
DERIVED CATEGORIES OF COHERENT SHEAVES

OLIVER E. ANDERSON

Abstract. We give an overview of derived categories of coherent sheaves. Our main reference is
[Huy06].

1. For the participants without background in algebraic geometry

1.1. Subvarieties of Cn. In (complex) differential geometry one typically studies pairs (X,O) where
X is a (complex) manifold and O is a sheaf of functions taking values in R or C satisfying some
conditions (differentiable, analytic, holomorphic). In algebraic geometry the story is similar although
there the topological spaces have rather coarse topologies and one typically imposes stronger conditions
on the functions. A key example to keep in mind is the (classical) affine n-space usually denoted
An whose underlying set is the set Cn and where for any polynomial in f ∈ C[T1, . . . , Tn] we set
Z(f) := {x ∈ Cn |f(x) = 0} and the closed subsets of An are exactly the subsets which are (arbitrary)
intersections of subsets of the form Z(f) for some polynomial f in n-variables. The space An comes
equipped with a structure sheaf OAn where for an open subset U ⊂ An we have

OAn(U) := {f : U → C |f is locally a quotient of two polynomials }.
For a closed subset X = ∩i∈IZ(fi) such that the ideal generated by the fi is a prime ideal on can give
X a structure sheaf OX in exactly the same way as above and this is what we call a (classical) affine
variety. Just as with manifolds (classical) affine varieties can be glued together to get a locally ringed
space (X,OX) which is what is called a (classical) variety. Given a variety X with structure sheaf OX
we can talk about sheaves of OX -modules M which is a sheaf on the topological space X such that
for any open set U ⊂ X the set M(U) has the structure of an OX(U)-module which is compatible
with the restriction maps.

In this talk we will mostly be considering something called schemes which essentially are enhanced
versions of classical varieties, the participants not familiar with this are encouraged to keep the above
related notions in mind.

1.2. Vector bundles. Like in many other areas of geometry the notion of vector bundles can also be
found in algebraic geometry.

Definition 1.1. Let Y be a scheme. A vector bundle f : X → Y is a morphism of schemes together
with the following additional data: An open covering {Ui} of Y , together with Ui-isomorphisms
ψi : f−1(Ui)→ Ui ×AnZ, such that for any i, j, and for any open affine subset V = Spec(A) ⊂ Ui ∩ Uj
and for k = i, j letting φk,V : AnV → f−1(V ) denote the isomorphism induced by the projection to V
and the map

AnV → AnUk

ψ−1
k→ f−1(Uk)→ X,

the automorphism Θi,j,V : AnV → AnV given by

Θi,j,V := φ−1
j,V ◦ φi,V

is induced by a linear automorphism of A[T1, . . . , Tn], that is a map θ satisfying θ(a) = a and θ(Ti) =∑
ai,jTj for suitable ai,j ∈ A. 1
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1This definition is not consistent with the definition given in [GD61, Definition 1.7.8] which is more general. We give

the one above because it is more similar to the analogue in differential geometry.
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The definition above can be a bit of a mouthfull the first time one encounters it. Luckily for us
however the category of vector bundles over a scheme X is equivalent to the category of locally free
sheaves on X which we now recall.

Definition 1.2. Let F be an OX -module. We say that F is a free sheaf of rank n if there is an
isomorphism F ∼= O⊕nX for some n ≥ 0. We shall say that F is locally free if there is an open cover of
X, {Ui} such that F|Ui is free of some rank for each Ui. If X is connected then the rank will be the
same on all the open sets Ui.

Example 1.3. The category of locally free sheaves on a scheme X does in general not have a terminal
object and hence it is not abelian. To see this consider the following example with X = A1

k and suppose
for the sake of contradiction that the category of locally free sheaves on X does have a terminal object
which we denote by T . It is a fact that any locally free sheaf on an affine scheme must necessarily
have non-trivial global sections (to painlessly see this apply the next lemma), but each of these global
sections correspond to a map of OX -modules OX → T hence T can not be a terminal object.

To remedy the situation we choose to not only consider vector-bundles/locally free sheaves, but
also other reasonably nice OX -modules which are called quasi-coherent sheaves. This notion can be
defined in many equivalent ways, we give two of these in the lemma below

Lemma 1.4. Let X be a scheme and F be a OX-module. The following are equivalent:

(1) There exists a covering {Ui} of X such that on each Ui, F|Ui is isomorphic to the cokernel (in
the category of all OX-modules) of a map of two free sheaves. In other words the sequence:

O⊕IUi
→ O⊕JUi

→ F|Ui → 0

is exact.
(2) For any affine open subscheme Spec(A) of X and any f ∈ A the map Γ(Spec(A),F)f →

Γ(Spec(Af ),F) induced by universal property of localization is an isomorphism.

