A brief introduction to Triangulated Categories

Stefano Nicotra

October 18, 2017

Contents

1	Triangulated categories	2
2	Triangulated functors and Verdier quotient	6
3	The derived category of an abelian category	9
A	Localization of categories and calculus of fraction	12
Bi	bliography	13

1. Triangulated categories

In this section we introduce the axioms of a triangulated category and we derive some elementary properties from them.

Definition 1.1. — Let C be an additive category and let $T: C \to C$ be an additive auto-equivalence. A *triangle* in C with respect to T is a diagram of the form:

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

A *morphism of triangles* is a commutative diagram of the form:

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} & Y & \stackrel{v}{\longrightarrow} & Z & \stackrel{w}{\longrightarrow} & TX \\ & & \downarrow^{f} & \qquad \downarrow^{g} & \qquad \downarrow^{h} & \qquad \downarrow^{Tf} \\ X' & \stackrel{u}{\longrightarrow} & Y' & \stackrel{v}{\longrightarrow} & Z' & \stackrel{w}{\longrightarrow} & TX' \end{array}$$

Definition 1.2. — A *triangulated* category is a triple $(\mathfrak{T}, \mathsf{T}, \mathcal{D})$ where \mathfrak{T} is an additive category, $\mathsf{T}: \mathfrak{T} \to \mathfrak{T}$ is an additive auto-equivalence and \mathcal{D} is a class of candidate triangles, called *distinguished triangles*, satisfying the following axioms:

(TR₀) The class of distinguished triangles is closed under isomorphisms. Moreover, the candidate triangle:

$$X \xrightarrow{id_X} X \longrightarrow 0 \longrightarrow TX$$

is distinguished.

(TR₁) For any morphism $f\colon X\to Y$ in ${\mathfrak T}$ there exists a distinguished triangle of the form

 $X \stackrel{f}{\longrightarrow} Y \longrightarrow Z \longrightarrow TX$

(TR₂) Consider the two candidate triangles:

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$
(1)

and

$$Y \xrightarrow{\nu} Z \xrightarrow{w} TX \xrightarrow{-Tu} TY$$
(2)

Then, (1) is a distinguished triangle if and only if (2) is so.

(TR₃) For any commutative solid diagram:

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} & Y & \stackrel{v}{\longrightarrow} & Z & \stackrel{w}{\longrightarrow} & TX \\ & & & \downarrow^{f} & & \downarrow^{g} & & \downarrow^{h} & & \downarrow^{Tf} \\ X' & \stackrel{u}{\longrightarrow} & Y' & \stackrel{v}{\longrightarrow} & Z' & \stackrel{w}{\longrightarrow} & TX' \end{array}$$

There exists a dotted arrow making the diagram commutative.

(TR₄) Assume we are given morphisms $f: X \to Y$ and $g: Y \to Z$ fitting into distinguished triangles:

then, there exists a distinguished triangle

 $\mathsf{Z}' \longrightarrow \mathsf{Y}' \longrightarrow \mathsf{X}' \longrightarrow \mathsf{T}\mathsf{Z}'$

making the following diagram commutative:

We will often say that (T, T) or even just T is a triangulated category, omitting the auto-equivalence T and the class of distinguished triangles from the notation

Remark 1.3. — If T is a triangulated category and

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

is a distinguished triangle in \mathcal{T} , it follows from the axioms of a triangulated category that the compositions $v \circ u$, $w \circ v$ and $Tu \circ w$ are equal to the 0 morphism. Indeed, if we can consider the solid diagram:

$$\begin{array}{cccc} X \xrightarrow{id_X} X \longrightarrow 0 \longrightarrow \mathsf{T}X \\ id_X & \downarrow u & \downarrow & \downarrow id_{\mathsf{T}X} \\ X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} \mathsf{T}X \end{array}$$

by the axiom (TR₃) there exists a dotted arrow making the diagram commutative. In particular, $v \circ u = 0$. Similarly, using axiom (TR₂) and (TR₃) one can show that the other compositions are zero.

