905
= 0

(3.4)

Solving equation 3.4, gives this eigenvalues:

Eigenvalues =



1.0000

0.4855

0.1770

0.0311

−0.0004 + 0.0032i

−0.0004− 0.0032i

0


The eigenvectors corresponding to this eigenvalues:



0 0 0 0 0 0 0.0146

0.2574 −0.3837 0.3134 −0.1530 −0.0227 + 0.0239i −0.0227− 0.0239i 0

0.5447 −0.5659 0.1730 0.1745 0.0236− 0.1223i 0.0236 + 0.1223i −0.1816

0.6356 −0.2348 −0.3760 0.2758 0.2345 + 0.1798i 0.2345− 0.1798i 0.1941

0.4364 0.3408 −0.6242 −0.0192 −0.6514 + 0.0000i −0.6514 + 0.0000i 0.4133

0.1942 0.4736 −0.0662 −0.7837 0.6226− 0.1787i 0.6226 + 0.1787i −0.7952

0.0693 0.3700 0.5800 0.5055 −0.2067 + 0.0974i −0.2067− 0.0974i 0.3548


By choosing the eigenvector that corresponding to the eigenvalue 1, and normal-

ising this eigenvector, yields:
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λ = 1 Eigenvector

p3 0
p4 0.120428
p5 0.254817
p6 0.297341
p7 0.204161
p8 0.090838
p9 0.032416

The sum 1

Table 10: Cell-edges distribution as represented by eigenvector corresponding to λ = 1 in (N3)

model.

And this is the same results that were obtained from Newman’s third model.

3.2 Conclusion

As noted in the results of the previous models as t → ∞ it converge to zero and
this caused by the leak of transition matrix in each model. To be more specific, if
the model represent the cells with 4, 5, 6, 7, 8, 9 edges after one round of division, the
9-sided cell will be lost from the transition matrix and this caused by the role of the
S matrix, which imposed that each cell will gain one extra edge after one round of
division, or in another word the probability of 9-sided cell to remain 9-sided cell = 0.
Fixing this term will eliminate the leak by eliminating the increase of the 9-sided cell

(9-sided cell will not pick up an extra edge from dividing neighbour) this ensure that

this type of the cells will not be lost from the transition matrix after the division.
In addition, finding the results of the models by solving eigen-problems is more
efficient mathematically. In the previous models as t → ∞ every time they ob-
tained values needed to be normalised to avoid the convergence to zero. However,
by finding the eigen-values of the transition matrices of the models and choosing
the eigen-vector which corresponding to the eigen-values 1 or an approximate to 1.
This vector in every model represents the result of the model without the need to
normalise the obtained vector.
Example.

By extending the transition matrix of Gibson’s model to be (9× 9) matrix instead

of (7× 7).



0 0 0 0 0 0 0 0 0

1 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

0 1
2

1
2

3
8

1
4

5
32

3
32

7
128

1
32

0 0 1
4

3
8

3
8

5
16

15
64

21
128

7
64

0 0 0 1
8

1
4

5
16

5
16

35
128

7
32

0 0 0 0 1
16

5
32

15
64

35
128

35
128

0 0 0 0 0 1
32

3
32

21
128

7
32

0 0 0 0 0 0 1
64

7
128

7
64

0 0 0 0 0 0 0 1
128

1
32


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The Eigenvalues of this matrix are:

[1.0000, 0.5000, 0.2500, 0.1247, 0.0594, 0.0222, 0.0044, 0.0002, 0]

And the Eigenvector corresponding to the Eigen value 1 is:

[0, 0.2888, 0.4640, 0.2085, 0.0359, 0.0027, 0.00009, 0.000002, 1.239753−8]

The main point is no matter what is the size of the transition matrix. The results
will be always represented or delivered in the Eigenvector corresponding to the
Eigenvalue 1 or approximate to 1.
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Chapter 4

Fitting the experimental
histogram to commonly used
probability density functions.

The aim of this section is to find if there is a probability density functions that
can describe the data that were obtained from the actual observation as shown in
Figure 2.2. Also, the purpose of this procedure is to find the closest fit, which can

lead to predicting the frequency of occurrence (the pattern) of the phenomenon in

a certain period.
There are many probability distribution functions that were examined to fit the

histogram which represents the actual data. A closer fit depends on the distribution
function and the histogram’s characteristic.

4.1 Poisson distribution

The first probability function that were examined is Poisson function.

P (x) =
λx

x!
∗ e−λ (4.1)

where,

(e) is Euler’s number (e = 2.71828...) and (x!) is the factorial of x.

