Homotopy Type The ry

- (formal) foundation of mathematics $(\leftrightarrow$ ZF set theory, \leftrightarrow LEAN mathlib foundation)
- sheds some new light on mathematical concepts of way of thinking

5
I. Type Thing

What aretypes?
Sets like mathanaticiens want them to be
I.I. Primitive notions of type thing

10
$t_{\text {ye }} X$
ZF set Chary! sets, ϵ,
objects $x: X$ of type X
fudgnental/defrictional equalities of objects of the same type

$$
x \equiv y: x
$$

- all objects MUST have a type
- types are objects am a universe $U \backsim m$ hiraring of universe

15 II,2. Rubes to construct types, objects of a certain type and judgrantal equabitu's
= deductive system with decidable \& terminating chats for obyut-type relations \& roigmantal equalities
(Similes to syntax checks in programming languages)
20
\sim super of proof checkers

- A, B types \leadsto function type $A \rightarrow B \quad$ fun $(x: A) \mapsto f x$
$f: A \sim B$ function $\sim \rightarrow \beta(x: A), f x \quad \lambda$-calculus

$$
a: A \sim(\lambda(x: A), f x) a \equiv f a
$$

25
Example: identity function id $A: \equiv \lambda(x: A), x$

- Dependent function type: A:U, type family $B: A \rightarrow U \sim T(a: A), B a: U$ dependent pairs $=\sum$-type: $n \sim \sim \mathcal{E}(a: A, B a: U$
special case: function \& pair: $A: U, C: U \leadsto f: \Pi(a: A), C \equiv A \rightarrow C$
Example l: magma $=$ type with binary operation $\&(a, c): \sum(a: A), C \equiv A \times C$ curriging of functions
\longrightarrow family of types $\lambda \mid X: U), X \rightarrow(X \rightarrow X): U \rightarrow U$
tope of a magma: $\quad \sum(X: u), X \rightarrow X \rightarrow X$
Example 2: subjective functions $\quad \forall \quad \exists \quad$ not yet defenced popporty of being surgective

$$
f: A \rightarrow B \leadsto \prod^{3}(b: B), \sum(a: A), f a=b \equiv: \text { is.angetic } f
$$

(surjection functions have type $\sum(f: A \rightarrow B)$, is...surjective f)
I.3. Inductive Types

40 Example 1: Construct type W of natural numbers inductively

- O is a natural number $\leadsto \infty$ O IN
- successor $S(n)$ of a natural number n is a natural number $\sim>S: \mathbb{N} \rightarrow \mathbb{N}\}$ Construction L recursion that is Construction of function add: $\mid N \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ by induction: terminations

Constraction of function add: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ by miduction:
45

$$
\begin{aligned}
& \cdot n+0 \equiv n \\
& \cdot n+S(m) \\
& \equiv S(n+m)
\end{aligned}
$$

(0) $\quad S(0)+S(0) \equiv S(S(0)+0) \equiv S(S(0)): \mathbb{N}$
L_{2} recursion that is temerating

not allowid as constructor

50
equidet is uiventivery us nomal fam
(1) $\forall n, m: N, S(n)+m=S(n+m)$:

Constrution \int Assume $u, m: \mathbb{N}$. Do cuduction on m :
of anomeric, \simeq tactuis $\rightarrow S(n)+0 \equiv S(n) \equiv S(n+0)$
55 Uning indetion $\begin{aligned} \\ \text { elimimetir }\end{aligned} \lambda n m: \mathbb{N}$ • $S(n)+S\left(m^{\prime}\right) \equiv S\left(S(n)+m^{\prime}\right)=S\left(S\left(n+m^{\prime}\right)\right) \equiv S\left(n+S\left(m^{\prime}\right)\right)$
(2) $\forall n: \mathbb{N}: O_{t n}=n$