Remark 1.4. — Given a triangulated category $(\mathcal{T}, \mathsf{T})$ one can easily see that the opposite category \mathcal{T}^{op} inherits the structure of a triangulated category, with auto-equivalence given by the opposite of the quasi-inverse $(\mathsf{T}^{-1})^{op}$: $\mathcal{T}^{op} \to \mathcal{T}^{op}$ and distinguished triangles of the form

$$\mathsf{Z} \xleftarrow{\mathfrak{u}} \mathsf{Y} \xleftarrow{\mathfrak{v}} \mathsf{X} \xleftarrow{\mathfrak{w}} \mathsf{T}^{-1}\mathsf{Z}$$

such that the triangle

 $X \xrightarrow{v} Y \xrightarrow{u} Z \xrightarrow{-Tw} TX$

is distinguished in T.

Definition 1.5. — Let \mathcal{T} be a triangulated category, let \mathcal{A} be an abelian category and $H: \mathcal{T} \to \mathcal{A}$ be an additive functor. We say that H is *homological* (for \mathcal{T}) if, for every distinguished triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

The sequence

$$H(X) \xrightarrow{H(u)} H(Y) \xrightarrow{H(v)} H(Z)$$

is exact in \mathcal{A} . Dually, a *cohomological functor* (for \mathfrak{T}) is a functor $H: \mathfrak{T}^{op} \to \mathcal{A}$ such that H is homological for \mathfrak{T}^{op} .

Remark 1.6. — Let \mathcal{T} be a triangulated category and $H: \mathcal{T} \to \mathcal{A}$ be a homological functor. Thanks to the axiom (TR₂) we see that the infinite sequence:

$$\cdots \to H(T^{-1}(Z)) \to H(X) \to H(Y) \to H(Z) \to H(TX) \to \cdots$$

is exact everywhere.

Proposition 1.7. — *Let* T *be a triangulated category, then for every object* $A \in T$ *, the functor*

$$\mathsf{hom}(\mathsf{A}, -) \colon \mathfrak{T} \to \mathsf{Ab}$$

is homological.

Proof. Given a distinguished triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

we need to show that the sequence

 $hom(A,X) \xrightarrow{u_*} hom(A,Y) \xrightarrow{\nu_*} hom(A,Z)$

is exact. Clearly the composition $v_* \circ u_*$ is equal to zero. So let $f: A \to Y$ be a morphism such that $v \circ f: A \to Z$ is equal to zero. Then, we have a solid commutative diagram

$$\begin{array}{cccc} A & \longrightarrow & 0 & \longrightarrow & TA \xrightarrow{-id_{TA}} & TA \\ f \downarrow & & \downarrow & & \downarrow & & \downarrow \\ Y & \longrightarrow & Z & \longrightarrow & TX & \longrightarrow & TY \end{array}$$

The bottom row is a distinguished triangle by (TR_2) , the top row by (TR_0) and (TR_2) . Hence, by (TR_3) we can find a dotted map making the diagram commutative. Moreover, since T is fully-faithful, such a map is given by Th: $TA \rightarrow TX$ for exactly one map h: $A \rightarrow X$. Since the right square commutes, we have that $T(u \circ h) = T(f)$, which implies that $f = u \circ h$. Thus, $h \in hom(A, X)$ is an element mapping to $f \in hom(A, Y)$ and we are done.

Corollary 1.8 (Two-out-of-three-property). — *Let us consider a morphism of distinguished triangles:*

Then, if any two of the vertical morphisms f, g and h are isomorphisms, so is the third.

