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1. Triangulated categories

In this section we introduce the axioms of a triangulated category and we derive
some elementary properties from them.

Definition 1.1. — Let C be an additive category and let T : C→ C be an additive
auto-equivalence. A triangle in C with respect to T is a diagram of the form:

X Y Z TX
u v w

A morphism of triangles is a commutative diagram of the form:

X Y Z TX

X ′ Y ′ Z ′ TX ′

u

f

v

g

w

h Tf

u v w

Definition 1.2. — A triangulated category is a triple (T, T ,D) where T is an
additive category, T : T → T is an additive auto-equivalence and D is a class
of candidate triangles, called distinguished triangles, satisfying the following
axioms:

(TR0) The class of distinguished triangles is closed under isomorphisms. More-
over, the candidate triangle:

X X 0 TX
idX

is distinguished.

(TR1) For any morphism f : X→ Y in T there exists a distinguished triangle of
the form

X Y Z TX
f

(TR2) Consider the two candidate triangles:

X Y Z TX
u v w (1)

and
Y Z TX TY

v w −Tu (2)

Then, (1) is a distinguished triangle if and only if (2) is so.

(TR3) For any commutative solid diagram:

X Y Z TX

X ′ Y ′ Z ′ TX ′

u

f

v

g

w

h Tf

u v w
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There exists a dotted arrow making the diagram commutative.

(TR4) Assume we are given morphisms f : X → Y and g : Y → Z fitting into
distinguished triangles:

X Y Z ′ TX

Y Z X ′ TY

X Z Y ′ TX

u

v

v◦u

then, there exists a distinguished triangle

Z ′ Y ′ X ′ TZ ′

making the following diagram commutative:

X Z X ′ TZ ′

Y Y ′ TY

Z ′ TX

v◦u

u v

We will often say that (T, T) or even just T is a triangulated category, omitting
the auto-equivalence T and the class of distinguished triangles from the notation

Remark 1.3. — If T is a triangulated category and

X Y Z TX
u v w

is a distinguished triangle in T, it follows from the axioms of a triangulated cat-
egory that the compositions v ◦u,w ◦ v and Tu ◦w are equal to the 0 morphism.
Indeed, if we can consider the solid diagram:

X X 0 TX

X Y Z TX

idX

idX u idTX

u v w
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by the axiom (TR3) there exists a dotted arrow making the diagram commutative.
In particular, v ◦ u = 0. Similarly, using axiom (TR2) and (TR3) one can show
that the other compositions are zero.

Remark 1.4. — Given a triangulated category (T, T) one can easily see that the
opposite category Top inherits the structure of a triangulated category, with
auto-equivalence given by the opposite of the quasi-inverse (T−1)op : Top → Top

and distinguished triangles of the form

Z Y X T−1Z
u v w

such that the triangle

X Y Z TX
v u −Tw

is distinguished in T.

Definition 1.5. — Let T be a triangulated category, let A be an abelian category
and H : T → A be an additive functor. We say that H is homological (for T) if, for
every distinguished triangle

X Y Z TX
u v w

The sequence

H(X) H(Y) H(Z)
H(u) H(v)

is exact in A. Dually, a cohomological functor (for T) is a functor H : Top → A such
that H is homological for Top.

Remark 1.6. — Let T be a triangulated category andH : T → A be a homological
functor. Thanks to the axiom (TR2) we see that the infinite sequence:

· · · H
(
T−1(Z)

)
H(X) H(Y) H(Z) H(TX) · · ·

is exact everywhere.

Proposition 1.7. — Let T be a triangulated category, then for every object A ∈ T, the
functor

hom(A, −) : T → Ab

is homological.

Proof. Given a distinguished triangle
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X Y Z TX
u v w

we need to show that the sequence

hom(A,X) hom(A, Y) hom(A,Z)
u∗ v∗

is exact. Clearly the composition v∗ ◦ u∗ is equal to zero. So let f : A → Y be
a morphism such that v ◦ f : A → Z is equal to zero. Then, we have a solid
commutative diagram

A 0 TA TA

Y Z TX TY

f

− idTA

Tf

v w −Tu

The bottom row is a distinguished triangle by (TR2), the top row by (TR0) and
(TR2). Hence, by (TR3) we can find a dotted map making the diagram commu-
tative. Moreover, since T is fully-faithful, such a map is given by Th : TA→ TX

for exactly one map h : A → X. Since the right square commutes, we have
that T(u ◦ h) = T(f), which implies that f = u ◦ h. Thus, h ∈ hom(A,X) is an
element mapping to f ∈ hom(A, Y) and we are done.