Assume $n: \mathbb{N}$. Do indution on n : $0+0 \equiv 0$

$$
\cdot 0+S\left(n^{\prime}\right)^{\prime} \equiv S\left(0+m^{\prime}\right) \underset{\text { IH }}{\bar{E}} S\left(h^{\lambda}\right)
$$

60
(3) $\forall n, m: \mathbb{N}, n+m=m$

Assume $n, m: W$. Do moducto $m: 0 n+0 \equiv n \stackrel{(2)}{=} 0+n$

$$
\begin{aligned}
& \therefore n+U \equiv n=U+n \\
& \text { - } n+S\left(m^{\prime}\right) \equiv S\left(n+m^{\prime}\right) \stackrel{I H}{=} S\left(m^{\prime}+n\right) \stackrel{(1)}{=} S\left(m^{\prime}\right)+n \text {. }
\end{aligned}
$$

hury-Howard isomorphimm; Provfs are objicts, type i the statemart to poove

Example 2: Σ-types $\Sigma(\alpha: A), B a$ as niductive ty

75
construntar: dpair: $\mathbb{T}(a: A), B a \rightarrow \sum a: A, B a \quad$ dpair a $b \equiv:\{a, b\rangle$
eliminutar: $n{ }^{2}(a: A), B_{a}: \Pi\left(C: \sum(a: A), B_{a} \rightarrow U\right),(\Pi \mid a: A)\left(b: B_{a}\right),(\langle a, b\rangle) \rightarrow$

$$
\begin{aligned}
& \Pi\left(p: \Sigma(a ; A), B_{a}\right), C_{p} \\
& \text { ind } \Sigma(a: A \mid, B_{n}(C, h,\{a, b\rangle) \equiv \underbrace{h(a, b)}_{C^{?}(a, b)} \\
& p r_{1}: \sum(a: A), B a \rightarrow A \\
& \text { 川 } \\
& \text { ind } \Sigma(a: A), B_{a}((\lambda(p, \Sigma(a: A), B a), A),(\lambda(a: A)(b: B a), a) \\
& p r_{2}: \pi\left(p: \sum(a: A), B a\right), B(p r,(p)): \equiv \text { Assme } p: \sum(a: A), B_{a} \text {. Do mileution in } p \text {; } \\
& p r_{2}(\{a, b\rangle) \equiv b: B a_{a}
\end{aligned}
$$

80

Caluhus of Frductive Constructions
reid enoungh dedeshictures ytem for all of mathematios
I. 4. Loge

True: inductive type with constructor H : True
40 False: inductive type without constructor Induction on ff: False \sim gilds everything

Ex Falso quodlibet
Not $=7: \Pi(A: M), A \rightarrow$ False
And $\equiv x:$ Induction type with constructor $A \rightarrow B \rightarrow A \times B$
95 Or $\equiv+$: Inductive type with two constructors
in l: $A \rightarrow A+B$
air: $B \rightarrow A+B$
For all: $\left.\begin{array}{l}\forall \\ \prod 1 \\ i\end{array} a: A\right), P a \quad$ where $P: A \rightarrow U$
There exists: $\quad \sum_{\hat{H}}(a: A), P a$
(1) $A \times B \rightarrow B \times A$: Assume ass: $A \times B$ Do miductuon on ass

$$
(a, b) \mapsto(b, a): B \times A
$$

105
(2) $A \rightarrow 7\urcorner A \equiv(A \rightarrow$ False \rightarrow False: Assume $a: A$. Assume na: $A \rightarrow$ False Do induction on na a.
(3) A $+7 \rightarrow$: Cannot be proven $=$ no object of this type can be constructed

Excludual Middle be stated as an axiom
w Logic is constructive
(4) $A \rightarrow \Pi(a: A), P a \rightarrow \sum(a: A), P a: A$ Asume $a: A, f: \Pi(a: A), P a$

