The Derived Category of an Abelian Category

Philip Carter

October 18, 2017

Throughout, let \mathcal{A} be an abelian category.

1 Basic Definitions

Definition 1.1. A complex A^{\bullet} in \mathcal{A} is a sequence of objects and morphisms

$$\cdots \to A^{i-1} \xrightarrow{d^{i-1}} A^i \xrightarrow{d^i} A^{d^{i+1}} \xrightarrow{d^{i+1}} \cdots,$$

with $d^i \circ d^{i-1} = 0, \forall i \in \mathbb{Z}$.

Example 1.2. Let V be a vector space over some field. Then the sequence

 $\cdots \to \Omega^{k-1} V \xrightarrow{d} \Omega^k V \xrightarrow{d} \Omega^{k+1} V \to \cdots,$

where d is the exterior derivative, is a complex. The d^i in an arbitrary complex are sometimes called differentials by analogy.

Example 1.3. All exact sequences are complexes.

Definition 1.4. Given complexes A^{\bullet} and B^{\bullet} , a morphism $f : A^{\bullet} \to B^{\bullet}$ is a collection of morphisms $f^i : A^i \to B^i$ such that the diagram

$$\cdots \longrightarrow A^{i-1} \xrightarrow{d_A^{i-1}} A^i \xrightarrow{d_A^i} A^{i} \xrightarrow{d_A^i} A^{i+1} \xrightarrow{d_A^{i+1}} \cdots$$

$$f^{i-1} \downarrow \qquad f^{i-1} \downarrow \xrightarrow{d_B^{i-1}} f^i \downarrow \xrightarrow{d_B^i} A^i \xrightarrow{d_B^i} B^{i+1} \downarrow \xrightarrow{d_B^{i+1}} \cdots$$

commutes.

The complexes and their morphisms form a category, $\operatorname{Kom}(\mathcal{A})$. This is an abelian category, with the zero object, kernels, etc. being as expected. We have an inclusion of categories $\mathcal{A} \subset \operatorname{Kom}(\mathcal{A})$ given by sending the object $A \in \mathcal{A}$ to the complex with $A^0 = A, A^i = 0, i \neq 0$.

Definition 1.5. Let A^{\bullet} be a complex. The shifted complex $A^{\bullet}[1]$ is the complex given by $(A^{\bullet}[1])^i = A^{i+1}, d^i_{A[1]} = -d^{i+1}_A$.

We also get shifted morphisms $f[1] : A^{\bullet}[1] \to B^{\bullet}[1]$, given by $f[1]^i = f^{i+1}$.

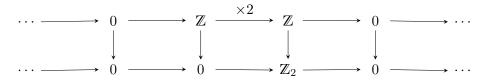
This shifting is functorial, and indeed gives an equivalence of categories.

Definition 1.6. Given a complex A^{\bullet} , the *i*th cohomology is $H^{i}(A^{\bullet}) = \operatorname{Ker} d^{i} / \operatorname{Im} d^{i-1}$.

For a complex morphism $f : A^{\bullet} \to B^{\bullet}$, there are induced maps $H^{i}(f) : H^{i}(A^{\bullet}) \to H^{i}(B^{\bullet})$, given by $[a] \mapsto [f^{i}(a)]$. (That this is well-defined comes from the definitions.)

Definition 1.7. A complex morphism $f : A^{\bullet} \to B^{\bullet}$ is a quasi-isomorphism, or qis, if $\forall i \in \mathbb{Z}$, $H^{i}(f)$ is an isomorphism.

Example 1.8. Quasi-isomorphisms need not be invertible as complex morphisms, as illustrated below:



(The morphism not given are the obvious ones). Calculating the cohomology shows that this is a quasi-isomorphism, but it is clearly not invertible.

Definition 1.9. Let $f, g : A^{\bullet} \to B^{\bullet}$ be complex morphisms. We say f and g are homotopic, $f \sim g$, if $\exists h^i : A^i \to B^{i-1}$ such that $f^i - g^i = h^{i+1} \circ d^i_A + d^{i-1}_B \circ h^i$.

This is an equivalence relation; we have $f \sim g \Rightarrow H^i(f) = H^i(g), \forall i$. Also, if we have morphisms $f : A^{\bullet} \to B^{\bullet}, g : B^{\bullet} \to A^{\bullet}$ with $f \circ g \sim id_B, g \circ f \sim id_A$, then f, g are quasi-isomorphisms, and $H^i(f)^{-1} = H^i(g)$.