Definition 1.5. Let X be a scheme and F an OX -module. If F satisfies the equivalent conditions of
Lemma 1.4 we say that F is quasi-coherent. Furhtermore if for any affine open Spec(A) the A-module
M = Γ(Spec(A),F) is finitely generated and for any map A⊕n → M (not necessarily surjective) the
kernel is finitely generated, then we say that F is a coherent sheaf.

Theorem 1.6. Both the category of quasi-coherent sheaves QCoh(X) and the category of coherent
sheaves Coh(X) on a scheme X are abelian.

2. The derived category of coherent sheaves

2.1. Problems with lack of injectives and how to somewhat fix this.

Definition 2.1. Let X be a scheme. Its derived category Db(X) is by definition the bounded derived
category of the abelian category Coh(X), i.e.,

Db(X) := Db(Coh(X)).

Recall the following definition

Definition 2.2. A k-linear category is an additive category A such that the groups Hom(A,B) are
k-vector spaces and such that all compositions are k-bilinear.

An additive functor F between two k-linear additive categories over a common base field k are
k-linear if for any objects A,B ∈ A the canonical map

Hom(A,B)→ Hom(F (A), F (B))

is k-linear.

Definition 2.3. Two schemes X and Y are defined over a field k are called derived equivalent if there
exists a k-linear exact equivalence

Db(X) ∼= Db(Y ).
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Recall the definition of the right derived functor of a left exact functor

Definition 2.4. Suppose A and B are abelian categories and

F : K+(A)→ K+(B)

is an exact functor. Then the right derived functor RF : D+(A)→ D+(B) for F is the functor (unique
up to unique isomorphism) satisfying the following properties:

(1) Letting QA : K+(A) → D+(A), QB : K+(B) → D+(B) be the canonical functors we have a
natural transformation

QB ◦ F = RF ◦QA
(2) RF : D+(A)→ D+(B) is an exact functor of triangulated categories.
(3) Given G : D+(A)→ D+(B) and any natural transformation QB ◦ F → G ◦QA there exists a

unique natural transformation RF → G making the following diagram commute

QB ◦ F G ◦QA

RF ◦QA

Recall from the previous talk (and the spoiler occuring in all previous talks) that for an abelian
category A with enough injectives we have that i : K+(I) → D+(A) is an equivalence of categories.
For a left exact functor F : A → B between abelian categories we then constructed the right derived
functor of F as RF = QB ◦K(F ) ◦ i−1.

Unfortunately, Coh(X) usually contains no non-trivial injective objects. Here is a simple example
to keep in mind

Example 2.5. Take X = Spec(Z) then the category of coherent sheaves on X is equivalent to the
category of finitely generated abelian groups. Now note that if I is an injective object in this category
then since any element i ∈ I gives rise to a map Z→ I and we can consider

0 Z N

I

·n

∃

this implies that for any n ∈ Z we must have nI = I. However by the structure theorem of finitely
generated abelian groups it follows that no finitely generated abelian group can satisfy this.

Thus in order to compute derived functors introduced in the previous talk we have to pass to big-
ger abelian categories. Most often we will work with the abelian category of quasi-coherent sheaves
QCoh(X), with its derived categories D∗(QCoh(X)) (∗ = b,+,−) and sometimes with the abelian cat-
egory of OX -modules ShOX

(X). Whenever the scheme is defined over a field k, the derived categories
will tacitly be considered as k-linear categories.

Notation 2.6. In order to avoid any possible confusion between sheaf cohomology H i(X,F) and the
cohomology H i(F•) of a complex of sheaves, we will from now on write Hi(F•) for the latter.

The following proposition shows that the category of quasi-coherent sheaves on a Noetherian scheme
X has enough injectives.

Proposition 2.7. [Huy06, Prop. 3.3] On a Noetherian scheme X any quasi-coherent sheaf F admits
a resolution

0→ F → I0 → I1 → . . .

by quasi-coherent sheaves Ii which are injective as OX-modules.

The following proposition will (to some extent) allow us to overcome the problem with the lack of
injectives in Coh(X).
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Proposition 2.8. [Huy06, Prop. 3.5] Let X be a Noetherian scheme. Then the natural functor

Db(X)→ Db(QCoh(X))

defines an equivalence betweeen the derived category Db(X) of X and the full triangulated subcategory
Db
coh(QCoh(X)) of bounded complexes of quasi-coherent sheaves with coherent cohomology.

