The Fourier-Mukai transform

Tom Wennink

Everything here comes from Huybrechts’s book [I] pages 86 and 113-122.

1 Definition and examples

We will have the following conventions: Let X and Y be smooth projective
varieties over a field. We have the projections

p:XxY Y, ¢:XxY X

We will not write the L’s and R’s in front of the functors but all functors
we consider are in fact derived functors.

Definition 1.1. Let P € D*(X x Y), the induced Fourier-Mukai transform
is the functor

dp : D°(X) — DY)
E* = p(¢" (&%) ® P).

We say P is the Fourier-Mukai kernel of ®p.

Remark 1.2. Note that since ¢ is flat, the derived functor ¢* is just the
usual pullback.

To be less ambiguous we could write <I>f§_>y for the Fourier-Mukai trans-
form defined above. We then also get a Fourier-Mukai transform <I>§_>X :
D*(Y) — DP(X) by reversing the roles of p and ¢ in the definition. So
one Fourier-Mukai kernel induces two Fourier-Mukai transforms. Unless we
specify otherwise we take ®p to be the one from D®(X) to D*(Y).

Remark 1.3. The Fourier-Mukai Transform is a composition of three exact
(i.e. triangulated) functors and is therefore itself exact (triangulated).

Now we will show some examples of functors that are in fact Fourier-Mukai
transforms. We will use the projection formula that we saw before

fE2 @ F* = fi(E° @ fTF°). (1)



Example 1.4. The identity
id: D'X — D°X

is a Fourier-Mukai transform with kernel Oa, where A is the diagonal in
X x X. When we look at the diagonal embedding i : X = A C X x X we
have ,Ox = Oa. We use this and the projection formula to get

Do, (%) = p(¢*E® ® i, Ox)
= P« (i (i"¢"E* ® Ox))
= (poi)«((goi)*E* @ Ox)
iyl

r
Example 1.5. For a function X — Y we have the graph X —{ X xY where
'y =id xf. We have I'y Ox = Or, so similar to the identity case we get

Pop, (€%) = (poTf)u((gol)"E® © Ox) = f.E°.
We can reverse the roles of p and ¢ to get
X—Y _ Y—=X _ px
Taking global sections can be seen as a special case of this since for f : X —
Speck we have f, =1T.

Example 1.6. If we were to take the diagonal embedding of a line bundle
L on X rather than taking the whole diagonal, we get ®;,1(£°®) = £° ® L.

Example 1.7. Taking the shift of the diagonal gives the shift, we have
Qo (%) = E* ® Ox|[1] = E°[1].

2 Adjoints and composition

We can express adjoints of the Fourier-Mukai transform in terms of its kernel.
For this we need Grothendieck-Verdier duality. Let f : X — Y, we define
wy i =wx ® f*wy and dim f := dim X —dim Y.

Theorem 2.1 (Grothendieck-Verdier duality). Let F* € D*(X) and £° €
DY(Y), there is a functorial isomorphism

[xom(F®, f*E° @ wyldim f]) = AHom(f. F*,E°).

Keep in mind that (as everywhere) the operations here are all derived func-
tors.

We are interested in the special case where f = q and we then take global
sections. We get wy = wxxy ® q*w)v( = p*wy and

Hompy(x xyv)(F*, ¢"E* @ p*wy[dim Y]) = Homps x) (¢ F°, E®).  (2)
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Definition 2.2. Let P € D*(X x Y), we define Pr, Pr € D*(X xY)
Pp = PY ® p*wy[dimY], Pr = PY ® ¢*wx|dim X].

Let ®p,, ®p, : D’(Y) — DP(X) be the corresponding Fourier-Mukai trans-
forms.

Proposition 2.3. The Fourier-Mukai transforms ®p,,®p, : D*(Y) —
DY(X) are left, respectively right adjoint to ®p.

Proof. We only proof it for ®p, . We will use and the fact that pullback
and pushforward are adjoint.

—

p*F*® Pr),E%)

p*F*® Pp,q*E® ® p*wy[dimY))
p*F. ® Pv’q*go)

= Homp(xxy)(p"F*,q°E* ® P)

= Homps(y) (F*, p«(q°E* ® P))

— Homps v (F*, ®p(£%))

Hom peox)(Pp, (F°),E%) = Homps(xy (g«
= Homps(x vy

= HOHlDb(Xxy)

~ o~

O]

Let mxy : X XY x Z — X XY be the projection, similarly we also have
nxz and myz. If we have P € D?(X x Y) and Q € D*(Y x Z) we define

R .= WXZ*(WXY*P(X)TFYZ*Q) € Db(X X Z).

Proposition 2.4. The diagram

Dh(X) —22 phy) 29, phz)
~ e

commutes.

3 Orlov’s theorem

Theorem 3.1 (Orlov). Let F be a fully faithful functor
F:D"X)— DY)

that admits a left and a right adjoint. There exists a P € D*(X xY), unique
up to unique isomorphism, such that ®p = F.

It turns out that the condition on being fully faithful can be weakened to
something less than full. And the condition on the existence of adjoints can
even be dropped altogether.



Corollary 3.2. If there exists an equivalence of categories DY(X) — DY
then dim X = dimY.

Proof. By Orlov’s theorem there exists a P such that ®p is the equivalence.
The adjoints ®p, , ®p, are then the quasi-inverses of ®p. This means that
®p, = ®&p,. Now we can use Orlov’s theorem again to see that the kernel
must be unique so P;, =2 Pr. When we write this out we get

PY = PV ® q*wx ® p*wy[dim X — dim Y].

Because PV is a bounded complex, there can be no isomorphism if a shift
occurs on the right hand side. Because p and ¢ are flat ¢*wx ® p*wy- is
concentrated in degree zero and no shift occurs there. This means that for
there to not be a shift we need dim X — dimY = 0. O

Whenever we have a morphism 1 : P — @Q of objects P,Q € D*(X xY) we
get a corresponding morphism ®,,. This gives us a functor

®: DX xY) = DV(Y)P'X)
P q)p
w — q)w

Here D*(Y)P"(X) is the category of functors from D?(X) to DP(Y).
We show in the following example that this functor is not faithful.

Example 3.3. Let E be an elliptic curve and consider the diagonal A inside
E x E. Using Serre duality we have

EXt%b(EXE)(OAa OA) = EXtODb(ExE)(OA, OA & wEXg) 75 0.

So there is a morphism ¢ : Oan — Oa[2] that is not the zero morphism.
We get a corresponding @y, : ®0, — Pp,[2] Which as we saw in our earlier
examples is a map @y, : id — [2].

If this map is to be nonzero then there must be a nonzero function
in ExtQDb(E)(]:',}_') for some F* € D’(E). When we look at a com-
plex of sheaves concentrated in degree zero then by Serre duality we have
ExtQDb(E)(]:, F) = 0, since 2 > dimE. We now use the fact that for
curves any complex of sheaves F* can be written as a sum of complexes

of sheaves concentrated in a single degree, i.e. F* = @ F;[i]. So we find
that ExtQDb(E) (F*,F*) = 0 and therefore @, = 0.
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