Corollary 1.8 (Two-out-of-three-property). — Let us consider a morphism of distin-
guished triangles:

X Y Z TX

X ′ Y ′ Z ′ TX ′

u

f

v

g

w

h Tf

u ′ v ′ w ′

Then, if any two of the vertical morphisms f,g and h are isomorphisms, so is the
third.

Proof. Without loss of generality we can assume that f and g are isomorphisms.
For every A ∈ T we have a morphism of exact sequences:

hom(A,X) hom(A, Y) hom(A,Z) hom (A, TX) hom (A, TY)

hom(A,X ′) hom(A, Y ′) hom(A,Z ′) hom (A, TX ′) hom (A, TY ′)

f g h Tf Tg

Since the rows are exact, by the Five Lemma we can conclude that h is an
isomorphism.

Corollary 1.9. — Let T be a triangulated category and let

5



X Y Z TX
u v w

be a distinguished triangle in T. Then, u : X→ Y is an isomorphism if and only if Z is
isomorphic to the zero object.

Proof. Let us consider the diagram:

X Y Z TX

Y Y 0 TY

u

u

v

idY

w

Tu

idY

Then, both rows of the diagram are distinguished triangles by assumption and
axiom (TR0). Then, by Corollary 1.8, we conclude that u is an isomorphism if
and only if Z→ 0 is an isomorphism.

Exercise 1.10. — Let T be a triangulated category. Show that any triangle of the
form:

X Y Z TX
0

is isomorphic to a triangle of the form:

X X⊕Z Z TX
0

2. Triangulated functors and Verdier quotient

Here, we introduce morphisms of triangulated categories, triangulated subcate-
gories, and quotients.

Definition 2.1. — Let (T, T) and (T ′, T ′) be triangulated categories. A triangu-
lated functor (or exact functor) from T to T ′ is an additive functor:

F : T → T ′

together with a natural isomorphism

ϕ : F ◦ T ' T ′ ◦ F

such that, for every distinguished triangle:

X Y Z TX
u v w
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in T, the triangle:

FX FY FZ TFX
u v w

is distinguished in T ′.

Definition 2.2. — Let T be a triangulated category. A triangulated subcategory of
T is a subcategory ι : C ⊂ T of T with the structure of a triangulated category,
such that the inclusion functor ι is a triangulated functor.

Remark 2.3. — Let T be a triangulated category and let C be a full subcategory
of T. Then, C is a triangulated subcategory of T if and only if C is invariant
under the functor T and for every distinguished triangle

X Y Z TX
u v w

in T, with X and Y in C, the object Z is isomorphic to an object of C.

Lemma 2.4. — Let T and T ′ be triangulated categories and consider an adjoint pair of
functors

T T ′
F

G

⊥

Then, F is a triangulated functor if and only if G is so.

Proof. See [Huy06, Proposition 1.41]

Remark 2.5. — We can form a (large) 2-category of triangulated categories,
denoted by Triang, with triangulated functors as morphisms and natural trans-
formations as 2-morphisms. In particular, a triangulated functor F : T → T ′ is
said to be a triangulated equivalence if there exist a triangulated functorG : T ′ → T

such that
F ◦G ' idT ′ , G ◦ F ' idT .

By Lemma 2.4 we can conclude that F : T → T ′ is a triangulated equivalence if
and only if F is a triangulated functor and an equivalence of categories.

Example 2.6. — Let F : T → T ′ be a triangulated functor. We define the kernel
of F as the full subcategory ker(F) ⊂ T of T spanned by the objects X ∈ T such
that F(X) is isomorphic to 0. Then, one can show that ker(F) is a triangulated
subcategory of T.

Example 2.7. — Similarly, if H : T → A is a homological functor, we denote by
ker(H), and call it the stable kernel of H the full subcategory of T consisting of
those objects X ∈ T such that H(T i(X)) is isomorphic to 0, for every i. One can
show that ker(H) is a triangulated subcategory of T.
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2.8. — Let T be a triangulated category and let C be a full triangulated subcate-
gory of T. The Verdier quotient of T by C is a triangulated category T/C together
with a triangulated functor:

Q : T → T/C

satisfying the following axioms

(1) The triangulated subcategory C is the kernel of F.

(2) For every triangulated functor F : T → T ′ such that C is contained in the
kernel of F, there exists a unique triangulated functor F̃ : T/C→ T ′ making
the following diagram commutative

T T/C

T ′

Q

F
F̃

Definition 2.9. — Let T be a triangulated category and let H : T → A be a
homological functor. The system S arising from the homological functor H is the
class of maps s such that H(T i(s)) is an isomorphism for every integer i.

Theorem 2.10. — Let (T, T) be a triangulated category and let H : T → A be a
homological functor of T. Then,

(1) The system S arising from H is a multiplicative system.