Remark 2.9. Recall that for an abelian category A with enough injectives we have

ExtiA(A,B) ∼= HomDb(A)(A,B[i])

Thus we have for any two coherent sheaves F and G we have by the above proposition that

ExtiQCoh(X)(F ,G) ∼= HomDb(X)(F ,G[i]).

and taken together with [Huy06, Remark. 2.5.7] we can extend this to complexes E•,F• of coherent
sheaves. If X is a proper variety over a field k one can apply Grothendiecks Coherence theorem to
show that ExtiQCoh(X)(F ,G) is a finite dimensional k-vector space. It is actually possible to show the

same in the case of complexes of coherent sheaves as well.

2.2. Serre functors and Serre duality.

Definition 2.10. Let A be a k-linear category. A Serre functor is a k-linear equivalence S : A → A
such that for any two objects A,B ∈ A there exists an isomorphism

ηA,B : Hom(A,B)
∼=→ Hom(B,S(A))∨

of (k-vector spaces) which is functorial in A and B.
We write the induced pairing as

Hom(B,S(A))×Hom(A,B)→ k, (f, g) 7→ 〈f |g〉.

Let now X be a smooth projective variety over a field k, and ωX its canonical bundle.
First note that for any locally free sheafM the functor Coh(X)→ Coh(X) given by F 7→ F⊗M is

exact. In particular, it immediately descends to an exact functor on the derived categories D∗(X)→
D∗(X), which will be denoted by M⊗ (). Other exact functors to consider are the shift functors
[i] : D∗(X)→ D∗(X) with i ∈ Z.

Definition 2.11. Let X be a smooth projective variety of dimension n. Then one defines the exact
functor SX as the composition

D∗(X) D∗(X) D∗(X)
ωX⊗() [n]

Theorem 2.12. (Serre duality) Let X be a smooth projective variety over a field k. Then

SX : Db(X)→ Db(X)

is a Serre functor. Or in otherwords for any two complexes E•,F• ∈ Db(X) we have an isomorphism

HomD(A)(E•,F•) ∼= HomD(A)(F•, E• ⊗ ωX [n])∨

Corollary 2.13. Let X be a smooth projective variety over a field k. Then for any two complexes
E•,F• ∈ Db(X) we have an isomorphism

Exti(E•,F•) ∼= Extn−i(F•, E• ⊗ ωX)∨

which is functorial in E• and F•.

Proof. We have

Exti(E•,F•) ∼= HomDb(X)(E•,F•[i]) ∼= HomD(X)(F•[i], E• ⊗ ωX [n])∨ ∼=
∼= HomD(X)(F•, E• ⊗ ωX [n− i])∨ = Extn−i(F•, E• ⊗ ωX)∨.

�
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Corollary 2.14. Suppose that F ,G are coherent sheaves on a smooth projective variety X of dimension
n. Then

Exti(F ,G) = 0 for i > n.

Proof. Simply note for n− i < 0 we have

Exti(E ,F) ∼= Extn−i(F , E ⊗ ωX)∨ ∼= 0.

�

Corollary 2.15. Let C be a smooth projective curve. Then any object in Db(C) is isomorphic to a
direct sum ⊕Ei[i], where Ei are coherent sheaves on C.

Proof. We proceed by induction over the length of the complex. Suppose E• is a complex of length k
with Hi(E•) = 0 for i < i0. Then [Huy06, Ex.2.32] gives us a distinguished triangle of the form

Hi0(E•)[−i0]→ E• → E•1 → Hi0(E•)[1− i0]

If this distinguished triangle splits, that is if we have that

E• ∼= Hi0(E•)[−i0]⊕ E•1
then the induction hypothesis for E•1 allows us to conclude. To prove that we indeed do get such a
splitting it is by [Huy06, Ex. 1.38] enough to prove that

HomCoh(X)(E•1 ,Hi0(E•[1− i0])) = 0.

Now by the induction hypothesis on E•1 together with the fact that Hi(E•1 ) = 0 for i ≤ i0 it follows
that

E•1 ∼= ⊕i>i0Hi(E•1 )[−i].
Thus

HomCoh(X)(E•1 ,Hi0(E•[1− i0]) = ⊕i>i0 Ext1+i−i0(Hi(E•1 ),Hi0(E•)) = 0,

as the homological dimension of a curve is one. �

Remark 2.16. The proof applies more generally to any abelian category of homological dimension
≤ 1.

