
The Fourier-Mukai transform

Tom Wennink

Everything here comes from Huybrechts’s book [1] pages 86 and 113-122.

1 Definition and examples

We will have the following conventions: Let X and Y be smooth projective
varieties over a field. We have the projections

p : X × Y → Y, q : X × Y → X.

We will not write the L’s and R’s in front of the functors but all functors
we consider are in fact derived functors.

Definition 1.1. Let P ∈ Db(X ×Y ), the induced Fourier-Mukai transform
is the functor

ΦP : Db(X)→ Db(Y )

E• 7→ p∗(q
∗(E•)⊗ P ).

We say P is the Fourier-Mukai kernel of ΦP .

Remark 1.2. Note that since q is flat, the derived functor q∗ is just the
usual pullback.

To be less ambiguous we could write ΦX→Y
P for the Fourier-Mukai trans-

form defined above. We then also get a Fourier-Mukai transform ΦY→X
P :

Db(Y ) → Db(X) by reversing the roles of p and q in the definition. So
one Fourier-Mukai kernel induces two Fourier-Mukai transforms. Unless we
specify otherwise we take ΦP to be the one from Db(X) to Db(Y ).

Remark 1.3. The Fourier-Mukai Transform is a composition of three exact
(i.e. triangulated) functors and is therefore itself exact (triangulated).

Now we will show some examples of functors that are in fact Fourier-Mukai
transforms. We will use the projection formula that we saw before

f∗E• ⊗F• ∼= f∗(E• ⊗ f∗F•). (1)
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Example 1.4. The identity

id : DbX → DbX

is a Fourier-Mukai transform with kernel O∆, where ∆ is the diagonal in
X ×X. When we look at the diagonal embedding i : X

∼−→ ∆ ⊂ X ×X we
have i∗OX = O∆. We use this and the projection formula (1) to get

ΦO∆
(E•) = p∗(q

∗E• ⊗ i∗OX)

= p∗(i∗(i
∗q∗E• ⊗OX))

= (p ◦ i)∗((q ◦ i)∗E• ⊗OX)

= E•

Example 1.5. For a function X → Y we have the graph X
Γf→ X×Y where

Γf = id×f . We have Γf ∗OX = OΓf
so similar to the identity case we get

ΦOΓf
(E•) = (p ◦ Γf )∗((q ◦ Γf )∗E• ⊗OX) = f∗E•.

We can reverse the roles of p and q to get

ΦX→Y
OΓf

= f∗ , ΦY→X
OΓf

= f∗.

Taking global sections can be seen as a special case of this since for f : X →
Spec k we have f∗ = Γ.

Example 1.6. If we were to take the diagonal embedding of a line bundle
L on X rather than taking the whole diagonal, we get Φi∗L(E•) = E• ⊗ L.

Example 1.7. Taking the shift of the diagonal gives the shift, we have
ΦO∆[1](E•) = E• ⊗OX [1] = E•[1].

2 Adjoints and composition

We can express adjoints of the Fourier-Mukai transform in terms of its kernel.
For this we need Grothendieck-Verdier duality. Let f : X → Y , we define
ωf := ωX ⊗ f∗ω∨Y and dim f := dimX − dimY .

Theorem 2.1 (Grothendieck-Verdier duality). Let F• ∈ Db(X) and E• ∈
Db(Y ), there is a functorial isomorphism

f∗H om(F•, f∗E• ⊗ ωf [dim f ]) ∼= H om(f∗F•, E•).

Keep in mind that (as everywhere) the operations here are all derived func-
tors.

We are interested in the special case where f = q and we then take global
sections. We get ωf = ωX×Y ⊗ q∗ω∨X = p∗ωY and

HomDb(X×Y )(F•, q∗E• ⊗ p∗ωY [dimY ]) ∼= HomDb(X)(q∗F•, E•). (2)
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Definition 2.2. Let P ∈ Db(X × Y ), we define PL, PR ∈ Db(X × Y )

PL = P∨ ⊗ p∗ωY [dimY ] , PR = P∨ ⊗ q∗ωX [dimX].