Proof. Without loss of generality we can assume that f and g are isomorphisms. For every $A \in T$ we have a morphism of exact sequences:

$$\begin{array}{cccc} \hom(A,X) \longrightarrow \hom(A,Y) \longrightarrow \hom(A,Z) \longrightarrow \hom(A,TX) \longrightarrow \hom(A,TY) \\ & & \downarrow^{f} & \downarrow^{g} & \downarrow^{h} & \downarrow^{Tf} & \downarrow^{Tg} \\ \hom(A,X') \longrightarrow \hom(A,Y') \longrightarrow \hom(A,Z') \longrightarrow \hom(A,TX') \longrightarrow \hom(A,TY') \\ \end{array}$$

Since the rows are exact, by the Five Lemma we can conclude that h is an isomorphism. $\hfill \Box$

Corollary 1.9. — Let T be a triangulated category and let

 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$

be a distinguished triangle in T. Then, $u: X \to Y$ is an isomorphism if and only if Z is isomorphic to the zero object.

Proof. Let us consider the diagram:

Then, both rows of the diagram are distinguished triangles by assumption and axiom (TR₀). Then, by Corollary 1.8, we conclude that u is an isomorphism if and only if $Z \rightarrow 0$ is an isomorphism.

Exercise 1.10. — Let T be a triangulated category. Show that any triangle of the form:

$$X \longrightarrow Y \longrightarrow Z \xrightarrow{0} TX$$

is isomorphic to a triangle of the form:

 $X \longrightarrow X \oplus Z \longrightarrow Z \xrightarrow{0} TX$

2. Triangulated functors and Verdier quotient

Here, we introduce morphisms of triangulated categories, triangulated subcategories, and quotients.

Definition 2.1. — Let $(\mathcal{T}, \mathsf{T})$ and $(\mathcal{T}', \mathsf{T}')$ be triangulated categories. A *triangulated functor* (or *exact functor*) from \mathcal{T} to \mathcal{T}' is an additive functor:

$$F: \mathfrak{T} \to \mathfrak{T}'$$

together with a natural isomorphism

$$\varphi \colon F \circ T \simeq T' \circ F$$

such that, for every distinguished triangle:

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

in T, the triangle:

$$FX \xrightarrow{u} FY \xrightarrow{v} FZ \xrightarrow{w} TFX$$

is distinguished in \mathcal{T}' .

Definition 2.2. — Let T be a triangulated category. A *triangulated subcategory* of T is a subcategory $\iota: C \subset T$ of T with the structure of a triangulated category, such that the inclusion functor ι is a triangulated functor.

Remark 2.3. — Let T be a triangulated category and let C be a full subcategory of T. Then, C is a triangulated subcategory of T if and only if C is invariant under the functor T and for every distinguished triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

in T, with X and Y in C, the object Z is isomorphic to an object of C.

Lemma 2.4. — Let T and T' be triangulated categories and consider an adjoint pair of functors

$$\mathfrak{T} \xrightarrow[]{\mathsf{G}} \mathsf{F}$$

Then, F is a triangulated functor if and only if G is so.

Proof. See [Huy06, Proposition 1.41]

Remark 2.5. — We can form a (large) 2-category of triangulated categories, denoted by Triang, with triangulated functors as morphisms and natural transformations as 2-morphisms. In particular, a triangulated functor $F: \mathcal{T} \to \mathcal{T}'$ is said to be a *triangulated equivalence* if there exist a triangulated functor $G: \mathcal{T}' \to \mathcal{T}$ such that

$$F \circ G \simeq id_{\mathcal{T}'}, \quad G \circ F \simeq id_{\mathcal{T}}.$$

By Lemma 2.4 we can conclude that $F: \mathfrak{T} \to \mathfrak{T}'$ is a triangulated equivalence if and only if F is a triangulated functor and an equivalence of categories.

Example 2.6. — Let $F: \mathfrak{T} \to \mathfrak{T}'$ be a triangulated functor. We define the *kernel* of F as the full subcategory ker(F) $\subset \mathfrak{T}$ of \mathfrak{T} spanned by the objects $X \in \mathfrak{T}$ such that F(X) is isomorphic to 0. Then, one can show that ker(F) is a triangulated subcategory of \mathfrak{T} .