Poisson distribution was chosen in the first place because of many reasons, be-
sides the similarity of the shape of the histograms, the fact that many of this distri-
bution assumptions have been satisfied. For instance

[1] (x) which represent the number of the edges is a positive integer (x ≥ 0).

[2] Events occur independently.

[3] The variance between the events is constant.

Consider x as the number of edges which will represent the x−axis, the frequency
of the events which will be described by Y − axis and λ is the average number of
events per interval also known as the rate parameter.

Choosing x = 0, 1, 2, 3, 4, 5 corresponding to the number of the edges 4, 5, 6, 7, 8, 9
respectively. And λ = 2 which represent the mean.

18



Figure 4.1: Plots of the experimental histogram (Blue) and the fitted Poisson’s histogram (Or-
ange), by using non-linear squares curve fitting with Microsoft Excel Solver.

x YOBS YCALC (YOBS − YCALC)2

0 0.02946593 0.124353845 0.009003716
1 0.279005525 0.259231034 0.000391031
2 0.45718232 0.270199641 0.034962522
3 0.201197053 0.187754902 0.000180691
4 0.031767956 0.097849602 0.004366784
5 0.001381215 0.04079593 0.00155352

The sum 1 0.980184955 0.050458264

Table 11: Values of cell-edges distribution obtained by Poisson distribution.

Running the solver programme to define the minimum value for the target cell

(the sum of (YOBS − YCALC)2) by changing the value of λ yields:

λ = 2.0846241846991

According to Figure (4.4), and the error that was obtained from attempting to

fit Poisson distribution to the histogram (0.050458264), one may argue that Poisson

distribution did not agree well with the histogram. Thus, this distribution can not
be used to expect or to determine the pattern of the division and proliferation of
the epithelial cells.

4.2 Normal distribution

One of the most common distributions that were used in the natural and social sci-
ences to describe random variables whose distributions are not known is the normal
(or Gaussian) distribution. The shape of the histogram (The Bell Curve) is Similar

to the normal distribution curve. Furthermore, the method (least squares parameter

fitting) can be derived analytically in explicit form when the relevant variables are

normally distributed. Hence, the normal distribution was examined to fit the actual
data.
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f(x, µ, σ) =
1

σ
√

2Π
∗ e

−(x−µ)2

2σ2 (4.2)

Where: x in this case represents is the number of the edges.
µ is the mean.
σ is standard deviation.
σ2 is variance.

x YOBS YCALC (YOBS − YCALC)2

4 0.02946593 0.042180954 0.000161672
5 0.279005525 0.272934875 3.68528E − 05
6 0.45718232 0.459031525 3.41956E − 06
7 0.201197053 0.20066279 2.85438E − 07
8 0.031767956 0.022799852 8.04269E − 05
9 0.001381215 0.000673346 5.0108E − 07

The sum 1 0.998283341 0.000283158

Table 12: Values of cell-edges distribution obtained by Normal distribution.

Using the method (least squares parameter fitting) yields:

µ = 5.885849699, σ = 0.86149975

Figure 4.2: Plots of the experimental histogram (Blue) and the fitted Normal histogram (Orange),
by using non-linear squares curve fitting with Microsoft Excel Solver.

Checking: The curve peaked where,

f(x, µ, σ) =
1

σ
√

2Π
⇒ e

−(x−µ)2

2σ2 = 1

Which means
−(x− µ)2 = 0⇒ x = µ⇒ 6 ≈ 5.885849699
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According to Figure(4.2), the Normal distribution has shown better agreement

Consistent with the experimental data. However, there are a couple of drawbacks
of such distribution which cannot be neglected in this case such as, the normal
distribution curve is symmetrical while the experimental data is not. Moreover, the
fact that x ∈ R in the normal distribution whereas x, which represent the number
of the edges, must be a positive integer.

4.3 Log-normal distribution

Considering the excellent match between the curves in the prior distribution. The
gaps of the distribution which are not consistent with the data, this strongly sug-
gested the Log-normal distribution.

ln f(x, µ, σ) =
1

xσ
√

2Π
∗ e

−(ln x−µ)2

2σ2 , x > 0 (4.3)

x lnx YOBS YCALC (YOBS − YCALC)2

4 1.386294361 0.02946593 0.018021356 0.000130978
5 1.609437912 0.279005525 0.281487086 6.15815E − 06
6 1.791759469 0.45718232 0.456743238 1.92793E − 07
7 1.945910149 0.201197053 0.199803777 1.94122E − 06
8 2.079441542 0.031767956 0.039083456 5.35165E − 05
9 2.197224577 0.001381215 0.004577233 1.02145E − 05

The sum 1 0.999716147 0.000192787

Table 13: Values of cell-edges distribution obtained by Log-normal distribution.