Let ΦPL
,ΦPR

: Db(Y )→ Db(X) be the corresponding Fourier-Mukai trans-
forms.

Proposition 2.3. The Fourier-Mukai transforms ΦPL
,ΦPR

: Db(Y ) →
Db(X) are left, respectively right adjoint to ΦP .

Proof. We only proof it for ΦPL
. We will use (2) and the fact that pullback

and pushforward are adjoint.

HomDb(X)(ΦPL
(F•), E•) = HomDb(X)(q∗(p

∗F• ⊗ PL), E•)
= HomDb(X×Y )(p

∗F• ⊗ PL, q∗E• ⊗ p∗ωY [dimY ])

= HomDb(X×Y )(p
∗F• ⊗ P∨, q∗E•)

= HomDb(X×Y )(p
∗F•, q∗E• ⊗ P )

= HomDb(Y )(F•, p∗(q∗E• ⊗ P ))

= HomDb(Y )(F•,ΦP (E•))

Let πXY : X × Y × Z → X × Y be the projection, similarly we also have
πXZ and πY Z . If we have P ∈ Db(X × Y ) and Q ∈ Db(Y × Z) we define

R := πXZ∗(πXY
∗P ⊗ πY Z∗Q) ∈ Db(X × Z).

Proposition 2.4. The diagram

Db(X) Db(Y ) Db(Z)
ΦP

ΦR

ΦQ

commutes.

3 Orlov’s theorem

Theorem 3.1 (Orlov). Let F be a fully faithful functor

F : Db(X)→ Db(Y )

that admits a left and a right adjoint. There exists a P ∈ Db(X×Y ), unique
up to unique isomorphism, such that ΦP

∼= F .

It turns out that the condition on being fully faithful can be weakened to
something less than full. And the condition on the existence of adjoints can
even be dropped altogether.
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Corollary 3.2. If there exists an equivalence of categories Db(X) → DbY
then dimX = dimY .

Proof. By Orlov’s theorem there exists a P such that ΦP is the equivalence.
The adjoints ΦPL

,ΦPR
are then the quasi-inverses of ΦP . This means that

ΦPL
∼= ΦPR

. Now we can use Orlov’s theorem again to see that the kernel
must be unique so PL ∼= PR. When we write this out we get

P∨ ∼= P∨ ⊗ q∗ωX ⊗ p∗ω∨Y [dimX − dimY ].

Because P∨ is a bounded complex, there can be no isomorphism if a shift
occurs on the right hand side. Because p and q are flat q∗ωX ⊗ p∗ω∨Y is
concentrated in degree zero and no shift occurs there. This means that for
there to not be a shift we need dimX − dimY = 0.

Whenever we have a morphism ψ : P → Q of objects P,Q ∈ Db(X × Y ) we
get a corresponding morphism Φψ. This gives us a functor

Φ : Db(X × Y )→ Db(Y )D
b(X)

P 7→ ΦP

ψ 7→ Φψ

Here Db(Y )D
b(X) is the category of functors from Db(X) to Db(Y ).

We show in the following example that this functor is not faithful.

Example 3.3. Let E be an elliptic curve and consider the diagonal ∆ inside
E × E. Using Serre duality we have

Ext2
Db(E×E)(O∆,O∆) = Ext0

Db(E×E)(O∆,O∆ ⊗ ωE×E) 6= 0.

So there is a morphism ψ : O∆ → O∆[2] that is not the zero morphism.
We get a corresponding Φψ : ΦO∆

→ ΦO∆[2] which as we saw in our earlier
examples is a map Φψ : id→ [2].

If this map is to be nonzero then there must be a nonzero function
in Ext2

Db(E)(F
•,F•) for some F• ∈ Db(E). When we look at a com-

plex of sheaves concentrated in degree zero then by Serre duality we have
Ext2

Db(E)(F ,F) = 0, since 2 > dimE. We now use the fact that for
curves any complex of sheaves F• can be written as a sum of complexes
of sheaves concentrated in a single degree, i.e. F• ∼=

⊕
Fi[i]. So we find

that Ext2
Db(E)(F

•,F•) = 0 and therefore Φψ = 0.
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