Example 2.7. — Similarly, if $H: \mathcal{T} \to \mathcal{A}$ is a homological functor, we denote by ker(H), and call it the *stable kernel* of H the full subcategory of \mathcal{T} consisting of those objects $X \in \mathcal{T}$ such that $H(T^{i}(X))$ is isomorphic to 0, for every i. One can show that ker(H) is a triangulated subcategory of \mathcal{T} .

2.8. — Let \mathcal{T} be a triangulated category and let \mathcal{C} be a full triangulated subcategory of \mathcal{T} . The *Verdier quotient* of \mathcal{T} by \mathcal{C} is a triangulated category \mathcal{T}/\mathcal{C} together with a triangulated functor:

$$Q: \mathfrak{T} \to \mathfrak{T}/\mathfrak{C}$$

satisfying the following axioms

- (1) The triangulated subcategory C is the kernel of F.
- (2) For every triangulated functor $F: \mathcal{T} \to \mathcal{T}'$ such that \mathcal{C} is contained in the kernel of F, there exists a unique triangulated functor $\tilde{F}: \mathcal{T}/\mathcal{C} \to \mathcal{T}'$ making the following diagram commutative

Definition 2.9. — Let \mathcal{T} be a triangulated category and let $H: \mathcal{T} \to \mathcal{A}$ be a homological functor. The *system* S *arising from the homological functor* H is the class of maps s such that $H(T^{i}(s))$ is an isomorphism for every integer i.

Theorem 2.10. — Let (T,T) be a triangulated category and let $H: T \to A$ be a homological functor of T. Then,

- (1) The system S arising from H is a multiplicative system.
- (2) The Verdier quotient of T by ker(H) exists and is given by the (categorical) localization of T with respect to S.

Sketch of the proof. Since the localization exists and has a universal property, it is enough to prove that the categorical localization T_S is a triangulated category, that Q_S is a triangulated functor and that the functor arising from the universal property of the localization is triangulated.

Then, the universal property of the Verdier quotient will be satisfied since, given a map $u: X \to Y$ in \mathcal{T} , it is easy to see that H(u[i]) is an isomorphism for every i if and only if H(cone(u)) = 0, being H homological.

To check that the localization is triangulated, first we see that T defines an automorphism T: $T_S \to T_S$ by the rule

$$\mathsf{T}(\mathsf{f}\mathsf{s}^{-1}) = \mathsf{T}(\mathsf{f})\mathsf{T}(\mathsf{s})^{-1}$$

We define distinguished triangles in T_8 as follows. Following the notation of A.3, let us consider a triangle of the form

$$X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \xrightarrow{\gamma} T(A)$$

in T_8 . Then, using Ore condition repeatedly, we can represent the classes by morphisms fitting in the following diagram

A′	$\xrightarrow{u} B'$	$\overset{\nu}{\longrightarrow}$	C′ -	\xrightarrow{w}	TA
r	s	0	t		↓id
A	$\cdots \xrightarrow{\alpha} B$	<u>د الم</u>	С	$\stackrel{\gamma}{\longrightarrow}$	ΤA

where all the vertical morphisms are in S. Therefore, we say that the (α, β, γ) is distinguished if and only if (u, v, w) defines a distinguished triangle in T. As customary, we leave to the reader as an exercise that the axioms (TR₀) to (TR₄) are satisfied.

3. The derived category of an abelian category

Let \mathcal{A} be an abelian category, we denote by $Ch(\mathcal{A})$ the *category of (co)-chain complexes* in \mathcal{A} and by $K(\mathcal{A})$ the *homotopy category* of $Ch(\mathcal{A})$. Moreover, we denote by $K^*(\mathcal{A})$ the bounded above, bounded below or bounded subcategory of $K(\mathcal{A})$, for \star equal to +, - or b. We denote by $D(\mathcal{A})$ the localization of $K(\mathcal{A})$ at the class of quasi isomorphisms and by $D^*(\mathcal{A})$ the corresponding bounded full subcategories.

