I.2. Case Study: Unary and Binary Numbers
(after Verzosi/ Mötbung (Abe l'19)
Unary number W
positive binary numbers $P_{O S}=$ inductive type with constructor

$$
\text { pos 1: Pos }, x 0: \text { Pos } \rightarrow \text { Pos, } x 1: \text { Pos } \rightarrow \text { Pos }
$$

binary number $\mathrm{Bin}=$ inductive type with conslirutars
bin 0 : Bin , binders: $P_{a s} \rightarrow \mathrm{Bin}$
10
\exists isomorphism $f: B_{i n} \rightarrow, N, \quad g: N \rightarrow B_{i n}$ with $f(g(n))=n, g(f(b))=b$ \&

$$
\begin{aligned}
& g \text { preserves }+(*, \ldots)
\end{aligned}
$$

IN is good for defencitins a proofs, Bin is good for effective calculation
Challenge: Calculate $2^{20}=2^{5} \times 2^{15}$ in a proof using $I N_{N}$

- nasalise unary representations to idpath: extremely ineffective
- use algebraic manipulation by hand: can get demanding
- prove it for bunny numbers, transport the proof over $P: B_{i}$ in $=1 N$
 ore which type family? cuffed as Marti-lifequality from visor copphim, with $P_{*} b=f(b)$? \leadsto univalence!
Double: $\Pi(A ; U), A \Rightarrow A$
Dublin: Doable Bin (easy to construct \& effective for binary members)
30 $P_{*}\left\{\quad \operatorname{Bin}^{\text {in }} \rightarrow \mathrm{Bin}^{\text {in }}\right.$
Dorblein: Double IN (easy to how Double in $m=2 * m$)

$$
\mathbb{N} \rightarrow \mathbb{N}
$$

35 doubles: $\Pi(A: U)(D:$ Double $A) \rightarrow \mathbb{N} \rightarrow A \rightarrow A$
Assume A, D, n : Do induction on $n: \infty n \equiv 0 ; \mapsto$ id A

$$
\text { - } n \equiv S_{m}: \mapsto D(\text { doubler } A D m)
$$

type family doubles $A D 20=$ doubles $A D 5$ (doubles $A D 15$)

$$
\begin{aligned}
& \text { nat at } 7^{20}=7^{5} \times 7^{15} \longrightarrow \text { prowl of } 2^{20}=2^{5} \times 7^{15}
\end{aligned}
$$

$$
\begin{aligned}
& \angle A \equiv \operatorname{Bin}, D=\text { Double Bin } \\
& \text { proof of } 2^{20}=2^{5} \times L^{15} \rightarrow \text { proof of } 2^{20}=2^{5} \times 2^{15} \\
& \text { (as binary numbers) }
\end{aligned}
$$

Problem: The calculation will only happen "automagically" if $p_{x}(b) \equiv f(b)$
\rightarrow construtivenus of univalence \sim cubical type theory

- Why can't you do with the ismorptim? ms More proof obligations! Wot autonagie!
- Is univalence orly good far calculations. Localization: $\left(R\left[f^{-1}\right]\left[g^{-1}\right] \cong R\left[(f y)^{-1}\right]\right.$

Localisation in categories!
II.3. Equivalences

55 How to obtain equalities in $A=B$ from isomorphisms between A and B ? homotopies $f_{\theta} g^{\sim} \operatorname{idmap}_{B}$ and gif $\sim \operatorname{idmap}_{A}$

$$
f: A \rightarrow B, g: B \rightarrow A, \eta: \prod_{b: B} f(g(b))=b, \varepsilon: \prod_{a: A} g(f(a))=a
$$

g is quasi-inverse to $f m(g, \eta, \varepsilon)$; $\operatorname{qinr}(f)$
60
idtoqinv: $\prod_{A, B: u} A=B \rightarrow \sum_{f: A \rightarrow B} \operatorname{qinv}(f): \equiv$ Assume $A, B, p: A=B$.
Do path induction on p : Take $f \equiv g \equiv \operatorname{idmap} A$,

$$
\eta \equiv \varepsilon \equiv\left(a: A \mapsto \text { id path }_{a}\right) \text {. }
$$

65 Theorem: There is no (quasi-) inverse quivtoid: $\prod_{A, B: U} \sum_{f=A \rightarrow B} \operatorname{qivi}(f) \rightarrow A=B$ to idtoqino.
subtle - only fails when considering equalities of equalities, unique for many standard mathematical objects, but not for all: stacks resp. L-categories,...