3. Derived functors in algebraic geometry

The following result tells us that under certain conditions (right) derived functors induce functors
on the derived categories where one has extra conditions on the objects.

Corollary 3.1. [Huy06, Cor. 2.68] Suppose that F : K+(A) → K+(B) is an exact functor which
admits a right derived functor RF : D+(A)→ D+(B) and assume that A has enough injectives.

(1) Suppose C ⊂ B is a thick subcategory with RiF (A) ∈ C for all A ∈ A. Then RF takes values
in D+

C (B), i.e.,

RF : D+(A)→ D+
C (B)

(2) If RF (A) ∈ Db(B) for any object A ∈ A, then RF (A•) ∈ Db(B) for any complex A• ∈ Db(A)
, i.e., RF induces an exact functor

RF : Db(A)→ Db(B).

Let X be a Noetherian scheme over a field k. The global section functor

Γ : QCoh(X)→ Vectk,F 7→ Γ(X,F)

is a left exact functor. Since QCoh(X) has enough injectives, its derived functor

RΓ : D+(QCoh(X))→ D+(Vectk)

exists. The higher derived functors are denoted

H i(X,F•) := RiΓ(F•).
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For a sheaf F these are just the cohomology groups H i(X,F) and for an honest complex F• they are
sometimes called the hypercohomology groups Hi(X,F•). Since every complex of vector spaces splits
by Corollary 2.15 and Remark 2.16, one has in fact

RΓ(F•) ∼= ⊕H i(X,F•)[−i].

Recall the following standard result from algebraic geometry

Theorem 3.2. For any quasi-coherent sheav F on a Noetherian topological space X one has H i(X,F) =
0 for i > dim(X).

From this it follows that RΓ induces an exact functor on the bounded derived categories

RΓ : Db(QCoh(X))→ Db(Vectk)

The following theorem is also well known

Theorem 3.3. If F is a coherent sheaf on a projective scheme X over a field k, then all cohomology
groups H i(X,F) are of finite dimension.

Taking i = 0 we thus get a left exact functor

Γ : Coh(X)→ Vectfink

However we cannot directly construct its derived functor as Coh(X) does not in general contain enough
injectives. Instead we first consider Γ′ : Coh(X) → Vectk then using [Huy06, Prop 3.5] one obtains
the right derived functor

RΓ′ : Db(X)→ Db(QCoh(X))→ Db(Vectk)

and applying Theorem 3.3 we see RiΓ(F) ∈ Vectfink for all F ∈ Coh(X) thus [Huy06, Cor.2.68]2

shows that RΓ′ factorises through Db
Vectfink

(Vectk) and since finite dimensional vector spaces are thick

in vector spaces it follows from [Huy06, Prop. 2.42] that we have an equivalence Db(Vectfink ) with
D

Vectfink
(Vectk) thus we obtain a right derived functor of Γ

RΓ : Db(X)→ Db(Vectfink ).

We summarise this discussion in a diagram

D+(QCoh(X)) D+(Vectk)

Db+(QCoh(X)) Db(Vectk)

Db(X) Db(Vectfink ).

RΓ

3.1. Direct image. Let f : X → Y be a morphism of Noetherian schemes. The direct image is a left
exact functor

f∗ : QCoh(X)→ QCoh(Y ).

Again, we use that QCoh(X) has enough injectives in order to define the right derived functor

Rf∗ : D+(QCoh(X))→ D+(QCoh(X)).

The higher direct images Rif∗(F•) of a complex of sheaves F• are, by definition, the cohomology
sheaves Hi(Rf∗(F•)) of Rf∗(F•) . In particular to any quasi-coherent sheaf F on X one associates
the quasi-coherent sheaves Rif∗F on Y .

2Technically speaking this corollary is only stated for an abelian category with enough injectives, however the existence
of the spectral sequence needed in its proof can be obtained by viewing any coherent sheaf as a quasi-coherent sheaf.
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Lemma 3.4. The higher direct image functor induces an exact functor

Rf∗ : Db(QCoh(X))→ Db(QCoh(Y ))

Proof. Follows from the well known fact that for a morphism f : X → Y between Noetherian schemes
the higher direct images RiF∗F are trivial for i > dim(X) and [Huy06, Cor.2.68]. �

Lemma 3.5. If f : X → Y is a projective (or proper) morphism of Noetherian schemes then if F is
coherent then f∗(F) is also coherent on Y and we have a right derived functor

Rf∗ : Db(X)→ Db(Y )

Proof. Using Grothendieck’s coherence theorem and arguments similar to those given in the case of
Γ. �

Recall that for an abelian category A and left exact functor F : A → B we say that a class of
objects IF ⊂ A stable under direct sums is F -adapted if the following conditions hold true

(1) A• ∈ K+(A) is acyclic with Ai ∈ IF for all i, then F (A•) is acyclic.
(2) Any object in A can be embedded into an object of IF .