Definition 1.10. The homotopy category $K(\mathcal{A})$ is the category with $Ob(K(\mathcal{A})) = Ob(Kom(\mathcal{A})), Hom_{K(\mathcal{A})}(\mathcal{A}^{\bullet}, \mathcal{B}^{\bullet}) = Hom_{Kom(\mathcal{A})}(\mathcal{A}^{\bullet}, \mathcal{B}^{\bullet}) / \sim$.

2 The Mapping Cone

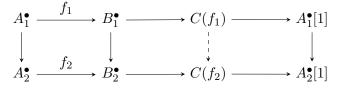
Definition 2.1. Let $f : A^{\bullet} \to B^{\bullet}$ be a complex morphism. The mapping cone is the complex C(f), with $C(f)^i = A^{i+1} \oplus B^i$,

$$d_{C(f)}^{i} = \begin{pmatrix} -d_A^{i+1} & 0\\ f^{i+1} & d_B^i \end{pmatrix}.$$

(A quick calculation shows that this is indeed a complex).

The mapping cone comes with two canonical morphisms: $\tau : B^{\bullet} \to C(f)$, given by the injection $B^i \to A^{i+1} \oplus B^i$, and $\pi : C(f) \to A^{\bullet}[1]$, given by the projection $A^{i+1} \oplus B^i \to A^{\bullet}[1]^i = A^{i+1}$.

Proposition 2.2. With the mapping cone, we can complete commutative diagrams as follows:

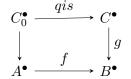


Proposition 2.3. Let $f : A^{\bullet} \to B^{\bullet}$ be a complex morphism, and C(f) the mapping cone. Then there exists a morphism $g : A^{\bullet}[1] \to C(\tau)$, isomorphic in $K(\mathcal{A})$, such that the diagram

commutes up to homotopy.

The morphism g required in the proof is the morphism $A^{i+1} \to B^{i+1} \oplus A^{i+1} \oplus B^i$ given by $(-f^{i+1}, \mathrm{id}, 0)$.

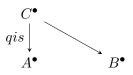
Proposition 2.4. Let $f : A^{\bullet} \to B^{\bullet}, g : C^{\bullet} \to B^{\bullet}$ be complex morphisms, with f a quasi-isomorphism. Then there exists a diagram



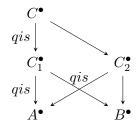
which commutes up to homotopy.

3 The Derived Category

The derived category $D(\mathcal{A})$ of an abelian category \mathcal{A} is given in two parts. Firstly, the objects are the complexes in \mathcal{A} . The morphisms $\operatorname{Hom}_{D(\mathcal{A})}(A^{\bullet}, B^{\bullet})$ are equivalence classes of diagrams

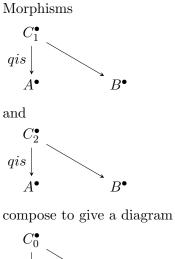


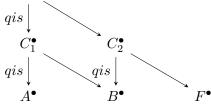
where two such diagrams are equivalent if there is a diagram



which commutes up to homotopy. In particular

$$(C^{\bullet} \to C_1^{\bullet} \to A^{\bullet}) \sim (C^{\bullet} \to C_2^{\bullet} \to A^{\bullet}).$$

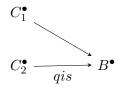




which commutes up to homotopy.

Corollary 3.1. The equivalence and the compositions exist and are welldefined.

Proof: Existence of compositions comes from applying Proposition 2.4 to the diagram



Proposition 3.2. The derived category $D(\mathcal{A})$ is defined by the following universal property: There exists a functor $Q : \operatorname{Kom}(\mathcal{A}) \to D(\mathcal{A})$ such that for a morphism $f : \mathcal{A}^{\bullet} \to \mathcal{B}^{\bullet}$ in $\operatorname{Kom}(\mathcal{A}), Q(f)$ is an isomorphism whenever f is a quasi-isomorphism; for any functor $F : \operatorname{Kom}(\mathcal{A}) \to D$ satisfying this property there exists a unique functor $G : D(\mathcal{A}) \to D$ with $F \cong G \circ Q$.

Example 3.3. Let $\mathcal{A} = Vec_f(k)$, the category of finite-dimensional vector spaces over a field k. Then $A^{\bullet} \in D(\mathcal{A})$ satisfies $A^{\bullet} = \bigoplus H^i(A^{\bullet})[-i]$, and so we have $D(\mathcal{A}) \cong \prod_{i \in \mathbb{Z}} \mathcal{A}$.

Proposition 3.4. Let \mathcal{A} be an abelian category with enough injectives, and $\mathcal{I} \subset \mathcal{A}$ the full subcategory of injectives. Then the natural functor $\iota : K^+(\mathcal{I}) \to D^+(\mathcal{A})$, where the + superscript denotes the subcategory of complexes which ae bounded below, is an equivalence.