3.1. — Recall that if $u: A \to B$ is a map of chain complexes in A, the *mapping cone of* u, denoted by cone(u) is the chain complex given by

$$\operatorname{cone}(\mathfrak{u})^{\mathfrak{i}} = A^{\mathfrak{i}+1} \oplus B^{\mathfrak{i}}$$

with differentials given by

$$\mathbf{d}_{\mathrm{cone}(\mathfrak{u})}^{\mathbf{i}} = \begin{pmatrix} -\mathbf{d}_{\mathrm{A}}^{\mathbf{i}+1} & \mathbf{0} \\ \mathbf{u}^{\mathbf{i}+1} & \mathbf{d}_{\mathrm{B}}^{\mathbf{i}} \end{pmatrix}$$

Moreover, the cone comes equipped with natural maps of chain complexes $\tau: B \to \text{cone}(\mathfrak{u})$ and $\pi: \text{cone}(\mathfrak{u}) \to A[1]$, where [1] denotes the *shift functor*.

3.2. — Since the shift functor preserves homotopies, it descend to an endofunctor [1]: $K(A) \rightarrow K(A)$ which is an equivalence as well. We define the class of *distinguished triangles* in K(A) as the class of diagrams isomorphic (in K(A)) to a diagram of the form

$$A \xrightarrow{u} B \xrightarrow{\tau} \operatorname{cone}(\mathfrak{u}) \xrightarrow{\pi} A[1]$$
(3)

Proposition 3.3. — *Let* $u: A \rightarrow B$ *be a morphism of complexes and let us consider the diagram*

$$A \xrightarrow{u} B \xrightarrow{\tau} cone(u) \xrightarrow{\pi} A[1]$$

Then, there exists a morphism $v: A[1] \to \operatorname{cone}(\tau)$ *which is an isomorphism in* $K(\mathcal{A})$ *and such that the following diagram commutes in* $K(\mathcal{A})$ *.*

Proof. See [Huy06, Proposition 2.16].

Theorem 3.4. — Let A be an abelian category and let K(A) be the associated homotopy category. Then, the shift functor and the class of distinguished triangles defined above give K(A) the structure of a triangulated category.

Sketch of the proof. To show (TR₀) notice that cone(id_A) is a split exact complex and in particular is isomorphic to the zero object in K(A). To show axiom (TR₁) is enough, for a given map $u: A \to B$ in K(A), to take a representative in Ch(A) and consider the induced diagram (3). Axiom (TR₂) follows from 3.3. To show axiom (TR₃), we can consider a diagram of the form

$$\begin{array}{cccc} A & \stackrel{\mathbf{u}}{\longrightarrow} & B & \stackrel{\tau}{\longrightarrow} & \operatorname{cone}(\mathbf{u}) & \stackrel{\pi}{\longrightarrow} & A[1] \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ A' & \stackrel{\mathbf{u}'}{\longrightarrow} & B' & \stackrel{\tau'}{\longrightarrow} & \operatorname{cone}(\mathbf{u}') & \stackrel{\pi'}{\longrightarrow} & A'[1] \end{array}$$

And the dotted arrow follows from functoriality of the cone in Ch(A). We omit the proof of (TR₄) and refer to [Wei95, Proposition 10.2.4].

Corollary 3.5. — Let A be an abelian category. Then, the full subcategories $K^*(A)$ of K(A) are triangulated.