Whenever one has such an F -adapted class the derived functor RF : D+(A)→ D+(B) exists.
Recall that a sheaf F is flabby if for any open subset U ⊂ X the restriction map F(X)→ F(U) is

surjective.

Lemma 3.6. Any injective OX-sheaf is flabby. Any flabby sheaf F on X is f∗-acyclic for any mor-
phism f : X → Y , and moreover f∗F is again flabby.

For a composition

X
f→ Y

g→ Z

of two morphisms one knows that

(g ◦ f)∗ = g∗ ◦ f∗
from which we want to conclude that

R(g ◦ f)∗ ∼= Rg∗ ◦Rf∗ : Db(QCoh(X))→ Db(QCoh(Y ))

we recall from last talk that this will be the case if we can ensure the existence of an f∗-adapted class
I ⊂ QCoh(X) such that f∗(I) is contained in a g∗-adapted class . Let I be the class of injective
sheaves. Then because QCoh(X) has enough injectives (at least for Noetherian X) it follows from the
lemma above that I is an f∗-adapted class. As the direct image of a flabby sheaf is again flabby, f∗(I)
is contained in the g∗-adapted class of all flabby sheaves.

3.2. Local Homs. Let F ∈ QCoh(X). Then

Hom(F ,−) : QCoh(X)→ QCoh(X)

is a left exact functor. Recall that for F ,G (quasi) coherent Hom(F ,G) is (quasi) coherent. If X is
Noetherian then since QCoh(X) has enough injectives we may derive Hom(F ,−) to obtain

RHom(F ,−) : D+(QCoh(X))→ (QCoh(X)).

By definition

Exti(F ,G) = RiHom(F ,G).

Restricting to coherent sheaves we get

RHom(F ,−) : D+(X)→ D+(X)

and if we in addition assume that X is regular (smooth) then since higher ext’s vanish we get

RHom(F ,−) : Db(X)→ Db(Y )
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3.3. Tensor product. Let F ∈ Coh(X). The tensor product defines the right exact functor

F ⊗ (−) : Coh(X)→ Coh(X)

Any coherent sheaf E admits a resolution by locally free sheaves. Moreover if E• is an acyclic complex
bounded above with all E i locally free, then F ⊗E• is still acyclic. These two facts show that the class
of locally free sheaves in Coh(X) is adapted for the right exact functor F ⊗ (−) thus, the left derived
functor

F ⊗L (−) : D−(X)→ D−(X)

exists. By definition,
T ori(F , E) := H−i(F ⊗L E).

For a complex F• ∈ K−(Coh(X)) that is bounded above one can define an exact functor

F• ⊗ (−) : K−(Coh(X))→ K−(Coh(X))

and it can be derived
F• ⊗L (−) : D−(X)→ D−(X)

See [Huy06] for the details.

3.4. Inverse image. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Then

f∗ : ShOY
(Y )→ ShOX

(X)

is by definition the composition of the exact functor

f−1 : ShOY
(Y )→ ShOX

(X)

and the right exact functor

OX ⊗f−1(OY ) (−) : Shf−1(OY )(X)→ ShOX
(X),

thus f∗ is right exact and if OX ⊗Lf−1(OY ) (−) is the left derived functor of OX ⊗f−1(OY ) (−), then

Lf∗ := (OX ⊗Lf−1(OY ) (−)) ◦ f−1 : D−(Y )→ D−(X).

Technically speaking we have only explained how to derive the tensor product over OX but the more
general situation is handled similarly, moverover as in many applications f is flat we then have that
f∗ is exact and we do not need to derive it.

3.5. compatibilities. Let f : X → Y be a proper morphism of schemes over a field k. We have the
following natural isomorphisms

(1) (projection formula) For F•, E• ∈ Db(X)

Rf∗(F•)⊗L E•
∼=→ Rf∗(F• ⊗L Lf∗(E•))

(2) For F•, E• ∈ Db(Y ) we have

Lf∗(F•)⊗L Lf∗(E•)
∼=→ Lf∗(F• ⊗L E•)

(3) The functor Lf∗ is left adjoint to Rf∗.
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