(2) The Verdier quotient of T by ker(H) exists and is given by the (categorical)
localization of T with respect to S.

Sketch of the proof. Since the localization exists and has a universal property, it is
enough to prove that the categorical localization TS is a triangulated category,
that QS is a triangulated functor and that the functor arising from the universal
property of the localization is triangulated.

Then, the universal property of the Verdier quotient will be satisfied since,
given a map u : X→ Y in T, it is easy to see that H(u[i]) is an isomorphism for
every i if and only if H(cone(u)) = 0, being H homological.

To check that the localization is triangulated, first we see that T defines an
automorphism T : TS → TS by the rule

T(fs−1) = T(f)T(s)−1

We define distinguished triangles in TS as follows. Following the notation of
A.3, let us consider a triangle of the form

X Y Z T(A)
α β γ
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in TS. Then, using Ore condition repeatedly, we can represent the classes by
morphisms fitting in the following diagram

A ′ B ′ C ′ TA

A B C TA

u

r

v

s

w

t id

α β γ

where all the vertical morphisms are in S. Therefore, we say that the (α,β,γ) is
distinguished if and only if (u, v,w) defines a distinguished triangle in T. As
customary, we leave to the reader as an exercise that the axioms (TR0) to (TR4)
are satisfied.

3. The derived category of an abelian category

Let A be an abelian category, we denote by Ch(A) the category of (co)-chain
complexes in A and by K(A) the homotopy category of Ch(A). Moreover, we
denote by K?(A) the bounded above, bounded below or bounded subcategory
of K(A), for ? equal to +, − or b. We denote by D(A) the localization of K(A) at
the class of quasi isomorphisms and by D?(A) the corresponding bounded full
subcategories.

3.1. — Recall that if u : A→ B is a map of chain complexes in A, the mapping
cone of u, denoted by cone(u) is the chain complex given by

cone(u)i = Ai+1 ⊕Bi

with differentials given by

dicone(u) =

(
−di+1
A 0

ui+1 diB

)

Moreover, the cone comes equipped with natural maps of chain complexes
τ : B→ cone(u) and π : cone(u)→ A[1], where [1] denotes the shift functor.

3.2. — Since the shift functor preserves homotopies, it descend to an endo-
functor [1] : K(A)→ K(A) which is an equivalence as well. We define the class
of distinguished triangles in K(A) as the class of diagrams isomorphic (in K(A))
to a diagram of the form

A B cone(u) A[1]u τ π (3)

Proposition 3.3. — Let u : A → B be a morphism of complexes and let us consider
the diagram

A B cone(u) A[1]u τ π
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Then, there exists a morphism v : A[1]→ cone(τ) which is an isomorphism in K(A)

and such that the following diagram commutes in K(A).

B cone(u) A[1] B[1]

B cone(u) cone(τ) B[1]

τ

id

π

id

u[1]

id

u τ π

Proof. See [Huy06, Proposition 2.16].

Theorem 3.4. — Let A be an abelian category and let K(A) be the associated homotopy
category. Then, the shift functor and the class of distinguished triangles defined above
give K(A) the structure of a triangulated category.

Sketch of the proof. To show (TR0) notice that cone(idA) is a split exact complex
and in particular is isomorphic to the zero object in K(A). To show axiom (TR1)
is enough, for a given map u : A→ B in K(A), to take a representative in Ch(A)

and consider the induced diagram (3). Axiom (TR2) follows from 3.3. To show
axiom (TR3), we can consider a diagram of the form

A B cone(u) A[1]

A ′ B ′ cone(u ′) A ′[1]

u τ π

u ′ τ ′ π ′

And the dotted arrow follows from functoriality of the cone in Ch(A). We omit
the proof of (TR4) and refer to [Wei95, Proposition 10.2.4].

Corollary 3.5. — Let A be an abelian category. Then, the full subcategories K?(A) of
K(A) are triangulated.

Proof. By Remark 2.3 it suffices to show that the boundedness conditions are
preserved under shift functor and under taking cones, which is immediate from
the definitions.

Remark 3.6. — Let A be an abelian category and let us consider a distinguished
triangle of the form

A B cone(u) A[1]u τ π

Then, one can show that τ and π fit in a short exact sequence

0 B cone(u) A[1] 0τ π

which, classically, induces a long exact sequence in cohomology

· · · Hi(B) Hi(cone(u)) Hi(A[1]) Hi+1(B) · · ·∂
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One can show that indeed ∂ = Hi(u[1]) under the natural isomorphismHi+1(B) '
Hi(B[1]) and so that the long exact sequence is induced by the functor H0. In
particular, the functor H0 is homological in the sense of Definition 1.5.