70 Proof: Assume quintoid inverse to idtoquin exists.

- Key observation: Quasi-isomarphisms ($f, g, \eta, \varepsilon l$ produced by idtoqinv are half-adjoint, ie.

$$
\begin{aligned}
\tau: \prod_{a: A} \underbrace{f(\varepsilon a)}_{: 0}=n(f a) \quad \text { (ar equivalently, } & \prod_{b: B} \underbrace{g(\eta b)}_{:}=\varepsilon(g b)) \\
& f(g(f(a)))=f(a) \text {, see (4) below. } \quad g(f(g(b)))=g b
\end{aligned}
$$

75
Proof: $B y$ induction on $p: A=B$.
\Rightarrow all quasi-isomorphisms must be helf-adjoint, under the assumption.
\leadsto Contradiction by constructing quasi-isomorphuins that ave not half-adjomt.

80 $a: A$

$$
g=\operatorname{idmap}_{A}: A \rightarrow A
$$

\sim Want to construct two now- equal dojeits in $\prod_{a: A} a=a$ for sme type A.

- Key biviling block: nonequal equalities of induative type 2, with constuctors $\mathrm{O}_{2}, 1_{2}: \mathbb{R}$.

$$
\begin{aligned}
\text { Inductively constrat two functions id }: 2 \rightarrow 2: & =0_{2} \mapsto 0_{2}, 1_{2} \mapsto 1_{2} \\
\text { wnid } 2: 1-2 & =0_{2} \mapsto 1_{2}, 1_{2} \mapsto 0_{2}
\end{aligned}
$$

(1) Apply equality of functions on ogecits: $f \cdot g: A \rightarrow B, p: f=g, a: A \mapsto p(a): f(a)=g(a):=$ Do induction on p : Take idpath $\mathrm{f}(\mathrm{a})$.
(2) $O_{2} \neq 1_{2}$: Contuit codez: $\mathcal{L} \rightarrow \mathcal{I} \rightarrow U: E\left\{\begin{array}{l}O_{2}, O_{2} \& 1_{2}, 1_{2} \mapsto \text { Tre } \\ O_{2}, 1_{2} \& 1_{2}, O_{2} \mapsto \text { Edse }\end{array}\right.$

$$
p: O_{z}=1_{z} \xrightarrow{\text { enodede }\left(O_{z}, 1_{2}\right)} p c: \operatorname{code}_{2}\left(O_{R}, 1_{z}\right) \equiv \text { False contradiction. }
$$

(3) $d_{2} \neq$ nmid z: Apply p :id $z_{2}=$ nonidz on O_{2} as in $(1) m$ contadicition to (2)
(4) Applying a function on an equality of obeits: $f: A \sim B, p: a_{1}=A a_{2} \backsim f(p): f\left(a_{1}\right)=B f\left(a_{2}\right):=$ Do induction on p. Take idpath f(a).
(3), (4) \& idtoguiv inveracto quintioil
(5) id $p_{2}:=\operatorname{qinitoid}\left(i d_{z}\right)$ a quintoid (noidz) E: nonidpz

Non-cequld dopeits in $\prod_{a: A} a=\alpha$: $A:=U(m a:=\mathbb{R}$ posithe) ? suht that 2 is maped to nmidp p_{2} ?
Idea: Poronde type $X: U$ with equelity $p: X=X$ m $A: \equiv \sum_{x: u} X=X$

$$
\operatorname{ltg} p: x=x \quad m \rightarrow A:=\sum_{x: u}^{2} x=x
$$

$\therefore \prod_{A_{x: u}^{\sum} x=x} A=A \equiv(X, p) \mapsto($ idpach x, idpathp:p=(idpathx $\left.) * p\right):(X, p)=(X, p)$
$u: \prod_{A: \sum_{X=1} X=X} A=A:=(X, p) \mapsto\left(p, a_{\uparrow}: p=p \times p\right)$

$$
\text { aA But how to constnot equabities in } x=x \text { forall X.U mififmemly. }
$$

$\sigma\left(\mathbb{Z}_{\text {, woridp }}^{2}\right) \neq u\left(\mathbb{R}_{\text {, nanidp }}^{2}\right)$: proget to the first component and use (5)
$\Rightarrow\left(\operatorname{idmap}_{x, u} x=x, \operatorname{ilmap}_{x: u} x=x, r, u\right)$ not haef-adpoint $\Rightarrow \eta$
Defantion: $\quad: A \rightarrow B$ is called an equivalence if thas an inverse $y: B \rightarrow A$ cheched by hamotopies

$$
\begin{aligned}
& \text { constructed by induction on } q: X=Y: q \times p=q^{-1}: p: q^{p} ; \\
& \text { set } q:=p: p^{-1} \circ p=\text { idpath concatomation of equalties } \\
& \text { idpath } \bullet p=p \text {. }
\end{aligned}
$$