Using the least squares parameter fitting technique yields,

µ = 1.777282518, σ = 0.144849707

Checking: The curve peaked where,

ln f(x, µ, σ) =
1

xσ
√

2Π
⇒ e

−(ln x−µ)2

2σ2 = 1

Which means

−(lnx− µ)2 = 0⇒ lnx = µ⇒ x = eµ ⇒ 6 ≈ 5.913764014

Besides the fact that the log-normal distribution meets the terms of the experi-
mental data from where it only contains positive integers and the histogram of such
distribution is asymmetric. This type of distribution was found in a similar case.
Lognormal distribution represent the distribution of the metal and gold values, this

claimed by Razumovsky[14], who inspired Kolmogorov to do extra research and

studies to investigate the truth of such claim and thus he reached another similar

case. According to Kolmogorov[12], lognormal law for distribution determines the

sizes of crushed particles.

Let: N(t) = Number of particles at time t. N(r, t) = Number of particles with size

x lesser than r.
Distribution function:

P (x < r) =
N(r, t)

N(t)
(4.4)
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Figure 4.3: Lognormal distribution curve (Orange) adequately describes the experimental data
(Blue) by using non-linear squares curve fitting with Microsoft Excel Solver.

After crushing the particles occurring at (t, t+ 1):

Q(k) is the expected number of new particles from particles of size r.

Q(k, r) the number of particles with size x lesser than k.r.

Repeating the process many times (As t→∞):

p(x) =
N(ex, t)

N(t)
→ 1√

2ΠtB

∫ x

−∞
e

−(ξ−At)2

2B2t dξ (4.5)

Where,

A =
1

Q(1)

∫ 1

0
Log k dQ(k)

And,

B2 =
1

Q(1)

∫ 1

0
(Log k −A)2 dQ(k)

µ = At ; σ = B
√
t

Note. Although the log-normal distribution shows a better approximation and the

histogram is almost lookalike the experimental data histogram, the log-normal dis-

tribution is a continuous function while the actual data is not a continuous.

4.4 Conclusion

Regardless the fact that log-normal distribution shows a remarkable similarity which

is almost identical according to the histogram (4.3). There is a fact which cannot

be overlooked that is the log-normal is a continuous function, whereas the actual
data is not continuous. The histogram of the experimental data, which represent

22



the distribution of the cells, was based on the number of (edges-vertices-neighbours)

of the cell. Therefore, it cannot be considered continuous function. And this might
explain the slight difference between the histograms. Perhaps if the experimental
histogram was based on the size of the cell rather than the number of the edges, in
this case, the distribution function considered as continuous function and might be
identical to the lognormal distribution.

Figure 4.4: Histogram for cell-length distribution [15].
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Chapter 5

Future work

Perhaps a good start for the future work is by modelling virtual tissues and compare
the histogram of each model with the histograms of experimental and the previous
models as well. Such an idea will be presented in the main dissertation. To briefly
introduce the structure of this design, two different types of virtual tissues will be
introduced:

Virtual model for growing tissue.

Virtual model for growing tissue will be based on several assumptions that tissue
topology emerges from cellular division.

The assumptions of this model:

a) Start with one cell (n = 1).

b) Divide through two random (not adjacent) edges.

c) Repeat picking up random neighbour.

d) If n ≥ 3 then pick up randomly two other cells and add extra edge to them.

Repeating this process (the division) for example 1000 times and translate the ob-

tained data from 1001 cells into a histogram. Finally, compare this histogram to the
other histograms.

Topology emerging from T1 transitions.

This model differs from the previous regarding the concepts. This model is not
about cell division; it takes into account cell elasticity and junctional forces arising

from adhesion as shown in Figure( 5.1). Translating this numerically. Thus, generate

different network morphologies that depend on physical parameters [16].

The assumptions of this model:

a) Start with n hexagonal cells. (n = 1000) for instance.
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Figure 5.1: Cells undergoing a T1 topological swap. The green edge shows the cell - cell interface
that is shrunk to a point and then transformed in the perpendicular direction. [4].

b) Randomly select two cells (acting as two neighbours undergoing T1 transition)

and reduce the number of their edges by one each.

c) Choose two other random cells assuming they are neighbours and add one extra

edge to each.

Repeat the process N times, then translate the obtained data into a histogram.
Finally, compare this histogram to the other histograms.
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