Proof. By Remark 2.3 it suffices to show that the boundedness conditions are preserved under shift functor and under taking cones, which is immediate from the definitions. \Box

Remark 3.6. — Let \mathcal{A} be an abelian category and let us consider a distinguished triangle of the form

$$A \xrightarrow{u} B \xrightarrow{\tau} cone(u) \xrightarrow{\pi} A[1]$$

Then, one can show that τ and π fit in a short exact sequence

$$0 \longrightarrow B \xrightarrow{\tau} cone(\mathfrak{u}) \xrightarrow{\pi} A[1] \longrightarrow 0$$

which, classically, induces a long exact sequence in cohomology

$$\cdots \rightarrow H^{i}(B) \rightarrow H^{i}(\operatorname{cone}(\mathfrak{u})) \rightarrow H^{i}(A[1]) \xrightarrow{\partial} H^{i+1}(B) \rightarrow \cdots$$

One can show that indeed $\vartheta = H^{i}(\mathfrak{u}[1])$ under the natural isomorphism $H^{i+1}(B) \simeq H^{i}(B[1])$ and so that the long exact sequence is induced by the functor H^{0} . In particular, the functor H^{0} is homological in the sense of Definition 1.5.

Proposition 3.7. *Let* A *be an abelian category and let* H^0 : $K(A) \rightarrow A$ *be the* 0*-th cohomology functor. Then,* H^0 *is an homological functor. In particular,* ker(H^0) *is a triangulated full subcategory of* K(A)*.*

Proof. This follows from the discussion in Remark 3.6 and by Example 2.7. \Box

Theorem 3.8. — Let A be an abelian category. Then, the derived category D(A) of A is the Verdier quotient of K(A) with respect to ker(H^0). In particular, D(A) is a triangulated category.

Proof. The class of quasi isomorphisms in K(A) forms a system arising from the homological functor H^0 . Therefore, we can conclude by Theorem 2.10.

Corollary 3.9. — Let A be an abelian category. Then the bounded derived categories $D^*(A)$ are triangulated full subcategories of D(A).

Remark 3.10. — Given an abelian category A and a short exact sequence of chain complexes in A:

$$0 \longrightarrow A \xrightarrow{u} B \xrightarrow{v} C \longrightarrow 0$$

even though we can associate a long exact sequence in cohomology to it, there might be no map from C to A[1] in K(A).

However, one can consider the following distinguished triangles:

$$A \xrightarrow{u} B \xrightarrow{\tau} cone(u) \xrightarrow{\pi} A[1]$$

and

$$\operatorname{cone}(\mathfrak{u}) \xrightarrow{\pi} A[1] \xrightarrow{\tau'} \operatorname{cone}(\pi) \xrightarrow{\pi'} \operatorname{cone}(\mathfrak{u})[1]$$

Then, applying H⁰ to the last triangle we get a long exact sequence:

$$\cdots \rightarrow H^{i}(A[1]) \rightarrow H^{i}(\operatorname{cone}(\pi)) \rightarrow H^{i}(\operatorname{cone}(\mathfrak{u})[1]) \rightarrow \cdots$$

Then, one can see that $cone(\pi)$ is quasi isomorphic to B[1] and that cone(u) is quasi isomorphic to C, so we recover the long exact sequence associated to the original short exact sequence. Moreover, notice that the quasi isomorphism φ : $cone(u) \rightarrow C$ is invertible in $D(\mathcal{A})$, so that we get an exact triangle in $D(\mathcal{A})$, given by

$$A \xrightarrow{u} B \xrightarrow{\tau} C \xrightarrow{\pi \phi^{-1}} A[1]$$

A. Localization of categories and calculus of fraction

The localization of a category C at a class of morphism S is a procedure that allows us to "formally invert" all the morphisms in S in a suitable sense. The localization always exists (in a big enough universe) but in this small recollection we are mainly concerned with localizations with respect to *multiplicative systems of morphisms*, that allow a slightly better control on the morphisms in the localization.

Definition A.1. — Let C be a category and let S be a class of morphisms in C. The *localization of* C *with respect to* S is a couple (C_S , Q_S) where C_S is a category and

$$Q_{\mathcal{S}} \colon \mathfrak{C} \to \mathfrak{C}_{\mathcal{S}}$$

is a functor, satisfying the following properties.