Deffurtion: $f: A \rightarrow B$ is called an equivalence if thas an inverse $y: B \rightarrow A$ cheded by hanotopies $\eta: b \backsim f(g(b))=b$ and $\varepsilon: a m g(f(a))=a$ that are Lalf-adjoint
$A \simeq B$: type of equivalemes between. A and B
Remain: The $H_{0} T$-Book personts 3 mare, but equivalent deferintions of equivalecce.
Lemma: Adjointifection
Quasi- wnverses (g, η, ε) of a function $f: A=B$ yiids equivalenes $\left(g, \eta^{\prime}, \varepsilon, \tau\right)$.
Proof: (1) $f, g: A \rightarrow B, H: f \sim g, p: a=A b \rightarrow f(a) \stackrel{H h}{ } g(a)$

apply (1) with $g=i A_{A}, p \equiv \mathrm{H}_{a}$
$\Rightarrow f_{a}=H f_{a}: f_{a}=f_{a}$: canal Ha_{a}
1.4. Univalence
intoequiv: $A \simeq B \rightarrow A \simeq B \quad D_{0}$ induction on $p: A=B$ ilpath $A \mapsto($ ulmenp A, idmap $A, \lambda k: A)$, inpath $A, \lambda m: A$, idpatht A, Na:A), ípach (idpath A))

Univalence Axim: intocequiv is an cquivalene

$$
\pi(A, B: u),(A=B) \simeq(A \simeq B)
$$

Theormen (Votvorshy' $O 6$) HoIT with Univaleme is (at least) as consident as ZFLC).
Ldue of Prof: Constut moule of $H_{0} T$ in categery of sminiliciel sts, using a unversal Ven fionation

$$
\begin{aligned}
& \text { Set } \eta^{\prime}(b) \equiv \eta(f \mid g(b H))^{-1}-f(\varepsilon(g(b))|\cdot \eta| b) \\
& \Rightarrow \tau(a): \quad f(\varepsilon(a))=\eta|f| g(f(a)) \mid)^{-1}=\eta \mid f(g(f|a|)) \sim f(\varepsilon a) \\
& f l g(f) f(f|a|-1)=f(g(f(a))=f(a) \\
& \text { " (1) with } H: \equiv \eta: f_{0} j^{\sim} d_{B}, p: E f(\varepsilon a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { H(2) with } H: \equiv \varepsilon: g \circ f^{\sim} d_{A}, a: \equiv a \\
& \text { —"一 }{ }^{\prime \prime}\left(\varepsilon \operatorname { l g } \left(f(a) \cdot 10-n-\eta^{\prime}(f(a))\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Do viruction on } P \text {. }
\end{aligned}
$$

Alterative characterisation of univalence
Definition: $A: U$ is called contractible if there is a base $a_{0}: A$ and an equality $a_{0}=u$ for all a: A.
165
Lemma 1: Two contractible types A, B are equivalent.
Proof: $f: \equiv a \mapsto b_{0}: A \rightarrow B$ and $g:=b \mapsto a_{0}$ are inverse to each other.

Lemma 2: A type A is contractible if it can be retracted to a contractible type B i.e,
170 there are $f: A \rightarrow B, g: B \rightarrow A$ such that $g(f(a))=a$ for all $a: A$.
Proof: $f(a)=b_{0}$, hence $a=g(f(a))=g\left(b_{0}\right) \equiv \alpha_{0}$ for all $a: A$.
Proposition: Assume univalence. Then: The fibers $f^{-1}(b): \equiv \sum_{a: A} f(a)=b$ of an equivalence $f: A \rightarrow B$ are contractible, for all a:A.
175 Proof: Univalence $\Rightarrow \quad f=\operatorname{idtoequiv}(p)$ for some $p: A=B$. Do induction on p : idpath $A: A=A$ m $f \equiv \operatorname{idmap}_{A} m f^{-1}(b) \equiv \sum_{a=A} a=b$, contractible to $\langle b$, idpath b).

Remark: The inverse also holds, see $\left[H_{0} T\right.$-Book, Thy 4.4.3]