Proposition 3.7. — Let A be an abelian category and let H0 : K(A)→ A be the 0-th
cohomology functor. Then, H0 is an homological functor. In particular, ker(H0) is a
triangulated full subcategory of K(A).

Proof. This follows from the discussion in Remark 3.6 and by Example 2.7.

Theorem 3.8. — Let A be an abelian category. Then, the derived category D(A) of
A is the Verdier quotient of K(A) with respect to ker(H0). In particular, D(A) is a
triangulated category.

Proof. The class of quasi isomorphisms in K(A) forms a system arising from the
homological functor H0. Therefore, we can conclude by Theorem 2.10.

Corollary 3.9. — Let A be an abelian category. Then the bounded derived categories
D?(A) are triangulated full subcategories of D(A).

Remark 3.10. — Given an abelian category A and a short exact sequence of
chain complexes in A:

0 A B C 0u v

even though we can associate a long exact sequence in cohomology to it, there
might be no map from C to A[1] in K(A).

However, one can consider the following distinguished triangles:

A B cone(u) A[1]u τ π

and

cone(u) A[1] cone(π) cone(u)[1]π τ ′ π ′

Then, applying H0 to the last triangle we get a long exact sequence:

· · · Hi(A[1]) Hi(cone(π)) Hi(cone(u)[1]) · · ·

Then, one can see that cone(π) is quasi isomorphic to B[1] and that cone(u) is
quasi isomorphic to C, so we recover the long exact sequence associated to the
original short exact sequence. Moreover, notice that the quasi isomorphism
ϕ : cone(u)→ C is invertible in D(A), so that we get an exact triangle in D(A),
given by

A B C A[1]u τ πϕ−1
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A. Localization of categories and calculus of fraction

The localization of a category C at a class of morphism S is a procedure that
allows us to “formally invert” all the morphisms in S in a suitable sense. The
localization always exists (in a big enough universe) but in this small recollec-
tion we are mainly concerned with localizations with respect to multiplicative
systems of morphisms, that allow a slightly better control on the morphisms in
the localization.

Definition A.1. — Let C be a category and let S be a class of morphisms in C.
The localization of C with respect to S is a couple (CS,QS) where CS is a category
and

QS : C→ CS

is a functor, satisfying the following properties.

(1) For every map s ∈ S, the image QS(s) is an isomorphism in CS.

(2) For every functor F : C→ D such that F(s) is an isomorphism in D, there
exists a functor F̃ : CS → D such that F̃ ◦QS is naturally isomorphic to F.

Definition A.2. — Let C be a category and let S be a collection of morphisms in
C. We say that S is a multiplicative system in C if the following axioms hold:

(1) The class S is closed under composition and contains all the identity
morphisms.

(2) (Ore condition) If t : Z→ Y is a morphism in S, then for every morphism
g : X → Y in C, there exist dotted arrows making the following diagram
commutative:

W Z

X Y

f

s t

g

Dually, if s : X→ Z is a map in S, then for every map f : X→ Y in C, there
exist dotted arrows making the following diagram commutative:

X Y

Z V

f

s t

g

(3) (Cancellation) If X Y
g

f
are morphisms in C, then the following two

conditions are equivalent:

• There exist a map s : Y → Z in S such that sf = sg.

• There exists a map t : W → X in S such that ft = gt.
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A.3. — Let C be a category and let S be a multiplicative system in S. A left
fraction from X to Y in C with respect to S is a diagram of the form

X X ′ Y
s f

such that s is an element of S.
Given left fractions X ← X1 → Y and X ← X2 → Y we say that they are

equivalent if there exists a left fraction X ← X3 → Y fitting in a commutative
diagram:

X1

X X3 Y

X2

If X and Y are objects in C, we write homS(X, Y) for the collection of equivalence
classes of left fractions from X to Y. Notice that this is not a set a priori. An

element in homS(X, Y) will be denoted by a dotted arrow X Y
γ

and we will
write fs−1 : X← X ′ → Y when we specify an element in the equivalence class γ.

Theorem A.4 (Gabriel-Zisman). — Let C be a category and let S be a multiplicative
system of morphisms in C. Then,

(1) There exists a (possibly large) category S−1C with the same objects as C and with
classes of maps given by

homS−1(C)(X, Y) = homS(X, Y)

(2) The category S−1C is a localization of C with respect to S.

Proof. See [Wei95, Theorem 10.3.7]

Proposition A.5. — Let C be an additive category and let S be a multiplicative system
in C. Then, the localization of C with respect to S is an additive category and the
quotient functor

QS : C→ CS

is an additive functor.

Proof. See [Wei95, Corollary 10.3.11]
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