- (1) For every map $s \in S$, the image $Q_S(s)$ is an isomorphism in \mathcal{C}_S .
- (2) For every functor $F \colon \mathcal{C} \to \mathcal{D}$ such that F(s) is an isomorphism in \mathcal{D} , there exists a functor $\tilde{F} \colon \mathcal{C}_{S} \to \mathcal{D}$ such that $\tilde{F} \circ Q_{S}$ is naturally isomorphic to F.

Definition A.2. — Let C be a category and let S be a collection of morphisms in C. We say that S is a *multiplicative system* in C if the following axioms hold:

- (1) The class *S* is closed under composition and contains all the identity morphisms.
- (2) (Ore condition) If t: Z → Y is a morphism in S, then for every morphism g: X → Y in C, there exist dotted arrows making the following diagram commutative:

$$\begin{array}{c} W \xrightarrow{f} Z \\ s \downarrow & \downarrow t \\ X \xrightarrow{g} Y \end{array}$$

Dually, if $s: X \to Z$ is a map in S, then for every map $f: X \to Y$ in C, there exist dotted arrows making the following diagram commutative:

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} Y \\ s \downarrow & & \downarrow t \\ Z & \stackrel{----}{\longrightarrow} V \end{array}$$

- (3) (Cancellation) If $X \xrightarrow[g]{f} Y$ are morphisms in \mathcal{C} , then the following two conditions are equivalent:
 - There exist a map $s: Y \to Z$ in S such that sf = sg.
 - There exists a map $t: W \to X$ in S such that ft = gt.

A.3. — Let C be a category and let S be a multiplicative system in S. A *left fraction* from X to Y in C with respect to S is a diagram of the form

$$X \xleftarrow{s} X' \xrightarrow{f} Y$$

such that s is an element of S.

Given left fractions $X \leftarrow X_1 \rightarrow Y$ and $X \leftarrow X_2 \rightarrow Y$ we say that they are equivalent if there exists a left fraction $X \leftarrow X_3 \rightarrow Y$ fitting in a commutative diagram:

If X and Y are objects in C, we write $\hom_{S}(X, Y)$ for the collection of equivalence classes of left fractions from X to Y. Notice that this is not a set a priori. An element in $\hom_{S}(X, Y)$ will be denoted by a dotted arrow $X \xrightarrow{\gamma} Y$ and we will write $fs^{-1}: X \leftarrow X' \rightarrow Y$ when we specify an element in the equivalence class γ .

Theorem A.4 (Gabriel-Zisman). — *Let* C *be a category and let* S *be a multiplicative system of morphisms in* C. *Then,*

(1) There exists a (possibly large) category S⁻¹C with the same objects as C and with classes of maps given by

$$\hom_{\mathcal{S}^{-1}(\mathcal{C})}(X,Y) = \hom_{\mathcal{S}}(X,Y)$$

(2) The category $S^{-1}C$ is a localization of C with respect to S.

Proof. See [Wei95, Theorem 10.3.7]

Proposition A.5. — Let C be an additive category and let S be a multiplicative system in C. Then, the localization of C with respect to S is an additive category and the quotient functor

$$Q_{\mathcal{S}} \colon \mathcal{C} \to \mathcal{C}_{\mathcal{S}}$$

is an additive functor.

Proof. See [Wei95, Corollary 10.3.11]

Bibliography

[Huy06] Daniel Huybrechts. *Fourier-Mukai transforms in algebraic geometry*. Oxford University Press on Demand, 2006.

- [Nee14] Amnon Neeman. *Triangulated Categories.*(*AM-148*). Vol. 148. Princeton University Press, 2014.
- [Wei95] Charles A Weibel. *An introduction to homological algebra*. 38. Cambridge university press, 1995.