Take $(a, f a): \sum(a: A), f a$
115
II. Equality \& Univalence
II.1. Equality
family of inductive types $I d_{A}: A \rightarrow A \rightarrow U$ with indices $a, b: A \rightarrow I_{A}(a, b) \cong a=b$ one constructor: idpath A : $a=A a$

$$
\text { Martin lop equality }=\text { propositional equality }
$$

125
*judgmental equality $a \equiv b: A$ mobjeit ilpath c (or a, or b)
proofs of statements in $\mid N: \quad 1+1=2$

- miduction only works far the whole type farnily: To obtimn c: C from p: $q=b$

130 a and b most be arbitrary nidependent Objects in A

- unducition only warks far the whote Eype farnuly: Io obtim c:l from p: $q=b$

130 a and b most be arbitrary niclependent objects in A

- transport over equality through family of Eypes:

$$
\begin{aligned}
B: A \rightarrow U, a_{1}, a_{2}: A, p: a_{1}=a_{2}, b_{1}: B a_{1} & \longmapsto \\
& b_{2}: B a_{2}: D_{0} \text { miductim on } p \\
& p_{A}\left(b_{1}\right) \quad p: a=a_{1}: \text { Tane } b_{1}: B a_{1}, ~
\end{aligned}
$$

135

- homotopy niterprotation :
equality $p: a=A b$ path from a to b in A
(path) miduction an P \longleftrightarrow base pount fre path are lomotopic to constant paths (in commeted spaces)
equalitis of equalities \longleftrightarrow hountapy between patts with fiked andpoints

$$
p, q: a=A b \sim p={ }_{a=A} b q
$$

$p \neq q \longleftrightarrow$ paths are not homotapui
Existure of non-equal equalitis w the mig differcece to
"standard" dependent type theery, as used e,g. fer LEAN's mathlib
transport orer $p: a_{1}=A a_{2}$

$$
\text { in } B: A \rightarrow U
$$

- inductive constrantion of equalities in inductior types

155 Example: P:AッU type Pamily, $w, w^{\prime}: \sum(a: A), P a$
(1) $\quad \prod_{w_{1} w^{\prime}}\left(w=w^{\prime}\right) \rightarrow \sum\left(p: p r_{1}|w|=p r_{1}\left(w^{\prime}\right)\left|, p_{*}\left(p r_{2}|w|\right)=p r_{2}\right| w^{\prime}\right):$

Do induction on p m $p \equiv$ idpath w
Take (idpath $p r_{1}(w)$, idpath $p r_{2}(w)$
160

$$
\rightarrow \operatorname{Note}\left(\text { idpath }_{A} \operatorname{pr}_{1}|w|\right) * p r_{2}|w| \equiv p r_{2}|w|
$$

(2) g: $\prod_{w_{1} w^{\prime}} \sum\left(p: p r_{1}(w)=p r_{1}\left(w^{\prime}\right)\right), p_{*}\left(p r_{2}(w)\right)=p r_{2}\left(w^{\prime}\right) \rightarrow w=w^{\prime}:$

Do maduction on $w, w^{\prime} \leadsto w^{\prime} \leadsto(a, b), w^{\prime} \equiv\left(a^{\prime}, b^{\prime}\right) \quad$ (\& calculate)
Do induction on $p \leadsto p=$ idpath $_{A} a, q \equiv(\text { idpath } a)_{*} b=b^{\prime} \equiv b=b^{\prime}$
O_{0} induction on $q \longrightarrow q \equiv$ itpath $_{p_{a}} b^{\prime}$
Take idpath $\sum_{\left.\sum \mid a: A\right), \rho_{a}}(a, b)$
(3) $f(g(v))=r$: Do induction on w, w^{\prime}, v (be calculate using the indurtive defrivition of f end g)

110
Do path induction on the two comporents of r
Take iolpath
(4) $g(f(p))=p: D_{0}$ induction on $p \rightarrow p: w=w$

175 Take idpacth

What abort equalities of functions $f_{1} g: A \rightarrow B ?$ Equalities of types A, B ?

